Research article

Bi-univalent functions subordinated to a three leaf function induced by multiplicative calculus

  • Received: 29 June 2024 Revised: 29 August 2024 Accepted: 09 September 2024 Published: 18 September 2024
  • MSC : 30C45

  • Our aim was to develop a new class of bi starlike functions by utilizing the concept of subordination, driven by the idea of multiplicative calculus, specifically multiplicative derivatives. Several restrictions were imposed, which were indeed strict constraints, because we have tried to work within the current framework or the design of analytic functions. To make the study more versatile, we redefined our new class of function with Miller-Ross Poisson distribution (MRPD), in order to increase the study's adaptability. We derived the first coefficient estimates and Fekete-Szegő inequalities for functions in this new class. To demonstrate the characteristics, we have provided a few examples.

    Citation: G. Murugusundaramoorthy, K. Vijaya, K. R. Karthikeyan, Sheza M. El-Deeb, Jong-Suk Ro. Bi-univalent functions subordinated to a three leaf function induced by multiplicative calculus[J]. AIMS Mathematics, 2024, 9(10): 26983-26999. doi: 10.3934/math.20241313

    Related Papers:

  • Our aim was to develop a new class of bi starlike functions by utilizing the concept of subordination, driven by the idea of multiplicative calculus, specifically multiplicative derivatives. Several restrictions were imposed, which were indeed strict constraints, because we have tried to work within the current framework or the design of analytic functions. To make the study more versatile, we redefined our new class of function with Miller-Ross Poisson distribution (MRPD), in order to increase the study's adaptability. We derived the first coefficient estimates and Fekete-Szegő inequalities for functions in this new class. To demonstrate the characteristics, we have provided a few examples.



    加载中


    [1] P. L. Duren, Univalent functions, New York: Springer, 1983.
    [2] C. Pommerenke, G. Jensen, Univalent functions, Göttingen: Vandenhoeck und Ruprecht, 1975.
    [3] A. W. Goodman, Univalent functions, Volume I, Tampa: Mariner Pub. Co., 1983.
    [4] D. A. Brannan, T. S. Taha, On some classes of bi-univalent functions, Stud. U. Babes-Bol. Mat., 31 (1986), 70–77.
    [5] T. S. Taha, Topics in univalent function theory, PhD Thesis, University of London, 1981.
    [6] D. A. Brannan, J. G. Clunie, Aspects of contemporary complex analysis, New York: Academic Press, 1980.
    [7] E. Deniz, Certain subclasses of bi-univalent functions satisfying subordinate conditions, Journal of Classical Analysis, 2 (2013), 49–60. https://doi.org/10.7153/jca-02-05 doi: 10.7153/jca-02-05
    [8] M. Lewin, On a coefficient problem for bi-univalent functions, Proc. Amer. Math. Soc., 18 (1967), 63–68. https://doi.org/10.2307/2035225 doi: 10.2307/2035225
    [9] G. Murugusundaramoorthy, K. Vijaya, T. Bulboacă, Initial coefficient bounds for bi-univalent functions related to Gregory coefficients, Mathematics, 11 (2023), 2857. https://doi.org/10.3390/math11132857 doi: 10.3390/math11132857
    [10] E. Netanyahu, The minimal distance of the image boundary from the origin and the second coefficient of a univalent function in $|z| < 1$, Arch. Rational Mech. Anal., 32 (1969), 100–112. https://doi.org/10.1007/BF00247676 doi: 10.1007/BF00247676
    [11] H. M. Srivastava, A. K. Mishra, P. Gochhayat, Certain subclasses of analytic and bi-univalent functions, Appl. Math. Lett., 23 (2010), 1188–1192. https://doi.org/10.1016/j.aml.2010.05.009 doi: 10.1016/j.aml.2010.05.009
    [12] H. M. Srivastava, G. Murugusundaramoorthy, T. Bulboacă, The second Hankel determinant for subclasses of bi-univalent functions associated with a nephroid domain, Rev. Real Acad. Cienc. Exactas Fis. Nat. Ser. A-Mat., 116 (2022), 145. https://doi.org/10.1007/s13398-022-01286-6 doi: 10.1007/s13398-022-01286-6
    [13] K. Vijaya, G. Murugusundaramoorthy, Bi-starlike function of complex order involving Mathieu-type series associated with telephone numbers, Symmetry, 15 (2023), 638. https://doi.org/10.3390/sym15030638 doi: 10.3390/sym15030638
    [14] H. Tang, G.-T. Deng, S.-H. Li, Coefficient estimates for new subclasses of Ma-Minda bi-univalent functions, J. Inequal. Appl., 2013 (2013), 317. https://doi.org/10.1186/1029-242X-2013-317 doi: 10.1186/1029-242X-2013-317
    [15] W. C. Ma, D. Minda, A unified treatment of some special classes of univalent functions, In: Proceedings of the conference on complex analysis (Tianjin, 1992), Cambridge: Internat. Press, 1992,157–169.
    [16] S. Gandhi, Radius Estimates for three leaf function and convex combination of starlike functions, In: Mathematical analysis I: approximation theory, Singapore: Springer, 2020,173–184. https://doi.org/10.1007/978-981-15-1153-0_15
    [17] K. S. Miller, B. Ross, An introduction to the fractional calculus and fractional differential equations, New York: John Wiley and Sons, 1993.
    [18] A. Wiman, Über die Nullstellen der Funktionen $E_\alpha(x)$, Acta Math., 29 (1905), 217–234. https://doi.org/10.1007/BF02403204 doi: 10.1007/BF02403204
    [19] S. S. Eker, S. Ece, Geometric properties of the Miller-Ross functions, Iran. J. Sci. Technol. Trans. Sci., 46 (2022), 631–636. https://doi.org/10.1007/s40995-022-01268-8 doi: 10.1007/s40995-022-01268-8
    [20] S. M. El-Deeb, T. Bulboacă, J. Dziok, Pascal distribution series connected with certain subclasses of univalent functions, Kyungpook Math. J., 59 (2019), 301–314. https://doi.org/10.5666/KMJ.2019.59.2.301 doi: 10.5666/KMJ.2019.59.2.301
    [21] W. Nazeer, Q. Mehmood, S. M. Kang, A. U. Haq, An application of Bionomial distribution series on certain analytic functions, J. Comput. Anal. Appl., 26 (2019), 11–17.
    [22] S. Porwal, M. Kumar, A unified study on starlike and convex functions associated with Poisson distribution series, Afr. Mat., 27 (2016), 1021–1027. https://doi.org/10.1007/s13370-016-0398-z doi: 10.1007/s13370-016-0398-z
    [23] A. K. Wanas, N. A. Al-Ziadi, Applications of beta negative binomial distribution series on holomorphic funxtions, Earthline Journal of Mathematical Sciences, 6 (2021), 271–292. https://doi.org/10.34198/ejms.6221.271292 doi: 10.34198/ejms.6221.271292
    [24] A. K. Wanas, J. A. Khuttar, Applications of Borel distribution series on analytic functions, Earthline Journal of Mathematical Sciences, 4 (2020), 71–82. https://doi.org/10.34198/ejms.4120.7182 doi: 10.34198/ejms.4120.7182
    [25] A. E. Bashirov, E. M. Kurpinar, A. Özyapıcı, Multiplicative calculus and its applications, J. Math. Anal. Appl., 337 (2008), 36–48. https://doi.org/10.1016/j.jmaa.2007.03.081 doi: 10.1016/j.jmaa.2007.03.081
    [26] A. E. Bashirov, E. Mısırlı, Y. Tandoğdu, A. Özyapıcı, On modeling with multiplicative differential equations, Appl. Math. J. Chin. Univ., 26 (2011), 425–438. https://doi.org/10.1007/s11766-011-2767-6 doi: 10.1007/s11766-011-2767-6
    [27] A. Bashirov, M. Riza, On complex multiplicative differentiation, TWMS J. App. Eng. Math., 1 (2011), 75–85.
    [28] M. Riza, A. Özyapici, E. Misirli, Multiplicative finite difference methods, Quart. Appl. Math., 67 (2009), 745–754. https://doi.org/10.1090/S0033-569X-09-01158-2 doi: 10.1090/S0033-569X-09-01158-2
    [29] K. R. Karthikeyan, G. Murugusundaramoorthy, Properties of a class of analytic functions influenced by multiplicative calculus, Fractal Fract., 8 (2024), 131. https://doi.org/10.3390/fractalfract8030131 doi: 10.3390/fractalfract8030131
    [30] D. Breaz, K. R. Karthikeyan, G. Murugusundaramoorthy, Applications of Mittag–Leffler functions on a subclass of meromorphic functions influenced by the definition of a non-Newtonian derivative, Fractal Fract., 8 (2024), 509. https://doi.org/10.3390/fractalfract8090509 doi: 10.3390/fractalfract8090509
    [31] Q.-H. Xu, Y.-C. Gui, H. M. Srivastava, Coefficient estimates for a certain subclass of analytic and bi-univalent functions, Appl. Math. Lett., 25 (2012), 990–994. https://doi.org/10.1016/j.aml.2011.11.013 doi: 10.1016/j.aml.2011.11.013
    [32] Q.-H. Xu, H.-G. Xiao, H. M. Srivastava, A certain general subclass of analytic and bi-univalent functions and associated coefficient estimate problems, Appl. Math. Comput., 218 (2012), 11461–11465. https://doi.org/10.1016/j.amc.2012.05.034 doi: 10.1016/j.amc.2012.05.034
    [33] P. Zaprawa, On the Fekete-Szego problem for classes of bi-univalent functions, Bull. Belg. Math. Soc. Simon Stevin, 21 (2014), 169–178. https://doi.org/10.36045/bbms/1394544302 doi: 10.36045/bbms/1394544302
    [34] P. Zaprawa, Estimates of initial coefficients for bi-univalent functions, Abstr. Appl. Anal., 2014 (2014), 357480. https://doi.org/10.1155/2014/357480 doi: 10.1155/2014/357480
    [35] K. Sakaguchi, On a certain univalent mapping, J. Math. Soc. Japan, 11 (1959), 72–75. https://doi.org/10.2969/jmsj/01110072 doi: 10.2969/jmsj/01110072
    [36] G. Murugusundaramoorthy, T. Bulboacă, Initial coefficients and Fekete-Szegő inequalities for functions related to van der Pol numbers (VPN), Math. Slovaca, 73 (2023), 1183–1196. https://doi.org/10.1515/ms-2023-0087 doi: 10.1515/ms-2023-0087
    [37] J. Sokół, G. Murugusundaramoorthy, K. Vijaya, On $\lambda$-pseudo starlike functions associated with vertical strip domain, Asian-Eur. J. Math., 16 (2023), 2350135. https://doi.org/10.1142/S1793557123501358 doi: 10.1142/S1793557123501358
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(360) PDF downloads(60) Cited by(0)

Article outline

Figures and Tables

Figures(4)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog