Let $ f(z) $ be analytic in the unit disk with $ f(0) = f'(0)-1 = 0 $. For the following close-to-convex subclasses: $ \Re \{(1-z)f'(z)\} > 0, $ $ \Re \{(1-z^{2})f'(z)\} > 0, $ $ \Re \{(1-z+z^{2})f'(z)\} > 0 $ and $ \Re \{(1-z)^{2}f'(z)\} > 0 $, we investigate the bounds for the first two consecutive derivatives of higher order Schwarzian derivatives of $ f(z) $.
Citation: Zhenyong Hu, Xiaoyuan Wang, Jinhua Fan. Estimate for Schwarzian derivative of certain close-to-convex functions[J]. AIMS Mathematics, 2021, 6(10): 10778-10788. doi: 10.3934/math.2021626
Let $ f(z) $ be analytic in the unit disk with $ f(0) = f'(0)-1 = 0 $. For the following close-to-convex subclasses: $ \Re \{(1-z)f'(z)\} > 0, $ $ \Re \{(1-z^{2})f'(z)\} > 0, $ $ \Re \{(1-z+z^{2})f'(z)\} > 0 $ and $ \Re \{(1-z)^{2}f'(z)\} > 0 $, we investigate the bounds for the first two consecutive derivatives of higher order Schwarzian derivatives of $ f(z) $.
[1] | D. Aharonov, U. Elias, Sufficient conditions for univalence of analytic functions, J. Anal., 22 (2014), 1–11. |
[2] | M. F. Ali, A. Vasudevarao, On logarithmic coefficients of some close-to-convex functions, Proc. Amer. Math. Soc., 146 (2018), 1131–1142. |
[3] | D. Bshouty, A. Lyzzaik, Univalent functions starlike with respect to a boundary point, Contemp. Math., 382 (2005), 83–87. doi: 10.1090/conm/382/07049 |
[4] | N. E. Cho, B. Kowalczyk, O. S. Kwon, A. Lecko, Y. J. Sim, On the third logarithmic coefficient in some subclasses of close-to-convex functions, RACSAM, 114 (2020), 52. doi: 10.1007/s13398-020-00786-7 |
[5] | N. E. Cho, B. Kowalczyk, A. Lecko, Sharp bounds of some coefficient functionals over the class of functions convex in the direction of the imaginary axis, B. Aust. Math. Soc., 100 (2019), 86–96. doi: 10.1017/S0004972718001429 |
[6] | N. E. Cho, V. Kumar, V. Ravichandran, Sharp bounds on the higher order Schwarzian derivatives for Janowski classes, Symmetry, 10 (2018), 348. doi: 10.3390/sym10080348 |
[7] | C. Carathéodory, Über den Variabilitatsbereich der Koeffizienten von Potenzreihen, die gegebene werte nicht annehmen, Math. Ann., 64 (1907), 95–115. doi: 10.1007/BF01449883 |
[8] | Y. L. Chung, M. H. Mohd, S. K. Lee, On a subclass of close-to-convex functions, Bull. Iran. Math. Soc., 44 (2018), 611–621. doi: 10.1007/s41980-018-0039-4 |
[9] | J. H. Choi, Y. C. Kim, T. Sugawa, A general approach to the Fekete-Szegö problem, J. Math. Soc. Japan, 59 (2007), 707–727. |
[10] | P. L. Duren, Univalent functions, New York, Berlin, Heidelberg and Tokyo: Springer-Verlag, 1983. |
[11] | M. Dorff, J. Szunal, Higher order Schwarzian derivatives of univalent functions, Tr. Petrozavodsk. Gos. Univ. Ser. Mat., 2008, 7–11. |
[12] | A. W. Goodman, Univalent functions, Tampa: Mariner, 1983. |
[13] | S. P. Goyal, O. Singh, Certain subclasses of close-to-convex functions, Vietnam J. Math., 42 (2014), 53–62. doi: 10.1007/s10013-013-0032-4 |
[14] | R. Harmelin, Aharonov invariants and univalent functions, Israel J. Math., 43 (1982), 244–254. doi: 10.1007/BF02761945 |
[15] | B. Kowalczyk, O. S. Kwon, A. Lecko, Y. J. Sim, B. Śmiarowska, The third-order Hermitian Toeplitz determinant for classes of functions convex in one direction, Bull. Malays. Math. Sci. Soc., 43 (2020), 3143–3158. doi: 10.1007/s40840-019-00859-w |
[16] | B. Kowalczyk, A. Lecko, Fekete-Szegö problem for a certain subclass of close-to-convex functions, Bull. Malay. Math. Sci. Soc., 38 (2015), 1393–1410. doi: 10.1007/s40840-014-0091-z |
[17] | B. Kowalczyk, A. Lecko, The Fekete-Szegö inequality for close-to-convex functions with respect to a certain starlike function dependent on a real parameter, J. Inequal. Appl., 2014 (2014), 65. doi: 10.1186/1029-242X-2014-65 |
[18] | B. Kowalczyk, A. Lecko, H. M. Srivastava, A note on the Fekete-Szegö problem for close-to-convex functions with respect to convex functions, Publi. I. Math.-Beograd, 101 (2017), 143–149. doi: 10.2298/PIM1715143K |
[19] | J. Kowalczyk, E. Les-Bomba, On a subclass of close-to-convex functions, Appl. Math. Lett., 23 (2010), 1147–1151. doi: 10.1016/j.aml.2010.03.004 |
[20] | V. Kumar, N. E. Cho, V. Ravichandran, H. M. Srivastava, Sharp coefficient bounds for starlike functions associated with the Bell numbers, Math. Slovaca, 69 (2019), 1053–1064. doi: 10.1515/ms-2017-0289 |
[21] | U. P. Kumar, A. Vasudevarao, Logarithmic coefficients for certain subclasses of close-to-convex functions, Monatsh. Math., 187 (2018), 543–563. doi: 10.1007/s00605-017-1092-4 |
[22] | V. Kumar, Hermitian-Toeplitz determinants for certain classes of close-to-convex functions, Bull. Iran. Math. Soc., 2021, DOI: 10.1007/s41980-021-00564-0. |
[23] | A. Lecko, B. Śmiarowska, Sharp bounds of the Hermitian Toeplitz determinants for some classes of close-to-convex cunctions, Bull. Malays Math. Sci. Soc., 2021, DOI: 10.1007/s40840-021-01122-x. |
[24] | W. Ma, D. Minda, A unified treatment of some special classes of univalent functions, Proceedings of the International Conference on Complex Analysis at the Nankai Institute of the Mathematics, 1992,157–169. |
[25] | Z. Nehari, The Schwarzian derivative and schlicht functions, Bull. Amer. Math. Soc., 55 (1949), 545–551. doi: 10.1090/S0002-9904-1949-09241-8 |
[26] | Z. Nehari, Some criteria of univalence, Proc. Amer. Math. Soc., 5 (1954), 700–704. |
[27] | Z. Nehari, Univalence criteria depending on the Schwarzian derivative, Illinois J. Math., 23 (1979), 345–351. |
[28] | S. Ozaki, On the theory of multivalent functions, Sci. Rep. Tokyo Bunrika Daigaku Sect. A, 2 (1935), 167–188. |
[29] | S. Ponnusamy, Univalence of Alexander transform under new mapping properties, Complex Var. Theory A., 30 (1996), 55–58. |
[30] | S. Ponnusamy, Close-to-convexity properties of Gaussian hypergeometric functions, J. Comput. Appl. Math., 88 (1998), 327–337. doi: 10.1016/S0377-0427(97)00221-5 |
[31] | S. Ponnusamy, S. K. Sahoo, T. Sugawa, Radius problems associated with pre-Schwarzian and Schwarzian derivatives, Analysis, 34 (2014), 163–171. |
[32] | S. Ponnusamy, M. Vuorinen, Univalence and convexity properties for Gaussian Hypergeometric functions, Rocky Mountain J. Math., 31 (2001), 327–353. |
[33] | D. Răducanu, P. Zaprawa, Second Hankel determinant for close-to-convex functions, CR. Math., 355 (2017), 1063–1071. |
[34] | E. Schippers, Distorion theorems for higher order Schwarzian derivatives of univalent functions, Proc. Amer. Math. Soc., 128 (2000), 3241–3249. doi: 10.1090/S0002-9939-00-05623-9 |
[35] | K. Trabka-Wieclaw, P. Zaprawa, On the coefficient problem for close-to-convex functions, Turk. J. Math., 42 (2018), 2809–2818. doi: 10.3906/mat-1711-36 |
[36] | D. K. Thomas, On the logarithmic coefficients of close to convex functions, Proc. Amer. Math. Soc., 144 (2016), 1681–1687. |
[37] | N. Tuneski, B. Jolevska-Tuneska, B. Prangoski, On existence of sharp univalence criterion using the Schwarzian derivative, Comptes rendus de I'Academie bulgare des sciences: sciences mathematiques et naturelles, 68 (2015), 569–576. |