In this article, we introduce a new class of analytic functions in the open unit disc that are closely related to functions that are starlike with respect to a boundary point. For this new class of functions, we obtain representation theorem, interesting coefficient estimates and also certain differential subordination implications involving this new class.
Citation: Kamaraj Dhurai, Nak Eun Cho, Srikandan Sivasubramanian. On a class of analytic functions closely related to starlike functions with respect to a boundary point[J]. AIMS Mathematics, 2023, 8(10): 23146-23163. doi: 10.3934/math.20231177
In this article, we introduce a new class of analytic functions in the open unit disc that are closely related to functions that are starlike with respect to a boundary point. For this new class of functions, we obtain representation theorem, interesting coefficient estimates and also certain differential subordination implications involving this new class.
[1] | D. Aharonov, M. Elin, D. Shoikhet, Spiral-like functions with respect to a boundary point, J. Math. Anal. Appl., 280 (2003), 17–29. https://doi.org/10.1016/S0022-247X(02)00615-7 doi: 10.1016/S0022-247X(02)00615-7 |
[2] | R. M. Ali, V. Ravichandran, N. Seenivasagan, Coefficient bounds for $p$-valent functions, Appl. Math. Comput., 187 (2007), 35–46. https://doi.org/10.1016/j.amc.2006.08.100 doi: 10.1016/j.amc.2006.08.100 |
[3] | Z. J. Jakubowski, On properties of the Pick function and some applications of them, Acta Universitatis Purkynianae, 42 (1999), 51–62. |
[4] | Z. J. Jakubowski, A. Włodarczyk, On some classes of functions of Robertson type, Ann. Univ. Mariae Curie-Skłodowska Sect. A, 59 (2005), 27–42. |
[5] | F. R. Keogh, E. P. Merkes, A coefficient inequality for certain classes of analytic functions, Proc. Amer. Math. Soc., 20 (1969), 8–12. https://doi.org/10.1090/S0002-9939-1969-0232926-9 doi: 10.1090/S0002-9939-1969-0232926-9 |
[6] | A. Lecko, On the class of functions starlike with respect to a boundary point, J. Math. Anal. Appl., 261 (2001), 649–664. https://doi.org/10.1006/jmaa.2001.7564 doi: 10.1006/jmaa.2001.7564 |
[7] | A. Lecko, A. Lyzzaik, A note on univalent functions starlike with respect to a boundary point, J. Math. Anal. Appl., 282 (2003), 846–851. https://doi.org/10.1016/S0022-247X(03)00258-0 doi: 10.1016/S0022-247X(03)00258-0 |
[8] | A. Lecko, On coefficient inequalities in the Carathéodory class of functions, Ann. Polon. Math., 75 (2000), 59–67. https://doi.org/10.4064/ap-75-1-59-67 doi: 10.4064/ap-75-1-59-67 |
[9] | A. Lecko, Some methods in the theory of univalent functions, Oficyna Wdawnicza Politechniki Rzeszowskiej, 2005. |
[10] | A. Lecko, $\delta$-spirallike functions with respect to a boundary point, Rocky Mountain J. Math., 38 (2008), 979–992. https://doi.org/10.1216/RMJ-2008-38-3-979 doi: 10.1216/RMJ-2008-38-3-979 |
[11] | A. Lyzzaik, On a conjecture of M. S. Robertson, Proc. Amer. Math. Soc., 91 (1984), 108– 110. http://doi.org/10.1090/s0002-9939-1984-0735575-7 doi: 10.1090/s0002-9939-1984-0735575-7 |
[12] | W. C. Ma, D. Minda, A unified treatment of some special classes of univalent functions, In: Proceedings of the conference on complex analysis, International Press Inc., 1992. |
[13] | S. S. Miller, P. T. Mocanu, Differential subordinations: Theory and applications, CRC Press, 2000. https://doi.org/10.1201/9781482289817 |
[14] | M. H. Mohd, M. Darus, Starlike function with respect to a boundary point defined by subordination, Adv. Math. Sci. J., 1 (2012), 15–21. |
[15] | D. Prokhorov, J. Szynal, Inverse coefficients for $(\alpha, \beta)$-convex functions, Ann. Univ. Mariae Curie-Skłodowska Sect. A, 35 (1981), 125–143. |
[16] | M. S. Robertson, Univalent functions starlike with respect to a boundary point, J. Math. Anal. Appl., 81 (1981),, 327–345. https://doi.org/10.1016/0022-247x(81)90067-6 |
[17] | H. Silverman, E. M. Silvia, Subclasses of univalent functions starlike with respect to a boundary point, Houston J. Math., 16 (1990), 289–299. |
[18] | S. Sivasubramanian, On a closely related class involving spirallike functions with respect to a boundary point, Mediterr. J. Math., 17 (2020), 92. https://doi.org/10.1007/s00009-020-01529-z doi: 10.1007/s00009-020-01529-z |
[19] | D. Styer, On weakly starlike multivalent functions, J. Analyse Math., 26 (1973), 217–233. https://doi.org/10.1007/bf02790430 doi: 10.1007/bf02790430 |
[20] | P. G. Todorov, On the univalent functions starlike with respect to a boundary point, Proc. Amer. Math. Soc., 97 (1986), 602–604. https://doi.org/10.1090/s0002-9939-1986-0845972-9 doi: 10.1090/s0002-9939-1986-0845972-9 |