Research article

Estimate for Schwarzian derivative of certain close-to-convex functions

  • Received: 29 May 2021 Accepted: 12 July 2021 Published: 26 July 2021
  • MSC : 30C45

  • Let f(z) be analytic in the unit disk with f(0)=f(0)1=0. For the following close-to-convex subclasses: {(1z)f(z)}>0, {(1z2)f(z)}>0, {(1z+z2)f(z)}>0 and {(1z)2f(z)}>0, we investigate the bounds for the first two consecutive derivatives of higher order Schwarzian derivatives of f(z).

    Citation: Zhenyong Hu, Xiaoyuan Wang, Jinhua Fan. Estimate for Schwarzian derivative of certain close-to-convex functions[J]. AIMS Mathematics, 2021, 6(10): 10778-10788. doi: 10.3934/math.2021626

    Related Papers:

    [1] Shalini Rana, Pranay Goswami, Ravi Shanker Dubey . The norm of pre-Schwarzian derivative on subclasses of bi-univalent functions. AIMS Mathematics, 2018, 3(4): 600-607. doi: 10.3934/Math.2018.4.600
    [2] Muajebah Hidan, Abbas Kareem Wanas, Faiz Chaseb Khudher, Gangadharan Murugusundaramoorthy, Mohamed Abdalla . Coefficient bounds for certain families of bi-Bazilevič and bi-Ozaki-close-to-convex functions. AIMS Mathematics, 2024, 9(4): 8134-8147. doi: 10.3934/math.2024395
    [3] Georgia Irina Oros, Gheorghe Oros, Daniela Andrada Bardac-Vlada . Certain geometric properties of the fractional integral of the Bessel function of the first kind. AIMS Mathematics, 2024, 9(3): 7095-7110. doi: 10.3934/math.2024346
    [4] Kamaraj Dhurai, Nak Eun Cho, Srikandan Sivasubramanian . On a class of analytic functions closely related to starlike functions with respect to a boundary point. AIMS Mathematics, 2023, 8(10): 23146-23163. doi: 10.3934/math.20231177
    [5] Bilal Khan, H. M. Srivastava, Muhammad Tahir, Maslina Darus, Qazi Zahoor Ahmad, Nazar Khan . Applications of a certain $q$-integral operator to the subclasses of analytic and bi-univalent functions. AIMS Mathematics, 2021, 6(1): 1024-1039. doi: 10.3934/math.2021061
    [6] Lina Ma, Shuhai Li, Huo Tang . Geometric properties of harmonic functions associated with the symmetric conjecture points and exponential function. AIMS Mathematics, 2020, 5(6): 6800-6816. doi: 10.3934/math.2020437
    [7] Dan-Gui Yao, Zhi-Bo Huang, Ran-Ran Zhang . Uniqueness for meromorphic solutions of Schwarzian differential equation. AIMS Mathematics, 2021, 6(11): 12619-12631. doi: 10.3934/math.2021727
    [8] Xinghua You, Ghulam Farid, Lakshmi Narayan Mishra, Kahkashan Mahreen, Saleem Ullah . Derivation of bounds of integral operators via convex functions. AIMS Mathematics, 2020, 5(5): 4781-4792. doi: 10.3934/math.2020306
    [9] Luminiţa-Ioana Cotîrlǎ . New classes of analytic and bi-univalent functions. AIMS Mathematics, 2021, 6(10): 10642-10651. doi: 10.3934/math.2021618
    [10] H. M. Srivastava, Sheza M. El-Deeb . The Faber polynomial expansion method and the Taylor-Maclaurin coefficient estimates of Bi-Close-to-Convex functions connected with the q-convolution. AIMS Mathematics, 2020, 5(6): 7087-7106. doi: 10.3934/math.2020454
  • Let f(z) be analytic in the unit disk with f(0)=f(0)1=0. For the following close-to-convex subclasses: {(1z)f(z)}>0, {(1z2)f(z)}>0, {(1z+z2)f(z)}>0 and {(1z)2f(z)}>0, we investigate the bounds for the first two consecutive derivatives of higher order Schwarzian derivatives of f(z).



    Denote by D={zC:|z|<1}, ¯D={zC:|z|1} and T=D. Let A be the class of all analytic functions f(z) in D with f(0)=f(0)1=0. Hence, for f(z)A, they can be expanded as the form

    f(z)=z+a2z2+a3z3+. (1.1)

    The subclass of A consisting of univalent functions is denoted by S. Let P be the class of analytic functions of the form

    p(z)=1+n=1cnzn,zD, (1.2)

    having a positive real part.

    An analytic function f(z) is close-to-convex in D if there exists a convex function g(z) such that f(z)g(z)>0 holds for zD. Each close-to-convex function is univalent (see [10]). Close-to-convex functions have been widely studied in recent years (see [8,13,15,18,19,33,35,36]). Let F1, F2, F3 and F4 be the subclasses of close-to-convex functions of S satisfying

    {(1z)f(z)}>0(1z)f(z)P, (1.3)
    {(1z2)f(z)}>0(1z2)f(z)P, (1.4)
    {(1z+z2)f(z)}>0(1z+z2)f(z)P, (1.5)
    {(1z)2f(z)}>0(1z)2f(z)P, (1.6)

    respectively.

    The conditions (1.3), (1.4) and (1.6) were introduced by Ozaki [28] as univalent criteria. Recall that the classes F2 and F4 have elegant geometric properties. Such functions in F2 map univalently D onto a convex domain in the direction of imaginary axis (see [12]). The function in F4 maps univalently onto a convex domain in the direction of real axis (see [3]).

    S. Ponnusamy [30] studied that the conditions on the parameters of the Gaussain Hypergeometric functions F(a,b;c;z) are determined to show that the Alexander transform of f(z)=zF(a,b;c;z) belongs to one of the above four families, in particular. A similar studies about Alexander transform are also considered in [29,32]. Since the bounds of univalent functions or their subclasses are improtant, it is interesting to investigate these kinds of bounds for the subclasses. In this direction, recently, the subclasses of close-to-convex functions have been studied, in particular, the logarithmic coefficients, Fekete-Szegö problem and Hermitian-Toeplitz determinants for the subclasses of close-to-convex functions F1, F2, F3 and F4 of S have been considered in [2,4,5,17,21,22,23].

    The Schwarzian derivative of a locally univalent function f(z) is defined by

    Sf(z)=(ff)12(ff)2.

    It is well known that Sf(z) plays an important role in the study of univalent functions (see [1,25,26,27,31,37]). Using Schwarzian derivatives, Nehari [25] proved that if |Sf(z)|(1|z|2)22,zD, then f(z) is univalent in D. In addition, Nehari [25] proved that if f(z)S, then |Sf(z)|(1|z|2)26,zD. Following the papers [14,34], let n3, define σ3(f)(z)=Sf(z) and

    σn+1(f)(z)=σn(f)(z)(n1)σn(f)(z)f(z)f(z). (1.7)

    Harmelin [14] proved that the higher order Schwarzian derivatives σn(f) satisfies σn(Tf)=σn(f), where T denotes M¨obius transformation. Note that the class of convex functions is linearly invariant, there is no loss in restricting consideration to σn(f)(0). Dorff and Szynal [11] researched the bounds of σn(f)(0) for convex functions. And then, Cho et al. [6] investigated the bounds of σn(f)(0) (n=3,4,5) in general forms of these classes consisting of Janowski classes: S[A,B]={fS:zf(z)f(z)1+Az1+Bz},K[A,B]={fS:1+zf(z)f(z)1+Az1+Bz}, where 1B<A1, which generalized the results in [11]. In particular, let A=1 and B=1, S[A,B] is the class of starlike functions and K[A,B] is the class of convex functions. Recently, Kumar et al. [20] study the bounds on the first three consecutive higher order Schwarzian derivatives for the class: SB={fS:zf(z)f(z)eez1}. For more details about SB, one can refer to [20].

    Let σn(f)(0)=Sn. Combining (1.1) with (1.7), we see that

    |S3|=6|a3a22|, (1.8)
    |S4|=24|a43a3a2+2a32|. (1.9)

    Remark 1. By [16], we see that |S3|5 for fF1, but the constant 5 is not sharp. By Lemma 1 in [24], we know that the sharp inequality |S3|6 for fF2. According to [17], we have the sharp inequality |S3|6 for fF4. However, the sharp bounds of |S3| for fF1 and fF3 are unknown.

    In this paper, one of the aims is to consider the bounds of |S3| for fF1, fF3 and the bounds of |S4| for the four classes fFi, where i=1,2,3,4. We first consider a special case when a2 is real for Fi (i=1,2,3,4) in Theorem 1. Moreover, by Remark 1, on the upper bound of |S3| we only consider the class F1 or F3. Now we state our results as follows.

    Theorem 1. Let f(z)A and a2R.

    (1) If f(z)F1, then

    |S3|=6|a3a22|143, (1.10)
    |S4|=24|a43a3a2+2a32|24. (1.11)

    (2) If f(z)F2, then

    |S4|=24|a43a3a2+2a32|24. (1.12)

    (3) If f(z)F3, then

    |S4|=24|a43a3a2+2a32|36. (1.13)

    (4) If f(z)F4, then

    |S4|=24|a43a3a2+2a32|48. (1.14)

    All estimates are sharp.

    If we remove the condition a2R in Theorem 1, we have the following theorem.

    Theorem 2. Let f(z)A.

    (1) If f(z)F1, then

    |S3|=6|a3a22|8+22,|S4|=24|a43a3a2+2a32|12(1+2).

    (2) If f(z)F2, then

    |S4|=24|a43a3a2+2a32|3263.

    (3) If f(z)F3, then

    |S3|=6|a3a22|6,|S4|=24|a43a3a2+2a32|12(1+869).

    The constant 6 is sharp.

    Remark 2. According to Theorem 1 and Theorem 2, we see that |S3|6 for F3 and |S3|143 for F1 when a2 is real. Also, we have |S3|8+22 for F1, which improves the corresponding case in [16]. Moreover, when a2 is real, we find the sharp upper bounds of |S4| for Fi, where i=1,2,3,4.

    To prove our theorems, we need the following lemmas.

    Lemma 1. pP is of the form (1.2), then

    c1=2ζ1, (2.1)
    c2=2ζ21+2(1|ζ1|2)ζ2, (2.2)
    c3=2ζ31+4(1|ζ1|2)ζ1ζ22(1|ζ1|2)¯ζ1ζ22+2(1|ζ1|2)(1|ζ2|2)ζ3, (2.3)

    for some ζi¯D, where i=1,2,3.

    (2.1) is due to Caratheodory [7]. (2.2) can be referred in [28]. In [5], Cho et al. showed the formula (2.3).

    For ζ1T, there is a unique function pP with c1 as in (2.1), i.e.,

    p(z)=1+ζ1z1ζ1z,zD. (2.4)

    For ζ1D and ζ2T, there is a unique function pP with c1 and c2 as in (2.1) and (2.2), i.e.,

    p(z)=1+(¯ζ1ζ2+ζ1)z+ζ2z21+(¯ζ1ζ2ζ1)zζ2z2,zD. (2.5)

    Lemma 2. ([9]) Let Y(a,b,c)=maxzD(|a+bz+cz2|+1|z|2). If ac0, then

    Y(a,b,c)={|a|+|b|+|c|,|b|2(1|c|),1+|a|+b24(1|c|),|b|<2(1|c|). (2.6)

    If ac<0, then

    Y(a,b,c)={1|a|+b24(1|c|),4ac(c21)b2;|b|<2(1|c|),1+|a|+b24(1+|c|),b2<min{4(1+|c|)2,4ac(c21)},R(a,b,c),otherwise, (2.7)

    where

    R(a,b,c)={|a|+|b||c|,|c|(|b|+4|a|)|ab|,|a|+|b|+|c|,|ab||c|(|b|4|a|),(|a|+|c|)1b24ac,otherwise. (2.8)

    Let fF1, fF2, fF3 or fF4. Putting the series (1.1) and (1.2) into (1.3), (1.4), (1.5) or (1.6) by equating the coefficients, we respectively have

    a2=12(1+c1),a3=13(1+c1+c2),a4=14(1+c1+c2+c3), (3.1)
    a2=12c1,a3=13(1+c2),a4=14(c1+c3), (3.2)
    a2=12(1+c1),a3=13(c1+c2),a4=14(1+c2+c3), (3.3)
    a2=12(2+c1),a3=13(3+2c1+c2),a4=14(4+3c1+2c2+c3). (3.4)

    By the condition a2R in Theorem 1, we find that ζ1[1,1] from (3.1)–(3.4). Now using Lemma 1 and Lemma 2, we prove Theorem 1.

    Proof of Theorem 1. (1) Let fF1 be of the form (1.1) with a2R. By (1.8) and (3.1), we calculate

    |S3|=6|a3a22|=12|12c1+4c23c21|=12|14ζ14ζ21+8(1ζ21)ζ2|12(|14ζ14ζ21|+8(1ζ21))=:ψ(ζ1).

    If ζ1(212,1], then

    ψ(ζ1)=12(7+4ζ14ζ21)φ(12)=4.

    If ζ1[1,212], then

    ψ(ζ1)=12(94ζ112ζ21)φ(16)=143.

    Obviously, we see that |S3|143.

    From above analysis, we see that the equality in (1.10) holds when ζ1=16 and ζ2=1, combining (2.5), we conclude p(z)=113z+z21z2, which implies that the extremal function of (1.10) is f0(z)=z0113t+t2(1t)2(1+t)dt by (1.3).

    Substituting (3.1) into (1.9), and by Lemma 1, it follows that

    |S4|=6|c2+c3+c212c1c2+c31|=12|ζ21+ζ31(1ζ21)(2ζ1+1)ζ2(1ζ21)ζ1ζ22+(1ζ21)(1|ζ2|2)ζ3|12(1ζ21)Ψ(A,B,C), (3.5)

    where ζ1[1,1], ζ2,ζ3¯D and Ψ(A,B,C)=|A+Bζ2+Cζ22|+1|ζ2|2 with A=ζ21+ζ311ζ21, B=2ζ11, C=ζ1. When ζ11, we have A=ζ211ζ1.

    So for ζ1=1 and ζ1=1, we respectively have |S4|=0 and |S4|=24. Notice that AC<0 for ζ1(0,1) and AC0 for ζ1(1,0]. To prove that |S4|24, we divide it into five cases.

    Case 1. If ζ1(34,0], then B2<4(1|C|)2, which implies that |B|<2(1|C|). In view of (2.6) and (3.5), it follows

    |S4|12(1ζ21)(1+|A|+B24(1|C|))=3(5+3ζ1)15.

    Case 2. If ζ1(1,34], then B24(1|C|)2, which means that |B|2(1|C|). By (2.6) and (3.5), we get the following

    |S4|12(1ζ21)(|A|+|B|+|C|)=12(4ζ31+2ζ213ζ11)334

    by the fact that 4ζ31+2ζ213ζ11 is increasing in ζ1(1,34].

    Case 3. If ζ1(0,14), we get B2+4AC(C21)=1>0 and |B|<2(1|C|). So by (2.7) and (3.5), we can obtain

    |S4|12(1ζ21)(1|A|+B24(1|C|))=15(1+ζ1)<754.

    Case 4. If ζ1[14,24], then |AB||C|(|B|4|A|). Combining (2.8) and (3.5), it is easy to get

    |S4|12(1ζ21)(|A|+|B|+|C|)=12(4ζ312ζ21+3ζ1+1).

    Notice that 4ζ312ζ21+3ζ1+1 is increasing in ζ1[14,24], so

    |S4|152+182<24.

    Case 5. If ζ1(24,1), direct calculations lead that A,B,C satisfy the third case of (2.8), so

    |S4|12(1ζ21)(|A|+|C|)1B24AC=6(1+ζ1)3ζ1+1ζ1<24.

    In fact, we find that (3ζ1+1)(1+ζ1)216ζ1<0 for ζ1(24,1). This means that (1+ζ1)3ζ1+1ζ1<4 for ζ1(24,1).

    Therefore, we establish the inequality (1.11). Next, we prove the sharpness. Let f(z)=z01+t(1t)2dt. It is clear that f(z)=z01+t(1t)2dtF1. In this case, direct calculations give |S4|=24. The first part is complete.

    (2) Let fF2 be of the form (1.1) with a2R. Using (1.9), (2.1)–(2.3) and (3.2), we get

    |S4|=6|c1+c32c1c2+c31|=12|ζ1+ζ312(1ζ21)ζ1ζ2(1ζ21)ζ1ζ22+(1ζ21)(1|ζ2|2)ζ3|12(1ζ21)Ψ(A,B,C), (3.6)

    where ζ1[1,1], ζ2,ζ3¯D and Ψ(A,B,C)=|A+Bζ2+Cζ22|+1|ζ2|2, A=ζ1+ζ311ζ21, B=2ζ1, C=ζ1. If ζ1±1, we find that A=ζ1.

    Taking ζ1=1 and ζ1=1 into account, it respectively follows |S4|=24 and |S4|=0. Note that AC0 for ζ1(1,1). Applying Lemma 2 and (3.6), we have:

    Case 1. If ζ1(12,0), then |B|<2(1|C|), it follows that

    |S4|12(1ζ21)(1+|A|+B24(1|C|))=12(1ζ21)(1ζ1+ζ211+ζ1)=12(ζ1+1)<18.

    Case 2. If ζ1(1,12], then |B|2(1|C|), and so we get

    |S4|12(1ζ21)(|A|+|B|+|C|)=12(4ζ314ζ1)3233.

    Case 3. If ζ1[12,1), then |B|2(1|C|), we obtain

    |S4|12(1ζ21)(|A|+|B|+|C|)=12(1ζ21)4ζ13233.

    Case 4. If ζ1[0,12), then |B|<2(1|C|), we conclude

    |S4|12(1ζ21)(1+|A|+B24(1|C|))=12(1ζ21)(1+ζ1+ζ211ζ1)=12(1+ζ1)<18.

    Hence, the inequality (1.12) is true. Equality in (1.12) holds for the function given by (1.4), where p(z)=1z1+z is given by (2.4) with ζ1=1, namely for f(z)=z01(1+t)2dt=11+z. This completes the proof the second part.

    (3) Let fF3 be of the form (1.1) with a2R. Using the equalities (1.9), (2.1)–(2.3) and (3.3), we have

    |S4|=6|c1c2+c3+c212c1c2+c31|=12|ζ1+ζ21+ζ31(1ζ21)(2ζ1+1)ζ2(1ζ21)ζ1ζ22+(1ζ21)(1|ζ2|2)ζ3|12(1ζ21)Ψ(A,B,C),

    where ζ1[1,1], ζ2,ζ3¯D and Ψ(A,B,C)=|A+Bζ2+Cζ22|+1|ζ2|2 with A=ζ1+ζ21+ζ311ζ21, B=2ζ11, C=ζ1.

    For ζ1=1 and ζ1=1, we respectively have |S4|=12 and |S4|=36. In addition, ζ1=0, we have

    |S4|=6|c1c2+c3+c212c1c2+c31|=12|ζ2+(1|ζ2|2)ζ3|12(|ζ2|+1|ζ2|2)15.

    Note that AC<0 and B2+4AC(C21)=3<0 for ζ1(1,1){0}. Moreover,

    B24(1+|C|)2={12ζ13,ζ1(1,0),4ζ13,ζ1(0,1),

    it follows that B24(1+|C|)2<0 for ζ1(1,1){0}.

    Assume first that ζ1(1,0), then by (2.8) in Lemma 2, we obtain

    |S4|12(1ζ21)(1ζ1+ζ21+ζ311ζ21+4ζ21+1+4ζ14(1ζ1))=3(5+ζ1)<15.

    Assume now that ζ1(0,1), then using (2.8) in Lemma 2, we get

    |S4|12(1ζ21)(1+ζ1+ζ21+ζ311ζ21+4ζ21+1+4ζ14(1+ζ1))=3(5+7ζ1)<36.

    Thus, we have (1.13). Equality in (1.13) holds for the function f(z) given by (1.5), where p(z)=1+z1z is given by (2.4) with ζ1=1, i.e., for the function f(z)=z01+t(1t)(1t+t2)dt. This completes the proof.

    (4) Let fF4 with a2R. From (1.9), Lemma 1 and (3.4), we have

    |S4|=6|c12c2+c3+2c212c1c2+c31|=12|ζ1+2ζ21+ζ312(1ζ21)(ζ1+1)ζ2(1ζ21)ζ1ζ22+(1ζ21)(1|ζ2|2)ζ3|12(1ζ21)Ψ(A,B,C),

    where ζ1[1,1], ζ2,ζ3¯D and Ψ(A,B,C)=|A+Bζ2+Cζ22|+1|ζ2|2 with A=ζ1+2ζ21+ζ311ζ21, B=2ζ12, C=ζ1. In particular, if ζ11, then A=ζ1(1+ζ1)1ζ1.

    Applying Lemma 2 and the processing methods in (1), (2) or (3), we can obtain that the inequality (1.14) is true, here we omit its details. The equality (1.14) holds when ζ1=1. By (2.4), we have p(z)=1+z1z, i.e., f(z)=z01+t(1t)3dt=z(1z)2. This proof is completed.

    Proof of Theorem 2. (1) If f(z)F1, by (2.1), (2.2) and (3.1), we calculate

    |S3|=6|a3a22|=12|12c1+4c23c21|=12|14ζ14ζ21+8(1|ζ1|2)ζ2|12(|14ζ14ζ21|+8(1|ζ1|2)).

    Let ζ1=reiθ, where r[0,1] and θ[0,2π), then

    |14ζ14ζ21|2=ϕ(cosθ)=ϕ(x)=16r2x2+8r(4r21)x+16r4+24r2+1,x[1,1].

    ϕ(x)=0 holds when x=x0=4r214r. It is obvious that x0<1 for r[0,1]. So ϕ(x)ϕ(x0)=2(4r2+1)2. It follows that |S3|8+22.

    Substituting (3.1) into (1.9), combining Lemma 1, it follows that

    |S4|=6|c2+c3+c212c1c2+c31|=12|ζ21+ζ31(1|ζ1|2)(2ζ1+1)ζ2(1|ζ1|2)¯ζ1ζ22+(1|ζ1|2)(1|ζ2|2)ζ3|12(1+x3+(1x2)(2x+1)y(1x2)(1x)y2)=F(x,y),

    where ζ1, ζ2,ζ3¯D, x=|ζ1| and y=|ζ2|.

    Note first that x=1, we have F(1,y)=24. For x[0,1), we get

    Fy=12(1x2)(2x+12(1x)y)=0y=2x+12(1x)=:y0.

    If x[14,1), then y01. it follows that F(x,y)F(x,1)=12(1+3x2x3)12(1+2). If x[0,14), then y0<1, it follows that F(x,y)F(x,y0)=15+15x+24x2+24x3<1658. Hence, the inequality |S4|12(1+2) holds.

    (2) If f(z)F2, using (1.9), Lemma 1 and (3.2), we get

    |S4|=6|c1+c32c1c2+c31|=12|ζ1+ζ312(1|ζ1|2)ζ1ζ2(1|ζ1|2)¯ζ1ζ22+(1|ζ1|2)(1|ζ2|2)ζ3|12(1+xx2+x3+2(1x2)xy(1x2)(1x)y2),

    where ζ1, ζ2,ζ3¯D, x=|ζ1| and y=|ζ2|.

    Similar to the processing methods in (1) of this theorem, it is easy to prove that |S4|3263 is true.

    (3) Let f(z)F3. Combining (2.1)–(3.3), and we have

    |S3|=6|a3a22|=12|2c1+4c23c213|=12|3+4ζ14ζ21+8(1|ζ1|2)ζ2|12(|34ζ1+4ζ21|+8(1|ζ1|2))12(11+4|ζ1|4|ζ1|2)6.

    Equality holds when ζ1=12 and ζ2=1, by (1.5) and (2.5), it follows that the extremal function f(z)=z01t2(1t+t2)(1+t+t2)dt.

    Substituting (3.3) into (1.9), by Lemma 1, it follows that

    |S4|=6|c1c2+c3+c212c1c2+c31|=12|ζ1+ζ21+ζ31(1|ζ1|2)(2ζ1+1)ζ2(1|ζ1|2)¯ζ1ζ22+(1|ζ1|2)(1|ζ2|2)ζ3|12(1+x+x3+(1x2)(2x+1)y(1x2)(1x)y2),

    where ζ1, ζ2,ζ3¯D, x=|ζ1| and y=|ζ2|.

    Similar to the processing methods in (1) of this theorem, it is easy to prove |S4|12(1+869). The proof is completed.

    Higher order Schwarzian derivatives for normalized univalent functions were first considered by Schippers [34], and those of convex functions were considered by Dorff and Szynal [11]. In the present investigation, higher order Schwarzian derivatives for the close-to-convex subclasses: {(1z)f(z)}>0, {(1z2)f(z)}>0, {(1z+z2)f(z)}>0 and {(1z)2f(z)}>0 are considered, where f(z) is analytic in the unit disk with f(0)=f(0)1=0. The bounds for the first two consecutive derivatives are investigated, which can enrich the research field of univalent analytic function.

    This work is supported by National Natural Science Foundation of China (No. 11871215). The first author is supported by Postgraduate Research and Practice Innovation Program of Jiangsu Province (No. KYCX210247). The second author is supported by Youth Science Fund Research Project of Pingxiang University (Grant No. 2019D0202) and the Scientific Research Fund of Jiangxi Provincial Department of Education (No. GJJ191157).

    The authors declare no conflicts of interest in this paper.



    [1] D. Aharonov, U. Elias, Sufficient conditions for univalence of analytic functions, J. Anal., 22 (2014), 1–11.
    [2] M. F. Ali, A. Vasudevarao, On logarithmic coefficients of some close-to-convex functions, Proc. Amer. Math. Soc., 146 (2018), 1131–1142.
    [3] D. Bshouty, A. Lyzzaik, Univalent functions starlike with respect to a boundary point, Contemp. Math., 382 (2005), 83–87. doi: 10.1090/conm/382/07049
    [4] N. E. Cho, B. Kowalczyk, O. S. Kwon, A. Lecko, Y. J. Sim, On the third logarithmic coefficient in some subclasses of close-to-convex functions, RACSAM, 114 (2020), 52. doi: 10.1007/s13398-020-00786-7
    [5] N. E. Cho, B. Kowalczyk, A. Lecko, Sharp bounds of some coefficient functionals over the class of functions convex in the direction of the imaginary axis, B. Aust. Math. Soc., 100 (2019), 86–96. doi: 10.1017/S0004972718001429
    [6] N. E. Cho, V. Kumar, V. Ravichandran, Sharp bounds on the higher order Schwarzian derivatives for Janowski classes, Symmetry, 10 (2018), 348. doi: 10.3390/sym10080348
    [7] C. Carathéodory, Über den Variabilitatsbereich der Koeffizienten von Potenzreihen, die gegebene werte nicht annehmen, Math. Ann., 64 (1907), 95–115. doi: 10.1007/BF01449883
    [8] Y. L. Chung, M. H. Mohd, S. K. Lee, On a subclass of close-to-convex functions, Bull. Iran. Math. Soc., 44 (2018), 611–621. doi: 10.1007/s41980-018-0039-4
    [9] J. H. Choi, Y. C. Kim, T. Sugawa, A general approach to the Fekete-Szegö problem, J. Math. Soc. Japan, 59 (2007), 707–727.
    [10] P. L. Duren, Univalent functions, New York, Berlin, Heidelberg and Tokyo: Springer-Verlag, 1983.
    [11] M. Dorff, J. Szunal, Higher order Schwarzian derivatives of univalent functions, Tr. Petrozavodsk. Gos. Univ. Ser. Mat., 2008, 7–11.
    [12] A. W. Goodman, Univalent functions, Tampa: Mariner, 1983.
    [13] S. P. Goyal, O. Singh, Certain subclasses of close-to-convex functions, Vietnam J. Math., 42 (2014), 53–62. doi: 10.1007/s10013-013-0032-4
    [14] R. Harmelin, Aharonov invariants and univalent functions, Israel J. Math., 43 (1982), 244–254. doi: 10.1007/BF02761945
    [15] B. Kowalczyk, O. S. Kwon, A. Lecko, Y. J. Sim, B. Śmiarowska, The third-order Hermitian Toeplitz determinant for classes of functions convex in one direction, Bull. Malays. Math. Sci. Soc., 43 (2020), 3143–3158. doi: 10.1007/s40840-019-00859-w
    [16] B. Kowalczyk, A. Lecko, Fekete-Szegö problem for a certain subclass of close-to-convex functions, Bull. Malay. Math. Sci. Soc., 38 (2015), 1393–1410. doi: 10.1007/s40840-014-0091-z
    [17] B. Kowalczyk, A. Lecko, The Fekete-Szegö inequality for close-to-convex functions with respect to a certain starlike function dependent on a real parameter, J. Inequal. Appl., 2014 (2014), 65. doi: 10.1186/1029-242X-2014-65
    [18] B. Kowalczyk, A. Lecko, H. M. Srivastava, A note on the Fekete-Szegö problem for close-to-convex functions with respect to convex functions, Publi. I. Math.-Beograd, 101 (2017), 143–149. doi: 10.2298/PIM1715143K
    [19] J. Kowalczyk, E. Les-Bomba, On a subclass of close-to-convex functions, Appl. Math. Lett., 23 (2010), 1147–1151. doi: 10.1016/j.aml.2010.03.004
    [20] V. Kumar, N. E. Cho, V. Ravichandran, H. M. Srivastava, Sharp coefficient bounds for starlike functions associated with the Bell numbers, Math. Slovaca, 69 (2019), 1053–1064. doi: 10.1515/ms-2017-0289
    [21] U. P. Kumar, A. Vasudevarao, Logarithmic coefficients for certain subclasses of close-to-convex functions, Monatsh. Math., 187 (2018), 543–563. doi: 10.1007/s00605-017-1092-4
    [22] V. Kumar, Hermitian-Toeplitz determinants for certain classes of close-to-convex functions, Bull. Iran. Math. Soc., 2021, DOI: 10.1007/s41980-021-00564-0.
    [23] A. Lecko, B. Śmiarowska, Sharp bounds of the Hermitian Toeplitz determinants for some classes of close-to-convex cunctions, Bull. Malays Math. Sci. Soc., 2021, DOI: 10.1007/s40840-021-01122-x.
    [24] W. Ma, D. Minda, A unified treatment of some special classes of univalent functions, Proceedings of the International Conference on Complex Analysis at the Nankai Institute of the Mathematics, 1992,157–169.
    [25] Z. Nehari, The Schwarzian derivative and schlicht functions, Bull. Amer. Math. Soc., 55 (1949), 545–551. doi: 10.1090/S0002-9904-1949-09241-8
    [26] Z. Nehari, Some criteria of univalence, Proc. Amer. Math. Soc., 5 (1954), 700–704.
    [27] Z. Nehari, Univalence criteria depending on the Schwarzian derivative, Illinois J. Math., 23 (1979), 345–351.
    [28] S. Ozaki, On the theory of multivalent functions, Sci. Rep. Tokyo Bunrika Daigaku Sect. A, 2 (1935), 167–188.
    [29] S. Ponnusamy, Univalence of Alexander transform under new mapping properties, Complex Var. Theory A., 30 (1996), 55–58.
    [30] S. Ponnusamy, Close-to-convexity properties of Gaussian hypergeometric functions, J. Comput. Appl. Math., 88 (1998), 327–337. doi: 10.1016/S0377-0427(97)00221-5
    [31] S. Ponnusamy, S. K. Sahoo, T. Sugawa, Radius problems associated with pre-Schwarzian and Schwarzian derivatives, Analysis, 34 (2014), 163–171.
    [32] S. Ponnusamy, M. Vuorinen, Univalence and convexity properties for Gaussian Hypergeometric functions, Rocky Mountain J. Math., 31 (2001), 327–353.
    [33] D. Răducanu, P. Zaprawa, Second Hankel determinant for close-to-convex functions, CR. Math., 355 (2017), 1063–1071.
    [34] E. Schippers, Distorion theorems for higher order Schwarzian derivatives of univalent functions, Proc. Amer. Math. Soc., 128 (2000), 3241–3249. doi: 10.1090/S0002-9939-00-05623-9
    [35] K. Trabka-Wieclaw, P. Zaprawa, On the coefficient problem for close-to-convex functions, Turk. J. Math., 42 (2018), 2809–2818. doi: 10.3906/mat-1711-36
    [36] D. K. Thomas, On the logarithmic coefficients of close to convex functions, Proc. Amer. Math. Soc., 144 (2016), 1681–1687.
    [37] N. Tuneski, B. Jolevska-Tuneska, B. Prangoski, On existence of sharp univalence criterion using the Schwarzian derivative, Comptes rendus de I'Academie bulgare des sciences: sciences mathematiques et naturelles, 68 (2015), 569–576.
  • This article has been cited by:

    1. Dorina Răducanu, On Coefficient Estimates for a Certain Class of Analytic Functions, 2022, 11, 2227-7390, 12, 10.3390/math11010012
    2. Zhenyong Hu, Jinhua Fan, Xiaoyuan Wang, H. M. Srivastava, A Study of the Higher-Order Schwarzian Derivatives of Hirotaka Tamanoi, 2023, 73, 1337-2211, 921, 10.1515/ms-2023-0068
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2700) PDF downloads(166) Cited by(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog