Research article

Estimate for Schwarzian derivative of certain close-to-convex functions

  • Received: 29 May 2021 Accepted: 12 July 2021 Published: 26 July 2021
  • MSC : 30C45

  • Let $ f(z) $ be analytic in the unit disk with $ f(0) = f'(0)-1 = 0 $. For the following close-to-convex subclasses: $ \Re \{(1-z)f'(z)\} > 0, $ $ \Re \{(1-z^{2})f'(z)\} > 0, $ $ \Re \{(1-z+z^{2})f'(z)\} > 0 $ and $ \Re \{(1-z)^{2}f'(z)\} > 0 $, we investigate the bounds for the first two consecutive derivatives of higher order Schwarzian derivatives of $ f(z) $.

    Citation: Zhenyong Hu, Xiaoyuan Wang, Jinhua Fan. Estimate for Schwarzian derivative of certain close-to-convex functions[J]. AIMS Mathematics, 2021, 6(10): 10778-10788. doi: 10.3934/math.2021626

    Related Papers:

  • Let $ f(z) $ be analytic in the unit disk with $ f(0) = f'(0)-1 = 0 $. For the following close-to-convex subclasses: $ \Re \{(1-z)f'(z)\} > 0, $ $ \Re \{(1-z^{2})f'(z)\} > 0, $ $ \Re \{(1-z+z^{2})f'(z)\} > 0 $ and $ \Re \{(1-z)^{2}f'(z)\} > 0 $, we investigate the bounds for the first two consecutive derivatives of higher order Schwarzian derivatives of $ f(z) $.



    加载中


    [1] D. Aharonov, U. Elias, Sufficient conditions for univalence of analytic functions, J. Anal., 22 (2014), 1–11.
    [2] M. F. Ali, A. Vasudevarao, On logarithmic coefficients of some close-to-convex functions, Proc. Amer. Math. Soc., 146 (2018), 1131–1142.
    [3] D. Bshouty, A. Lyzzaik, Univalent functions starlike with respect to a boundary point, Contemp. Math., 382 (2005), 83–87. doi: 10.1090/conm/382/07049
    [4] N. E. Cho, B. Kowalczyk, O. S. Kwon, A. Lecko, Y. J. Sim, On the third logarithmic coefficient in some subclasses of close-to-convex functions, RACSAM, 114 (2020), 52. doi: 10.1007/s13398-020-00786-7
    [5] N. E. Cho, B. Kowalczyk, A. Lecko, Sharp bounds of some coefficient functionals over the class of functions convex in the direction of the imaginary axis, B. Aust. Math. Soc., 100 (2019), 86–96. doi: 10.1017/S0004972718001429
    [6] N. E. Cho, V. Kumar, V. Ravichandran, Sharp bounds on the higher order Schwarzian derivatives for Janowski classes, Symmetry, 10 (2018), 348. doi: 10.3390/sym10080348
    [7] C. Carathéodory, Über den Variabilitatsbereich der Koeffizienten von Potenzreihen, die gegebene werte nicht annehmen, Math. Ann., 64 (1907), 95–115. doi: 10.1007/BF01449883
    [8] Y. L. Chung, M. H. Mohd, S. K. Lee, On a subclass of close-to-convex functions, Bull. Iran. Math. Soc., 44 (2018), 611–621. doi: 10.1007/s41980-018-0039-4
    [9] J. H. Choi, Y. C. Kim, T. Sugawa, A general approach to the Fekete-Szegö problem, J. Math. Soc. Japan, 59 (2007), 707–727.
    [10] P. L. Duren, Univalent functions, New York, Berlin, Heidelberg and Tokyo: Springer-Verlag, 1983.
    [11] M. Dorff, J. Szunal, Higher order Schwarzian derivatives of univalent functions, Tr. Petrozavodsk. Gos. Univ. Ser. Mat., 2008, 7–11.
    [12] A. W. Goodman, Univalent functions, Tampa: Mariner, 1983.
    [13] S. P. Goyal, O. Singh, Certain subclasses of close-to-convex functions, Vietnam J. Math., 42 (2014), 53–62. doi: 10.1007/s10013-013-0032-4
    [14] R. Harmelin, Aharonov invariants and univalent functions, Israel J. Math., 43 (1982), 244–254. doi: 10.1007/BF02761945
    [15] B. Kowalczyk, O. S. Kwon, A. Lecko, Y. J. Sim, B. Śmiarowska, The third-order Hermitian Toeplitz determinant for classes of functions convex in one direction, Bull. Malays. Math. Sci. Soc., 43 (2020), 3143–3158. doi: 10.1007/s40840-019-00859-w
    [16] B. Kowalczyk, A. Lecko, Fekete-Szegö problem for a certain subclass of close-to-convex functions, Bull. Malay. Math. Sci. Soc., 38 (2015), 1393–1410. doi: 10.1007/s40840-014-0091-z
    [17] B. Kowalczyk, A. Lecko, The Fekete-Szegö inequality for close-to-convex functions with respect to a certain starlike function dependent on a real parameter, J. Inequal. Appl., 2014 (2014), 65. doi: 10.1186/1029-242X-2014-65
    [18] B. Kowalczyk, A. Lecko, H. M. Srivastava, A note on the Fekete-Szegö problem for close-to-convex functions with respect to convex functions, Publi. I. Math.-Beograd, 101 (2017), 143–149. doi: 10.2298/PIM1715143K
    [19] J. Kowalczyk, E. Les-Bomba, On a subclass of close-to-convex functions, Appl. Math. Lett., 23 (2010), 1147–1151. doi: 10.1016/j.aml.2010.03.004
    [20] V. Kumar, N. E. Cho, V. Ravichandran, H. M. Srivastava, Sharp coefficient bounds for starlike functions associated with the Bell numbers, Math. Slovaca, 69 (2019), 1053–1064. doi: 10.1515/ms-2017-0289
    [21] U. P. Kumar, A. Vasudevarao, Logarithmic coefficients for certain subclasses of close-to-convex functions, Monatsh. Math., 187 (2018), 543–563. doi: 10.1007/s00605-017-1092-4
    [22] V. Kumar, Hermitian-Toeplitz determinants for certain classes of close-to-convex functions, Bull. Iran. Math. Soc., 2021, DOI: 10.1007/s41980-021-00564-0.
    [23] A. Lecko, B. Śmiarowska, Sharp bounds of the Hermitian Toeplitz determinants for some classes of close-to-convex cunctions, Bull. Malays Math. Sci. Soc., 2021, DOI: 10.1007/s40840-021-01122-x.
    [24] W. Ma, D. Minda, A unified treatment of some special classes of univalent functions, Proceedings of the International Conference on Complex Analysis at the Nankai Institute of the Mathematics, 1992,157–169.
    [25] Z. Nehari, The Schwarzian derivative and schlicht functions, Bull. Amer. Math. Soc., 55 (1949), 545–551. doi: 10.1090/S0002-9904-1949-09241-8
    [26] Z. Nehari, Some criteria of univalence, Proc. Amer. Math. Soc., 5 (1954), 700–704.
    [27] Z. Nehari, Univalence criteria depending on the Schwarzian derivative, Illinois J. Math., 23 (1979), 345–351.
    [28] S. Ozaki, On the theory of multivalent functions, Sci. Rep. Tokyo Bunrika Daigaku Sect. A, 2 (1935), 167–188.
    [29] S. Ponnusamy, Univalence of Alexander transform under new mapping properties, Complex Var. Theory A., 30 (1996), 55–58.
    [30] S. Ponnusamy, Close-to-convexity properties of Gaussian hypergeometric functions, J. Comput. Appl. Math., 88 (1998), 327–337. doi: 10.1016/S0377-0427(97)00221-5
    [31] S. Ponnusamy, S. K. Sahoo, T. Sugawa, Radius problems associated with pre-Schwarzian and Schwarzian derivatives, Analysis, 34 (2014), 163–171.
    [32] S. Ponnusamy, M. Vuorinen, Univalence and convexity properties for Gaussian Hypergeometric functions, Rocky Mountain J. Math., 31 (2001), 327–353.
    [33] D. Răducanu, P. Zaprawa, Second Hankel determinant for close-to-convex functions, CR. Math., 355 (2017), 1063–1071.
    [34] E. Schippers, Distorion theorems for higher order Schwarzian derivatives of univalent functions, Proc. Amer. Math. Soc., 128 (2000), 3241–3249. doi: 10.1090/S0002-9939-00-05623-9
    [35] K. Trabka-Wieclaw, P. Zaprawa, On the coefficient problem for close-to-convex functions, Turk. J. Math., 42 (2018), 2809–2818. doi: 10.3906/mat-1711-36
    [36] D. K. Thomas, On the logarithmic coefficients of close to convex functions, Proc. Amer. Math. Soc., 144 (2016), 1681–1687.
    [37] N. Tuneski, B. Jolevska-Tuneska, B. Prangoski, On existence of sharp univalence criterion using the Schwarzian derivative, Comptes rendus de I'Academie bulgare des sciences: sciences mathematiques et naturelles, 68 (2015), 569–576.
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2250) PDF downloads(164) Cited by(2)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog