Research article

Bi-univalent functions subordinated to a three leaf function induced by multiplicative calculus

  • Received: 29 June 2024 Revised: 29 August 2024 Accepted: 09 September 2024 Published: 18 September 2024
  • MSC : 30C45

  • Our aim was to develop a new class of bi starlike functions by utilizing the concept of subordination, driven by the idea of multiplicative calculus, specifically multiplicative derivatives. Several restrictions were imposed, which were indeed strict constraints, because we have tried to work within the current framework or the design of analytic functions. To make the study more versatile, we redefined our new class of function with Miller-Ross Poisson distribution (MRPD), in order to increase the study's adaptability. We derived the first coefficient estimates and Fekete-Szegő inequalities for functions in this new class. To demonstrate the characteristics, we have provided a few examples.

    Citation: G. Murugusundaramoorthy, K. Vijaya, K. R. Karthikeyan, Sheza M. El-Deeb, Jong-Suk Ro. Bi-univalent functions subordinated to a three leaf function induced by multiplicative calculus[J]. AIMS Mathematics, 2024, 9(10): 26983-26999. doi: 10.3934/math.20241313

    Related Papers:

    [1] Min Li, Ke Chen, Yunqing Bai, Jihong Pei . Skeleton action recognition via graph convolutional network with self-attention module. Electronic Research Archive, 2024, 32(4): 2848-2864. doi: 10.3934/era.2024129
    [2] Wangwei Zhang, Menghao Dai, Bin Zhou, Changhai Wang . MCADFusion: a novel multi-scale convolutional attention decomposition method for enhanced infrared and visible light image fusion. Electronic Research Archive, 2024, 32(8): 5067-5089. doi: 10.3934/era.2024233
    [3] Bingsheng Li, Na Li, Jianmin Ren, Xupeng Guo, Chao Liu, Hao Wang, Qingwu Li . Enhanced spectral attention and adaptive spatial learning guided network for hyperspectral and LiDAR classification. Electronic Research Archive, 2024, 32(7): 4218-4236. doi: 10.3934/era.2024190
    [4] Hui Xu, Jun Kong, Mengyao Liang, Hui Sun, Miao Qi . Video behavior recognition based on actional-structural graph convolution and temporal extension module. Electronic Research Archive, 2022, 30(11): 4157-4177. doi: 10.3934/era.2022210
    [5] Huimin Qu, Haiyan Xie, Qianying Wang . Multi-convolutional neural network brain image denoising study based on feature distillation learning and dense residual attention. Electronic Research Archive, 2025, 33(3): 1231-1266. doi: 10.3934/era.2025055
    [6] Kun Zheng, Li Tian, Zichong Li, Hui Li, Junjie Zhang . Incorporating eyebrow and eye state information for facial expression recognition in mask-obscured scenes. Electronic Research Archive, 2024, 32(4): 2745-2771. doi: 10.3934/era.2024124
    [7] Bojian Chen, Wenbin Wu, Zhezhou Li, Tengfei Han, Zhuolei Chen, Weihao Zhang . Attention-guided cross-modal multiple feature aggregation network for RGB-D salient object detection. Electronic Research Archive, 2024, 32(1): 643-669. doi: 10.3934/era.2024031
    [8] Jiange Liu, Yu Chen, Xin Dai, Li Cao, Qingwu Li . MFCEN: A lightweight multi-scale feature cooperative enhancement network for single-image super-resolution. Electronic Research Archive, 2024, 32(10): 5783-5803. doi: 10.3934/era.2024267
    [9] Wangwei Zhang, Hao Sun, Bin Zhou . TBRAFusion: Infrared and visible image fusion based on two-branch residual attention Transformer. Electronic Research Archive, 2025, 33(1): 158-180. doi: 10.3934/era.2025009
    [10] Jingqian Xu, Ma Zhu, Baojun Qi, Jiangshan Li, Chunfang Yang . AENet: attention efficient network for cross-view image geo-localization. Electronic Research Archive, 2023, 31(7): 4119-4138. doi: 10.3934/era.2023210
  • Our aim was to develop a new class of bi starlike functions by utilizing the concept of subordination, driven by the idea of multiplicative calculus, specifically multiplicative derivatives. Several restrictions were imposed, which were indeed strict constraints, because we have tried to work within the current framework or the design of analytic functions. To make the study more versatile, we redefined our new class of function with Miller-Ross Poisson distribution (MRPD), in order to increase the study's adaptability. We derived the first coefficient estimates and Fekete-Szegő inequalities for functions in this new class. To demonstrate the characteristics, we have provided a few examples.



    The study on flow of fluids which are electrically conducting is known as magnetohydrodynamics (MHD). The magnetohydrodynamics have important applications in the polymer industry and engineering fields (Garnier [1]). Heat transfer caused by hydromagnetism was discussed by Chakrabarthi and Gupta [2]. Using an exponentially shrinking sheet, Nadeem et al. [3] investigated the MHD flow of a Casson fluid. Krishnendu Bhattacharyya [4] examined the effect of thermal radiation on MHD stagnation-point Flow over a Stretching Sheet.

    Mixed convection magnetohydrodynamics flow is described by Ishak on a vertical and on a linearly stretching sheet [5,6,7]. Hayat et al. [10] examine a mixed convection flow within a stretched sheet of Casson nanofluid. Subhas Abel and Monayya Mareppa, examine magnetohydrodynamics flow on a vertical plate [11]. Shen et al. [12], examined a vertical stretching sheet which was non-linear. Ishikin Abu Bakar [13] investigates how boundary layer flow is affected by slip and convective boundary conditions over a stretching sheet. A vertical plate oscillates with the influence of slip on a free convection flow of a Casson fluid [14].

    Nasir Uddin et al. [15] used a Runge-Kutta sixth-order integration method. Barik et al. [16] implicit finite distinction methodology of Crank Sir Harold George Nicolson sort Raman and Kumar [17] utilized an exact finite distinction theme of DuFort–Frankel. Mondal et al. [18] used a numerical theme over the whole vary of physical parameters. With the laplace transform method, we can determine the magnetohydrodynamic flow of a viscous fluid [19]. Thamizh Suganya et al. [20] obtained that the MHD for the free convective flow of fluid is based on coupled non-linear differential equations. In this study, the analytical approximation of concentration profiles in velocity, temperature and concentration using homotopy perturbation method (HPM).

    The governing differential equations in dimensionless form [19] as follows:

    d2udy2Hu+Grθ+Gmϕ=0, (2.1)
    1Fd2θdy2=0, (2.2)
    1Scd2ϕdy2Sr2ϕy2γϕ=0. (2.3)

    The dimensionless boundary conditions given by:

    u=0, θ=1,ϕ=0  at  y=0 (2.4)

    and

    u=0, θ=0,ϕ=0  at  y. (2.5)

    He [21,22] established the homotopy perturbation method, which waives the requirement of small parameters. Many researchers have used HPM to obtain approximate analytical solutions for many non-linear engineering dynamical systems [23,24]. The basic concept of the HPM as follows:

    d2udy2Hu+Grθ+Gmϕ=0 (3.1)
    1Fd2θdy2=0 (3.2)
    1Scd2ϕdy2Sr2ϕy2γϕ=0 (3.3)

    with initial and boundary conditions given by:

    y=0  at u=0, θ=1,C=1y  as u=0, θ=1,ϕ=0. (3.4)

    Homotopy for the above Eqs (3.1) to (3.4) can be constructed as follows:

    (1p)[d2udy2Hu+Grθ+Gmϕ]+p[d2udy2Hu+Grθ+Gmϕ]=0 (3.5)
    (1p)[1Fd2θdy2θ]+p[1Fd2θdy2θ+θ]=0 (3.6)
    (1p)[1Scd2ϕdy2γϕ]+p[1Scd2ϕdy2Sr2θy2γϕ]=0 (3.7)

    The approximate solution of the Eqs (3.5) to (3.7) are

    u=u0+pu1+p2u2+p3u3+... (3.8)
    θ=θ0+pθ1+p2θ2+p3θ3+... (3.9)
    ϕ=ϕ0+pϕ1+p2ϕ2+p3ϕ3+... (3.10)

    Substitution Eqs (3.5) to (3.7) in Eqs (3.8) to (3.10) respectively. We obtain the following equations

    (1p)[d2(u0+pu1+p2u2+p3u3+...)dy2H(u0+pu1+p2u2+p3u3+...)+Gr(θ0+pθ1+p2θ2+p3θ3+...)+Gm(ϕ0+pϕ1+p2ϕ2+p3ϕ3+...)]+p[d2(u0+pu1+p2u2+p3u3+...)dy2H(u0+pu1+p2u2+p3u3+...)+Gr(θ0+pθ1+p2θ2+p3θ3+...)+Gm(ϕ0+pϕ1+p2ϕ2+p3ϕ3+...)]=0 (3.11)

    and

    (1p)[1Fd2(θ0+pθ1+p2θ2+p3θ3+...)dy2(θ0+pθ1+p2θ2+p3θ3+...)]+p[1Fd2(θ0+pθ1+p2θ2+p3θ3+...)dy2(θ0+pθ1+p2θ2+p3θ3+...)+(θ0+pθ1+p2θ2+p3θ3+...)]=0, (3.12)

    and

    (1p)[1Scd2(ϕ0+pϕ1+p2ϕ2+p3ϕ3+...)dy2γ(ϕ0+pϕ1+p2ϕ2+p3ϕ3+...)]+p[1Scd2(ϕ0+pϕ1+p2ϕ2+p3ϕ3+...)dy2Sr2(θ0+pθ1+p2θ2+p3θ3+...)y2γ(ϕ0+pϕ1+p2ϕ2+p3ϕ3+...)]=0. (3.13)

    Equating the coefficient of p on both sides, we get the following equations

    P0:d2u0dy2Hu0+Grθ0+Gmϕ0=0; (3.14)
    p0:1Fd2θ0dy2θ0=0; (3.15)
    P1:1Fd2θ0dy2θ0+θ1=0; (3.16)
    P1:1Scd2ϕ0dy2γϕ0=0; (3.17)
    P1:1Scd2ϕ0dy2Sr2θ0y2γϕ0=0. (3.18)

    The boundary conditions are

    u0=0, θ0=1,ϕ0=1  at  y=0u0=0, θ0=1,ϕ0=1  at  y. (3.19)

    and

    u1=0, θ1=0,ϕ1=0  at  y=0u1=0, θ1=0,ϕ1=0  at  y. (3.20)

    Solving the Eqs (3.9)–(3.14), we obtain

    u0(t)=Gr1F+H[ey1FeyH]+GmγSc+H[eyγSceyH]; (3.21)
    θ0(y)=ey1F; (3.22)
    ϕ0(y)=eyγSc; (3.23)
    ϕ1(y)=ScSrF+FγSc[ey1FeyγSc]. (3.24)

    Considering the iteration, we get,

    u(t)=Gr1F+H[ey1FeyH]+GmγSc+H[eyγSceyH]; (3.25)
    θ(y)=eyF; (3.26)
    ϕ(y)=eyγSc+ScSrF+FγSc[ey1FeyγSc]. (3.27)

    From the Eqs (3.25)–(3.27), we obtain

    Cf=(uy)y=0=(GmγScGmH+Gr(γSc+H)1+RPr+GmHγSc+(GmGr)H32γGrHSc)(1+RPr+H(γSc+H)); (4.1)
    Nu=(θy)y=0=1+RPr; (4.2)
    Sh=(ϕy)y=0=ScSr(1+R)1+RPrγSc((R1)1+RPr+((1+R)ScPrγ)Sc)(1+R)1+RPrPrγSc (4.3)

    The combined impacts of transient MHD free convective flows of an incompressible viscous fluid through a vertical plate moving with uniform motion and immersed in a porous media are examined using an exact approach. The approximate analytical expressions for the velocity u, temperature θ, and concentration profile ϕ are solved by using the homotopy perturbation method for fixed values of parameters is graphically presented.

    Velocity takes time at first, and for high values of y, it takes longer, and the velocity approaches zero as time increases. The velocity of fluid rises with Gr increasing, as exposed in Figure 1.

    Figure 1.  An illustration of velocity profiles for different values of Gr.

    The variations of parameter Gm are depicted in Figure 2. It has been established that as the value of increases, neither does the concentration. Gm. This is because increasing the number of 'Gm' diminishes the slog energy, allow the fluid to transfer very rapidly.The dimensionless Prandtl number is a number which combines the viscosity of a fluid with its thermal conductivity. For example, Figure 3 shows how a decrease in 'Pr'increases the concentration of velocity profile.

    Figure 2.  An illustration of velocity profiles for different values of Gm.
    Figure 3.  An illustration of velocity profiles for different values of Pr.

    The Figure 4 shows how a decrease in concentration occurs when the value of H increases.As shown in Figure 5, when the Schmidt number Sc increases, the concentration of velocity profiles decreases, while the opposite is true for the Soret number Sr, as shown in Figures 6, 7 and 8, represented the radiation parameter R, chemical reaction parameter γ is increasing when it implies a decrease in concentration.

    Figure 4.  An illustration of velocity profiles for different values of H.
    Figure 5.  An illustration of velocity profiles for different values of Sc.
    Figure 6.  An illustration of velocity profiles for different values of Sr.
    Figure 7.  An illustration of velocity profiles for different values of γ.
    Figure 8.  An illustration of velocity profiles for different values of R.

    Based on Figure 9, it is evident that the thickness of the momentum boundary layer increases for fluids with Pr<1. When Pr<0.015, the heat diffuses rapidly in comparison to the velocity.

    Figure 9.  An illustration profile of Temperature for various values of Pr.

    Figure 10 depicts the impact of the radiation parameter R on temperature profiles. The temperature profiles θ, which are a decreasing function of R, are found to decrease the flow and lower fluid velocity. As the radiation parameter R is increased, the fluid thickens, temperatures and thermal boundary layer thickness to decrease.

    Figure 10.  An illustration profile of Temperature for various values of R.

    This statement is justified because the thermal conductivity of a fluid declines by the growing Prandtl number Pr and hence the thickness of thermal boundary layers and temperature profiles decrease as well. Based on Figure 9, we see an increase in fluid concentration with large Prandtl numbers Pr. Radiation parameter R and temperature profiles are illustrated in Figure 10. The temperature profiles θ, which are a decreasing function of R, are initiate to reduction the flow and decline the fluid velocity. Radiation parameter R increases as fluid thickness increases, temperature increases, and thickness of thermal boundary layer decreases.

    The influence of Pr, R, γ, Sc, and Sr on the concentration profiles ϕ is shown in Figures 1115. The fluid concentration rises on highest values of Pr, as shown in Figure 11. The profile of temperature is affected by the radiation parameter R which is shown in Figure 12. As a function of R, the concentration profiles reduce the flow and decrease fluid velocity.

    Figure 11.  Profile of concentration for distinct values of Pr.
    Figure 12.  Profile of concentration for distinct values of R.
    Figure 13.  Profile of concentration for distinct values of Sc.
    Figure 14.  Profile of concentration for distinct values of Sr.
    Figure 15.  Profile of concentration for distinct values of γ.

    The growing values of γ and Sc lead to falling in the concentration profiles, is described from Figures 13 and 15. The concentration profiles increase as the number of sorts (Sr) increases, as shown in Figure 14.

    A free convection magnetohydrodynamic (MHD) flow past a vertical plate embedded in a porous medium was offered in this paper. Homotopy perturbation method is used to find approximate analytical solutions for the concentration of species. The effects of system parameters on temperature and velocity profiles were investigated using these analytical expressions. The graphic representation of the impact of several physical parameters attempting to control the velocity, temperature, and concentration profiles and a brief discussion. Analytical expressions were also developed for the Skin-friction and Nusselt and Sherwood numbers.

    The authors declare that they have no conflict of interest.

    The authors are thankful to the reviewers for their valuable comments and suggestions to improve the quality of the paper. The work of H. Alotaibi is supported by Taif University Researchers Supporting Project Number (TURSP-2020/304), Taif University, Taif, Saudi Arabia.



    [1] P. L. Duren, Univalent functions, New York: Springer, 1983.
    [2] C. Pommerenke, G. Jensen, Univalent functions, Göttingen: Vandenhoeck und Ruprecht, 1975.
    [3] A. W. Goodman, Univalent functions, Volume I, Tampa: Mariner Pub. Co., 1983.
    [4] D. A. Brannan, T. S. Taha, On some classes of bi-univalent functions, Stud. U. Babes-Bol. Mat., 31 (1986), 70–77.
    [5] T. S. Taha, Topics in univalent function theory, PhD Thesis, University of London, 1981.
    [6] D. A. Brannan, J. G. Clunie, Aspects of contemporary complex analysis, New York: Academic Press, 1980.
    [7] E. Deniz, Certain subclasses of bi-univalent functions satisfying subordinate conditions, Journal of Classical Analysis, 2 (2013), 49–60. https://doi.org/10.7153/jca-02-05 doi: 10.7153/jca-02-05
    [8] M. Lewin, On a coefficient problem for bi-univalent functions, Proc. Amer. Math. Soc., 18 (1967), 63–68. https://doi.org/10.2307/2035225 doi: 10.2307/2035225
    [9] G. Murugusundaramoorthy, K. Vijaya, T. Bulboacă, Initial coefficient bounds for bi-univalent functions related to Gregory coefficients, Mathematics, 11 (2023), 2857. https://doi.org/10.3390/math11132857 doi: 10.3390/math11132857
    [10] E. Netanyahu, The minimal distance of the image boundary from the origin and the second coefficient of a univalent function in |z|<1, Arch. Rational Mech. Anal., 32 (1969), 100–112. https://doi.org/10.1007/BF00247676 doi: 10.1007/BF00247676
    [11] H. M. Srivastava, A. K. Mishra, P. Gochhayat, Certain subclasses of analytic and bi-univalent functions, Appl. Math. Lett., 23 (2010), 1188–1192. https://doi.org/10.1016/j.aml.2010.05.009 doi: 10.1016/j.aml.2010.05.009
    [12] H. M. Srivastava, G. Murugusundaramoorthy, T. Bulboacă, The second Hankel determinant for subclasses of bi-univalent functions associated with a nephroid domain, Rev. Real Acad. Cienc. Exactas Fis. Nat. Ser. A-Mat., 116 (2022), 145. https://doi.org/10.1007/s13398-022-01286-6 doi: 10.1007/s13398-022-01286-6
    [13] K. Vijaya, G. Murugusundaramoorthy, Bi-starlike function of complex order involving Mathieu-type series associated with telephone numbers, Symmetry, 15 (2023), 638. https://doi.org/10.3390/sym15030638 doi: 10.3390/sym15030638
    [14] H. Tang, G.-T. Deng, S.-H. Li, Coefficient estimates for new subclasses of Ma-Minda bi-univalent functions, J. Inequal. Appl., 2013 (2013), 317. https://doi.org/10.1186/1029-242X-2013-317 doi: 10.1186/1029-242X-2013-317
    [15] W. C. Ma, D. Minda, A unified treatment of some special classes of univalent functions, In: Proceedings of the conference on complex analysis (Tianjin, 1992), Cambridge: Internat. Press, 1992,157–169.
    [16] S. Gandhi, Radius Estimates for three leaf function and convex combination of starlike functions, In: Mathematical analysis I: approximation theory, Singapore: Springer, 2020,173–184. https://doi.org/10.1007/978-981-15-1153-0_15
    [17] K. S. Miller, B. Ross, An introduction to the fractional calculus and fractional differential equations, New York: John Wiley and Sons, 1993.
    [18] A. Wiman, Über die Nullstellen der Funktionen Eα(x), Acta Math., 29 (1905), 217–234. https://doi.org/10.1007/BF02403204 doi: 10.1007/BF02403204
    [19] S. S. Eker, S. Ece, Geometric properties of the Miller-Ross functions, Iran. J. Sci. Technol. Trans. Sci., 46 (2022), 631–636. https://doi.org/10.1007/s40995-022-01268-8 doi: 10.1007/s40995-022-01268-8
    [20] S. M. El-Deeb, T. Bulboacă, J. Dziok, Pascal distribution series connected with certain subclasses of univalent functions, Kyungpook Math. J., 59 (2019), 301–314. https://doi.org/10.5666/KMJ.2019.59.2.301 doi: 10.5666/KMJ.2019.59.2.301
    [21] W. Nazeer, Q. Mehmood, S. M. Kang, A. U. Haq, An application of Bionomial distribution series on certain analytic functions, J. Comput. Anal. Appl., 26 (2019), 11–17.
    [22] S. Porwal, M. Kumar, A unified study on starlike and convex functions associated with Poisson distribution series, Afr. Mat., 27 (2016), 1021–1027. https://doi.org/10.1007/s13370-016-0398-z doi: 10.1007/s13370-016-0398-z
    [23] A. K. Wanas, N. A. Al-Ziadi, Applications of beta negative binomial distribution series on holomorphic funxtions, Earthline Journal of Mathematical Sciences, 6 (2021), 271–292. https://doi.org/10.34198/ejms.6221.271292 doi: 10.34198/ejms.6221.271292
    [24] A. K. Wanas, J. A. Khuttar, Applications of Borel distribution series on analytic functions, Earthline Journal of Mathematical Sciences, 4 (2020), 71–82. https://doi.org/10.34198/ejms.4120.7182 doi: 10.34198/ejms.4120.7182
    [25] A. E. Bashirov, E. M. Kurpinar, A. Özyapıcı, Multiplicative calculus and its applications, J. Math. Anal. Appl., 337 (2008), 36–48. https://doi.org/10.1016/j.jmaa.2007.03.081 doi: 10.1016/j.jmaa.2007.03.081
    [26] A. E. Bashirov, E. Mısırlı, Y. Tandoğdu, A. Özyapıcı, On modeling with multiplicative differential equations, Appl. Math. J. Chin. Univ., 26 (2011), 425–438. https://doi.org/10.1007/s11766-011-2767-6 doi: 10.1007/s11766-011-2767-6
    [27] A. Bashirov, M. Riza, On complex multiplicative differentiation, TWMS J. App. Eng. Math., 1 (2011), 75–85.
    [28] M. Riza, A. Özyapici, E. Misirli, Multiplicative finite difference methods, Quart. Appl. Math., 67 (2009), 745–754. https://doi.org/10.1090/S0033-569X-09-01158-2 doi: 10.1090/S0033-569X-09-01158-2
    [29] K. R. Karthikeyan, G. Murugusundaramoorthy, Properties of a class of analytic functions influenced by multiplicative calculus, Fractal Fract., 8 (2024), 131. https://doi.org/10.3390/fractalfract8030131 doi: 10.3390/fractalfract8030131
    [30] D. Breaz, K. R. Karthikeyan, G. Murugusundaramoorthy, Applications of Mittag–Leffler functions on a subclass of meromorphic functions influenced by the definition of a non-Newtonian derivative, Fractal Fract., 8 (2024), 509. https://doi.org/10.3390/fractalfract8090509 doi: 10.3390/fractalfract8090509
    [31] Q.-H. Xu, Y.-C. Gui, H. M. Srivastava, Coefficient estimates for a certain subclass of analytic and bi-univalent functions, Appl. Math. Lett., 25 (2012), 990–994. https://doi.org/10.1016/j.aml.2011.11.013 doi: 10.1016/j.aml.2011.11.013
    [32] Q.-H. Xu, H.-G. Xiao, H. M. Srivastava, A certain general subclass of analytic and bi-univalent functions and associated coefficient estimate problems, Appl. Math. Comput., 218 (2012), 11461–11465. https://doi.org/10.1016/j.amc.2012.05.034 doi: 10.1016/j.amc.2012.05.034
    [33] P. Zaprawa, On the Fekete-Szego problem for classes of bi-univalent functions, Bull. Belg. Math. Soc. Simon Stevin, 21 (2014), 169–178. https://doi.org/10.36045/bbms/1394544302 doi: 10.36045/bbms/1394544302
    [34] P. Zaprawa, Estimates of initial coefficients for bi-univalent functions, Abstr. Appl. Anal., 2014 (2014), 357480. https://doi.org/10.1155/2014/357480 doi: 10.1155/2014/357480
    [35] K. Sakaguchi, On a certain univalent mapping, J. Math. Soc. Japan, 11 (1959), 72–75. https://doi.org/10.2969/jmsj/01110072 doi: 10.2969/jmsj/01110072
    [36] G. Murugusundaramoorthy, T. Bulboacă, Initial coefficients and Fekete-Szegő inequalities for functions related to van der Pol numbers (VPN), Math. Slovaca, 73 (2023), 1183–1196. https://doi.org/10.1515/ms-2023-0087 doi: 10.1515/ms-2023-0087
    [37] J. Sokół, G. Murugusundaramoorthy, K. Vijaya, On λ-pseudo starlike functions associated with vertical strip domain, Asian-Eur. J. Math., 16 (2023), 2350135. https://doi.org/10.1142/S1793557123501358 doi: 10.1142/S1793557123501358
  • This article has been cited by:

    1. Fadwa Alrowais, Asma Abbas Hassan, Wafa Sulaiman Almukadi, Meshari H. Alanazi, Radwa Marzouk, Ahmed Mahmud, Boosting Deep Feature Fusion-Based Detection Model for Fake Faces Generated by Generative Adversarial Networks for Consumer Space Environment, 2024, 12, 2169-3536, 147680, 10.1109/ACCESS.2024.3470128
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(754) PDF downloads(72) Cited by(0)

Figures and Tables

Figures(4)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog