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1. Introduction

Consider D = {z : |z| < 1}, an open unit disc in the complex plane C, H as the collection of all
analytic functions in D. LetA be the subclass ofH consisting of all functions of the form

f (z) = z +
∞∑

n=2

anzn, z ∈ D

and S be a subclass of A containing all univalent functions. A function f ∈ A is starlike if f (D) is
starlike with respect to origin and the class of all starlike functions f ∈ A is denoted by ST . Similarly,
a function f ∈ A is convex if f (D) is convex with respect to all points of f (D) and the class of all
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convex functions f ∈ A is denoted by CV. An analytic function p : D→ C of the form

p(z) = 1 +
∞∑

n=1

pnzn, |pn| ≤ 2 (1.1)

satisfying ℜ (p(z)) > 0 for all z ∈ D is known as a function with positive real part. The class of such
functions, denoted byP, is known as the class of Carathéodory functions. Note thatℜ (p(z)) > 0 can be
written as | arg (p(z)) | <

π

2
. Connections between ST and P and CV and P are as follows: a function

f ∈ ST if and only if
z f ′(z)
f (z)

∈ P, z ∈ D and a function f ∈ CV if and only if 1 +
z f ′′(z)
f ′(z)

∈ P, z ∈ D.

Thus, the properties of ST and CV functions can be obtained from the properties of functions in the
class P. Note that the Möbius function

L0(z) =
1 + z
1 − z

= 1 + 2z + 2z2 + ... = 1 + 2
∞∑

n=1

zn, z ∈ D, (1.2)

is analytic and univalent in the open unit disc D and it maps D onto the right half-plane and is in the
class P.

Even though many authors extensively explored the concept of starlikeness of a given order for a
long time, Robertson [16] was the pioneer in introducing the concept of an analytic univalent functions
mapping an open unit disc onto a starlike domain with respect to the boundary point. He constructed
the subclass G∗ of H of functions g, g(0) = 1 mapping D onto a starlike domain with respect to
g(1) = limr→1− g(r) = 0 and ℜ

(
eiρg(z)

)
> 0 for some real ρ and all z ∈ D. Assume also that the

constant function 1 belongs to the class G∗. He conjectured that the class G∗ coincides with the class G,

G =

g ∈ H : g(z) , 0, g(z) = 1 +
∞∑

n=1

dnzn, z ∈ D

 , (1.3)

such that

ℜ

(
2z

g′(z)
g(z)

+
1 + z
1 − z

)
> 0, z ∈ D (1.4)

and proved that G ⊂ G∗. Later, this conjecture was confirmed by Lyzzaik [11] who proved G∗ ⊂ G.
Furthermore, if g ∈ G, g , 1 then g is univalent close-to-convex in D, as proved by Robertson [16]. It
is worth mentioning that the analytic characterization (1.4) was known earlier to Styer [19].

In [3], a class G(M),M > 1, consisting of all analytic and non-vanishing functions of the form (1.3),
such that

ℜ

(
2z

g′(z)
g(z)

+ z
P′(z; M)
P(z; M)

)
> 0, z ∈ D,

which is a closely related function to the class G was introduced by Jakubowski [3]. Here,

P(z; M) =
4z(√

(1 − z)2 + 4z
M + 1 − z

)2 , z ∈ D

is the Pick function. The class G(1) was also considered in [3], where

G(1) =
(
g ∈ H : g(z) , 0,ℜ

(
1 + 2z

g′(z)
g(z)

)
> 0, z ∈ D

)
.
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Todorov [20] linked the class G with a functional f (z)/(1 − z) for z ∈ D and obtained a structural
formula and coefficient estimates. Silverman and Silvia [17] introduced an interesting class G (β) ⊂
G∗, 0 < β ≤ 1, consisting of all analytic function g of the form (1.3) and satisfying

ℜ

(
z
g′(z)
g(z)

+ (1 − β)
1 + z
1 − z

)
> 0, z ∈ D.

Clearly, G
(

1
2

)
= G. For −1 < A ≤ 1 and −A < B ≤ 1, Jakubowski and Włodarczyk [4] defined the

class G(A, B), of all g of the form (1.3), satisfyingℜ
(
2z

g′(z)
g(z)

+
1 + Az
1 − Bz

)
> 0, z ∈ D (see also the work

of Sivasubramanian [18]). Related works on the class G were considered earlier by [1,6–10,14]. We
remark at this point, that the function

1
2

ln
1 + z
1 − z

= z +
z3

3
+ · · · +

z2n+1

2n + 1
+ · · ·

is univalent in D. In this article, we are interested in introducing and investigating a new class as
follows.

Definition 1.1. Let Gc be the class consisting of all functions of the form (1.3) satisfying

ℜ

{
2z

g′(z)
g(z)

+

(
1 + z
1 − z

)c}
> 0, z ∈ D, (1.5)

where 0 < c ≤ 2.

If c = 1, the class G1 = G was introduced and investigated by Robertson [16]. For this new
class of functions, we obtain representation theorem, interesting coefficient estimates and also certain
differential subordination implications involving this new class.

Example 1.1. The function

g1(z) =
1

1 − z
exp

−1
2

∫ z

0


(

1+t
1−t

)c
− 1

t

 dt


is in the class Gc, where 0 < c ≤ 2.

Proof. Taking logarithm on both sides and by a simple differentiation, one can easily get

2
g′1(z)
g1(z)

+
1
z

(
1 + z
1 − z

)c

=
1 + z

z(1 − z)
.

Hence,

ℜ

{
2z

g′1(z)
g1(z)

+

(
1 + z
1 − z

)c}
= ℜ

{
1 + z
1 − z

}
> 0

implies g1 ∈ Gc.
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Example 1.2. The function

g2(z) = exp

−1
2

∫ z

0


(

1+t
1−t

)c
− 1

t

 dt


is in the class Gc, where 0 < c ≤ 2.

Proof. Taking logarithm on both sides and by a simple differentiation, one can easily get

2
g′2(z)
g2(z)

+
1
z

(
1 + z
1 − z

)c

=
1
z
.

Therefore,

ℜ

{
2z

g′2(z)
g2(z)

+

(
1 + z
1 − z

)c}
= 1 > 0

implies that g2 ∈ Gc.

Similarly, we can show that

Example 1.3. The function

g3(z) =
1

√
1 − z

exp

−1
2

∫ z

0


(

1+t
1−t

)c
− 1

t

 dt


is in the class Gc, where 0 < c ≤ 2.

Example 1.4. The function

g4(z) =
1

√
1 + z

exp

−1
2

∫ z

0


(

1+t
1−t

)c
− 1

t

 dt


is in the class Gc, where 0 < c ≤ 2.

The above examples show that there are many functions present in the class Gc proving that the
class Gc is non empty.

2. Representation theorems

Theorem 2.1. Let 0 < c ≤ 2. Furthermore, let

βc(z) = −
1
2c

∫ z

0


(

1+t
1−t

)c
− 1

t

 dt. (2.1)

A function g is in Gc if and only if there exists a starlike function s ∈ ST such that

g(z) =
(

s(z)
z

) 1
2

exp {c βc(z)} . (2.2)
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Proof. Suppose that s ∈ ST and g is given by (2.2). Then, g is analytic and g(0) = 1. Therefore,
from (1.5), we have for some function g satisfying (2.2), there exists a starlike function s such that

(g(z))2 (z exp {−2cβc(z)}) = s(z).

Hence,
2 log g(z) + log z − 2cβc(z) = log s(z).

By a simple differentiation followed by simplification we get,

2
zg′(z)
g(z)

+

(
1 + z
1 − z

)c

=
zs′(z)
s(z)

,

where (
1 + z
1 − z

)c

= 1 + 2cz + 2c2z2 + 2
2c3 + c

3
z3 + 2

c4 + 2c2

3
z4 + · · · .

Therefore,

ℜ

{
2z

g′(z)
g(z)

+

(
1 + z
1 − z

)c}
= ℜ

(
z

s′(z)
s(z)

)
> 0.

Hence, g ∈ Gc.
On the other hand, suppose g ∈ Gc and

s(z) = z g2(z) exp {−2cβc(z)} .

Then, s(0) = 0, s′(0) = 1 and

ℜ

(
zs′(z)
s(z)

)
= ℜ

(
2z

g′(z)
g(z)

+

(
1 + z
1 − z

)c)
.

The above expression is positive as g ∈ Gc which implies s ∈ ST .

For the choices of c = 1 and c = 2 we get the following corollaries as listed below.

Corollary 2.1. [16] A function g is in G1 if and only if there exists a function s ∈ ST such that

(g(z))2 =

(
s(z)

z

)
(1 − z)2.

Corollary 2.2. A function g is in G2 if and only if there exists a function s ∈ ST such that g(z) =(
s(z)

z

) 1
2

exp
(
−2

1 − z

)
.

Theorem 2.2. (Herglotz representation theorem) Let 0 < c ≤ 2 and let g be an analytic function in D
such that g(0) = 1. Then, g ∈ Gc if and only if

g(z) = exp

−
π∫
−π

log(1 − ze−it)dµ(t) −
1
2

∫ z

0


(

1+t
1−t

)c
− 1

t

 dt

 , (2.3)

where µ(t) is a probability measure on [−π, π].
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Proof. Let 0 < c ≤ 2. If g ∈ Gc, we can write

2z
g′(z)
g(z)

+

(
1 + z
1 − z

)c

=

π∫
−π

1 + z e−it

1 − z e−it dµ(t).

By a simple integration and simplification we get,

2 log g(z) = −
∫ z

0


(

1+t
1−t

)c
− 1

t

 dt − 2

π∫
−π

log
(
1 − ze−it

)
dµ(t).

Upon simplification of the above equation, one can obtain (2.3). The converse part can be proved by
similar lines as in the necessary part and hence the details are omitted.

For c = 1 and c = 2 we get the following corollaries.

Corollary 2.3. [16] Let g be an analytic function in D such that g(0) = 1. Then, g ∈ G1 if and only if

g(z) = (1 − z) exp

−
π∫
−π

log(1 − ze−it)dµ(t)

 .
Corollary 2.4. Let g be an analytic function in D such that g(0) = 1. Then, g ∈ G2 if and only if

g(z) = exp −

 2
1 − z

+

π∫
−π

log(1 − ze−it)dµ(t)

 .
Theorem 2.3. Let 0 < c ≤ 2. A function g ∈ Gc if and only if there exists a function p ∈ P such that

g(z) =
1
√

z
exp

1
2


z∫

0

p(ζ)
ζ

dζ −
∫ z

0


(

1+t
1−t

)c
− 1

t

 dt


 . (2.4)

Proof. Let g ∈ Gc. Then, by the definition of Gc, for some function p ∈ P,

2
g′(z)
g(z)

+
1
z

(
1 + z
1 − z

)c

=
p(z)

z
.

Upon integration and simplification, we get

log z (g(z))2 =

z∫
0

p(ζ)
ζ

dζ −
∫ z

0


(

1+t
1−t

)c
− 1

t

 dt

which proves the necessary part of the theorem. Conversely, assume p ∈ P and p(0) = 1 and let g be as
in (2.4). Then, g is analytic inD and by applying simple calculations we can easily prove that g ∈ Gc.

For c = 1 and c = 2, we get the following corollaries.
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Corollary 2.5. Let g ∈ G1 if and only if there exists a function p ∈ P such that

g(z) =
1 − z
√

z
exp

 1
2

z∫
0

p(ζ)
ζ

dζ

 .
Corollary 2.6. Let g ∈ G2 if and only if there exists a function p ∈ P such that

g(z) =
1
√

z
exp

1
2

z∫
0

p(ζ)
ζ

dζ −
2z

1 − z

 .
Theorem 2.4. Let 0 < c ≤ 2. A function g ∈ Gc if and only if there exists a function p ∈ H such

that p ≺
1 + z
1 − z

and for z ∈ D,

g(z) =
1
√

z
exp

1
2


z∫

0

p(ζ)
ζ

dζ −
∫ z

0


(

1+t
1−t

)c
− 1

t

 dt


 .

Proof. The proof follows from Theorem 2.3.

3. Coefficient estimates for the class Gc

Theorem 3.1. Let 0 < c ≤ 2 and z ∈ D. If g ∈ Gc, we have the following sharp inequalities.

|c + d1| ≤ 1, (3.1)∣∣∣c2 + 2d2 − d2
1

∣∣∣ ≤ 1, (3.2)

and ∣∣∣2c3 + c + 9d3 − 9d1d2 + 3d3
1

∣∣∣ ≤ 3. (3.3)

Further, for α ∈ R, let

H(α, c) = 4d2 − 8αcd1 − 2d2
1(1 + 2α) + 2c2(1 − 2α). (3.4)

Then,

|H(α, c)| ≤

2
(
1 − 2α|c + d1|

2
)
, if α ≤ 1

2 ,

2
(
1 − 2(1 − α)|c + d1|

2
)
, if α ≥ 1

2 .
(3.5)

Proof. Let

p(z) = 2z
g′(z)
g(z)

+

(
1 + z
1 − z

)c

, z ∈ D.

On expanding the right hand side of the above function p, we get

p(z) = 1 + 2 (c + d1) z + 2
(
c2 + 2d2 − d2

1

)
z2 +

2
3

(
2c3 + c + 9d3 − 9d1d2 + 3d3

1

)
z3 + · · · . (3.6)
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By making use of the known inequality |pi| ≤ 2 for all p ∈ P, we can get the sharp inequalities given
in (3.1)–(3.3). From (1.1) and (3.6) and from the known fact that

|p2 − αp2
1| ≤

2 − α |p1|
2 , if α ≤ 1

2 ,

2 − (1 − α) |p1|
2 , if α ≥ 1

2 ,

we can obtain (3.5)

For c = 1 and c = 2, we have the following corollaries as stated below.

Corollary 3.1. [2] Let z ∈ D. If g ∈ G1, we have the following inequalities.

|1 + d1| ≤ 1,
∣∣∣1 + 2d2 − d2

1

∣∣∣ ≤ 1,
∣∣∣1 + 3d3 − 3d1d2 + d3

1

∣∣∣ ≤ 1.

Further,

|H(α, 1)| ≤

2
(
1 − 2α|1 + d1|

2
)
, if α ≤ 1

2 ,

2
(
1 − 2(1 − α)|1 + d1|

2
)
, if α ≥ 1

2 .

All of these inequalities are sharp.

Corollary 3.2. Let z ∈ D. If g ∈ G2, the following inequalities hold.∣∣∣∣∣1 + d1

2

∣∣∣∣∣ ≤ 1
2
,
∣∣∣4 + 2d2 − d2

1

∣∣∣ ≤ 1,
∣∣∣6 + 3d3 − 3d1d2 + d3

1

∣∣∣ ≤ 1.

Also,

|H(α, 2)| ≤

2
(
1 − 2α|2 + d1|

2
)
, if α ≤ 1

2 ,

2
(
1 − 2(1 − α)|2 + d1|

2
)
, if α ≥ 1

2 .

All of these inequalities are sharp.

Theorem 3.2. Let 0 < c ≤ 2 and let the function g(z) be of the form (1.3) belong to the class Gc.
Then, for n = 2, 3, · · · , the following estimates

∣∣∣∣∣ndn − c(n − 2)dn−1 + · · · +
[
1 + (−1)n−1

] c(c − 1) · · · (c − n + 2)
2(n − 1)!

d1

+ [1 − (−1)n]
c(c − 1)(c − 2) · · · (c − n + 1)

2n!

∣∣∣∣∣2

≤ 1 +
n−1∑
k=1

∣∣∣∣∣(k + 1)dk − c(k − 1)dk−1 + · · · +
[
1 + 3(−1)k−1

] c(c − 1)(c − 2) · · · (c − k + 2)
2(k − 1)!

d1

+
[
1 + (−1)k

] c(c − 1) · · · (c − k + 1)
2k!

∣∣∣∣∣2
hold.

AIMS Mathematics Volume 8, Issue 10, 23146–23163.



23154

Proof. Let the function g of the form (1.3) belong to the class Gc. Then, there exists a function p ∈ P
such that,

p (z) = 2z
g′(z)
g(z)

+

(
1 + z
1 − z

)c

, z ∈ D. (3.7)

Since p ∈ P, there exists a function ω of the form

ω (z) =
p (z) − 1
p (z) + 1

, z ∈ D,

where ω is analytic in D, ω (0) = 0, |ω (z)| ≤ 1 for z ∈ D. Furthermore,

p(z) =
1 + ω(z)
1 − ω(z)

. (3.8)

From (3.7) and (3.8), we have(
(1 − z)cg(z) + 2z (1 − z)c g′(z) + (1 + z)c g(z)

)
ω(z) = (1 − z)c (2zg′(z) − g(z)

)
+ (1 + z)c g(z).

Let

ω(z) =
∞∑

n=1

ωnzn.

Considering the expansion of the function of g as power series, we get

(2 +
∑∞

n=1

(
dn − cdn−1 +

c(c−1)
2! dn−2 + · · · + (−1)n−1 c(c−1)···(c−n+2)

(n−1)! d1 + (−1)n c(c−1)···(c−n+1)
n!

)
zn

+ 2
∑∞

n=1

(
ndn − c(n − 1)dn−1 +

c(c−1)
2! (n − 2)dn−2 + · · · + (−1)n−1 c(c−1)···(c−n+2)

(n−1)! d1

)
zn

+
∑∞

n=1

(
dn + cdn−1 +

c(c−1)
2! dn−2 + · · · +

c(c−1)···(c−n+2)
(n−1)! d1 +

c(c−1)···(c−n+1)
n!

)
zn)

(∑∞
n=1 ωnzn)

= 2
∑∞

n=1

(
ndn − c(n − 1)dn−1 +

c(c−1)
2! (n − 2)dn−2 + · · · + (−1)n−1 c(c−1)···(c−n+2)

(n−1)! d1

)
zn

+
∑∞

n=1

(
dn + cdn−1 +

c(c−1)
2! dn−2 + · · · +

c(c−1)···(c−n+2)
(n−1)! d1 +

c(c−1)···(c−n+1)
n!

)
zn

−
∑∞

n=1

(
dn − cdn−1 +

c(c−1)
2! dn−2 + · · · + (−1)n−1 c(c−1)···(c−n+2)

(n−1)! d1 + (−1)n c(c−1)···(c−n+1)
n!

)
zn.

For z ∈ D, this can be again simplified to bring into the form,1 +  ∞∑
n=1

(
(n + 1)dn − c(n − 1)dn−1 + · · · +

[
1 + 3(−1)n−1

] c(c − 1)(c − 2) · · · (c − n + 2)
2(n − 1)!

d1

+
[
1 + (−1)n] c(c − 1) · · · (c − n + 1)

2n!

)
zn

)  ∞∑
n=1

ωnzn


=

∞∑
n=2

(
ndn − c(n − 2)dn−1 + · · · +

[
1 + (−1)n−1

] c(c − 1) · · · (c − n + 2)
2(n − 1)!

d1

+
[
1 − (−1)n] c(c − 1)(c − 2) · · · (c − n + 1)

2(n)!

)
zn. (3.9)

For n = 2, 3, · · · , let

pn(c) = (n + 1)dn − c(n − 1)dn−1 + · · · +
[
1 + 3(−1)n−1

] c(c − 1)(c − 2) · · · (c − n + 2)
2(n − 1)!

d1

+
[
1 + (−1)n] c(c − 1) · · · (c − n + 1)

2n!
(3.10)
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and
sn(c) = ndn − c(n − 2)dn−1 + · · · +

[
1 + (−1)n−1

] c(c − 1) · · · (c − n + 2)
2(n − 1)!

d1

+
[
1 − (−1)n] c(c − 1)(c − 2) · · · (c − n + 1)

2(n)!
. (3.11)

From (3.9)–(3.11), we have

∞∑
n=1

ωnzn +

∞∑
n=2

(p1(c)ωn−1 + · · · pn−1(c)ω1) zn =

∞∑
n=1

sn(c)zn, z ∈ D. (3.12)

Equating the coefficient of z, we have

2ω1 = d1 + 2c.

Since |ω1| ≤ 1, we obtain ∣∣∣∣∣d1

2
+ c

∣∣∣∣∣ ≤ 1

and for n = 2, 3, · · · ,
ωn + p1(c)ωn−1 + · · · + pn−1ω1 = sn(c).

From the Eqs (3.9)–(3.12), we have1 + n−1∑
k=1

pk(c)

  ∞∑
k=1

ωkzk

 = n∑
k=1

sk(c)zk +

∞∑
k=n+1

Ekzk,

where Ek are the appropriate coefficients. Since |ω(z)| < 1 for z ∈ D,∣∣∣∣∣∣∣
n∑

k=1

sk(c)zk +

∞∑
k=n+1

Ekzk

∣∣∣∣∣∣∣
2

<

∣∣∣∣∣∣∣1 +
n−1∑
k=1

pk(c)zk

∣∣∣∣∣∣∣
2

.

By simplifying this, we have
n∑

k=1

|sk(c)|2 ≤ 1 +
n−1∑
k=1

|pk(c)|2.

Since |sk(c)|2 ≥ 0 for k = 1, 2, · · · , n − 1, we obtain

|sn(c)|2 ≤ 1 +
n−1∑
k=1

|pk(c)|2, n = 2, 3, · · · .

This essentially completes the proof of Theorem 3.2.

Let us consider the class B defined by B = {ω ∈ H : |ω(z)| ≤ 1, z ∈ D} and B0 be the subclass of B
consisting of functions ω such that ω(0) = 0. The elements of B0 are also known as Schwarz functions.
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Lemma 3.1. [5] If ω ∈ B0 is of the form ω(z) =
∞∑

n=1

ωnzn, z ∈ D, then for ν ∈ C,

∣∣∣ω2 − νω
2
1

∣∣∣ ≤ max {1, |ν|} .

Lemma 3.2. If ω ∈ B0 is of the form ω(z) =
∞∑

n=1

ωnzn, z ∈ D, then for any real numbers q1 and q2, the

following sharp estimates holds: ∣∣∣ω3 + q1 ω1 ω2 + q2 ω
3
1

∣∣∣ ≤ H(q1, q2), (3.13)

where

H(q1, q2) :=



1 if (q1, q2) ∈ D1 ∪ D2

|q2| if (q1, q2) ∈ ∪7
k=3Dk

2
3 (|q1| + 1)

(
|q1 |+1

3(|q1 |+1+q2)

) 1
2 if (q1, q2) ∈ D8 ∪ D9

q2
3

(
q2

1−4
q2

1−4q2

) (
q2

1−4
3(q2−1)

) 1
2

if (q1, q2) ∈ D10 ∪ D11/ {±2, 1}

2
3 (|q1| − 1)

(
|q1 |−1

3(|q1 |−1−q2)

) 1
2 if (q1, q2) ∈ D12

and the sets Dk, k = 1, 2, · · · are defined in [15].

Now we obtain a few upper bounds for early coefficients and for the Fekete-Szegö functional in the
class Gc.

Theorem 3.3. Let g ∈ Gc, 0 < c ≤ 2 . Then,

|c + d1| ≤ 1, (3.14)

|d1| ≤ 1 + c, (3.15)

|c2 + 2d2 − d2
1 | ≤ 1, (3.16)

|d2| ≤ 1 + c, (3.17)

|3d3 − 3d1d2 + d3
1 | ≤

4c3 + 2c + 3
6

(3.18)

and

|d3| ≤
3 + 2c + 18c2 + 10c3

18
. (3.19)

Furthermore, for δ ∈ R

|d2 − δd2
1 | ≤

1
2

max {1, 2|1 − δ|} + c|2δ − 1| + c2| − δ|. (3.20)

Proof. From the class Gc, there exists ω ∈ B0 of the form ω(z) =
∞∑

n=1
ωnzn, z ∈ D, such that

2z
g′(z)
g(z)

+

(
1 + z
1 − z

)c

=
1 + ω(z)
1 − ω(z)

. (3.21)
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Since

2z
g′(z)
g(z)

+

(
1 + z
1 − z

)c

= 1 + 2 (c + d1)z) z + 2
(
c2 + 2d2 − d2

1

)
z2 +

2
3

(
2c3 + c + 9d3 − 9d1d2 + 3d3

1

)
+ · · · (3.22)

and
1 + ω(z)
1 − ω(z)

= 1 + 2ω1z +
(
2ω2

1 + 2ω2

)
z2 +

(
2ω3

1 + 4ω1ω2 + ω3

)
z3 + · · · . (3.23)

By comparing the corresponding coefficients from (3.21)–(3.23), we have the following:

2 (c + d1) = 2ω1, (3.24)

2
(
c2 + 2d2 − d2

1

)
= 2

(
ω2

1 + ω2

)
(3.25)

and
2
3

(
2c3 + c + 9d3 − 9d1d2 + 3d3

1

)
= 2ω2

1 + 4ω1ω2 + ω3. (3.26)

Since |ω1| ≤ 1, from (3.24),
|c + d1| ≤ 1

and hence
|d1| ≤ 1 + c.

From (3.25) and by Lemma 3.1, we have∣∣∣c2 + 2d2 − d2
1

∣∣∣ = ∣∣∣ω2 + ω
2
1

∣∣∣ ≤ 1

and
2d2 = ω2 + 2ω2

1 − 2cω1,

which in turn gives
2 |d2| ≤ max {1, 2} + 2c |ω1|

and hence
|d2| ≤ 1 + c.

From (3.26) and by Lemma 3.2, we get∣∣∣3d3 − 3d1d2 + d3
1

∣∣∣ ≤ 1
2
+

2
3

c3 +
1
3

c.

Hence, we obtain ∣∣∣3d3 − 3d1d2 + d3
1

∣∣∣ ≤ 4c3 + 2c + 3
6

.

Substituting the formulas for d1 and d2, we obtain

|3d3| =

∣∣∣∣∣12 (
ω3 + 7ω1ω2 + 6ω3

1

)
−

3
2

c
(
ω2 + 2ω2

1

)
+ 3c2ω1 − 3αω1 +

1
3

c3 +
1
3

c
∣∣∣∣∣
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≤
1
2

∣∣∣ω3 + 7ω1ω2 + 6ω3
1

∣∣∣ + 3
2

c
∣∣∣ω2 + 2ω2

1

∣∣∣ + 3c2 |ω1| + 3c |ω1| +
1
3

c3 +
1
3

c

≤
1
2

H (7, 6) +
3
2

c max {1, | − 2|} + 3c2 + 3c +
1
3

c3 +
1
3

c.

Therefore,

|d3| ≤
3 + 38c + 18c2 + 2c3

18
.

Furthermore, we get ∣∣∣d2 − δd2
1

∣∣∣ ≤ 1
2

∣∣∣ω2 + 2 (1 − δ)ω2
1

∣∣∣ + c (2δ − 1) |ω1| + c2 |−δ| .

The proof of the theorem is completed by virtue of Lemma 3.1.

It can be remarked here that if ν is a real number, Lemma 3.1 can be improved in the following way
and can be found in [2] .

Lemma 3.3. If ω ∈ B0 is of the form ω(z) =
∞∑

n=1

ωnzn, z ∈ D, then

∣∣∣ω2 − νω
2
1

∣∣∣ ≤

−ν, ν ≤ −1,
1, −1 ≤ ν ≤ 1,
ν, ν ≥ 1.

(3.27)

For ν < −1 or ν > 1, equality holds if and only if ω (z) = z or one of its rotations. For −1 < ν < 1,
equality holds if and only if ω(z) = z2, z ∈ D or one of its rotations. For ν = −1 equality holds if
and only if ω(z) = z(λ+z)

(1+λz) , z ∈ D or one of its rotations, while for ν = 1 equality holds if and only
if w(z) = −z(λ+z)

(1+λz,) , 0 ≤ λ ≤ 1, z ∈ D or one of its rotations.

We can improve the results obtained in (3.20), in view of Lemma 3.3 as follows: For δ ∈ R, we get,

∣∣∣d2 − δd2
1

∣∣∣ ≤


(1 + c) − 2(1 + c)2δ, δ ≤ 0,
1 − 2c + 2(c2 − 2c)δ

2
, 0 ≤ δ ≤

1
2
,

1 − 2c + 2(c2 + 2c)δ
2

,
1
2
≤ δ ≤

3
2
,

(1 + c)2 δ − 2(1 + c), δ ≥ 3
2 .

(3.28)

Theorem 3.4. Let 0 < r < 1. If g ∈ Gc then for |z| = r < 1,√
− fα(−r)

r
≤ |g(z)| e−2cβ′c(r) ≤

√
fα(−r)

r
. (3.29)

Proof. Let us define
f (z) = z (g(z))2 exp

{
−2zβ′c(z)

}
. (3.30)

Note that the function g is non-vanishing in D. Therefore, f is analytic in D and a simple computation
shows that

z
f ′(z)
f (z)
= 2z

g′(z)
g(z)

+

(
1 + z
1 − z

)c

, z ∈ D. (3.31)
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From (3.31), we can see that g ∈ Gc if and only if f ≺ 1+z
1−z , z ∈ D. By applying the result of Ma and

Minda [12], we infer that
− fα(−r) ≤ | f (z)| ≤ fα(−r), |z| = r. (3.32)

Hence,
− fα(−r) ≤

∣∣∣z (g(z))2 exp
{
−2zβ′c(z)

}∣∣∣ ≤ fα(−r), |z| = r, (3.33)

which gives (3.29).

For c = 1 and c = 2 we have the following corollaries.

Corollary 3.3. For 0 < r < 1, if g ∈ G1 then we have for |z| = r < 1√
− fα(−r)

r
(1 − r) ≤ |g(z)| ≤

√
fα(−r)

r
(1 + r). (3.34)

Corollary 3.4. For 0 < r < 1, if g ∈ G2 then we have for |z| = r < 1,√
− fα(−r)

r
exp

2
1 − r

≤ |g(z)| ≤

√
fα(−r)

r
exp

2
1 + r

. (3.35)

Theorem 3.5. Let g ∈ Gc. Then,

|d1| < 1, |d2| < 1, |d3| < 1, |d4| < 1 (3.36)

and
|d2

2 − d3| ≤ 1. (3.37)

Proof. Since g ∈ Gc, there is a Schwarz function ω satisfying that

2z
g′(z)
g(z)

+

(
1 + z
1 − z

)c

=
1 + ω(z)
1 − ω(z)

= 1 + c1z + c2z2 + · · · . (3.38)

If ω(z) = z, we have

2z
g′(z)
g(z)

+

(
1 + z
1 − z

)c

= 1 + 2z + 2z2 + 2z3 + · · · . (3.39)

Equating the coefficients using (3.22),

d1 = 1 − c, d2 = 1 − c, d3 =
6 − 11c + 6c2 − 2c3

9
, d4 = 1 −

32
36

c −
1
9

c2 +
5
9

c3 −
23
36

c4.

Since 0 < c ≤ 2, (3.36) holds.
Also, since 0 < c ≤ 2, ∣∣∣d2

2 − d3

∣∣∣ = ∣∣∣∣∣∣(1 − c)2 −

(
1 −

8
9

c +
5
9

c3
)∣∣∣∣∣∣

=

∣∣∣∣∣c2 −
10
9

c −
5
9

c3
∣∣∣∣∣

implies that (3.37) holds.
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4. Differential subordination involving the class Gc

In this section we are connecting the class Gc, 0 < c ≤ 2 by taking the equivalent condition of Gc,

0 < c ≤ 2 associated with L0(z) =
1 + z
1 − z

. Note that the definition Gc, 0 < c ≤ 2 can be rewritten in the

equivalent form as g ∈ Gc if

2z
g′(z)
g(z)

+

(
1 + z
1 − z

)c

≺ L0(z), z ∈ D. (4.1)

To prove the differential subordination results, we need the following lemma which is stated below.

Lemma 4.1. [13] Let τ be univalent in D, ψ and ϕ be analytic in a domain D containing τ(D)
with ϕ(ω) , 0 when ω ∈ τ(D). Let T (z) = zτ′ϕ(τ(z)) and κ(z) = ψ(τ(z)) + T (z) for z ∈ D and satisfy
either T is starlike univalent in D or κ is convex univalent in D. Also, assume thatℜ

{
zκ′(z)
T (z)

}
> 0, z ∈ D.

If p ∈ H with p(0) = τ(0), p(D) ⊂ D, and

ψ(p(z)) + zp′(z)ϕ(p(z)) ≺ ψ(τ(z)) + zτ′(z)ϕ(τ(z)), z ∈ D

then p ≺ τ and τ is the best dominant.

Theorem 4.1. Let g be an analytic function with g(0) = 1 and let 0 < c ≤ 2. If g satisfies

2z
g′(z)
g(z)

+

(
1 + z
1 − z

)c

≺ 1 +
2z

1 − z2 , z ∈ D (4.2)

then
p(z) := (g(z))2 exp

{
−2zβ′c(z)

}
≺ L0(z), z ∈ D. (4.3)

Proof. Let ψ(ω) = 1, ω ∈ C and ϕ(ω) :=
1
ω
,ω ∈ C \ {0}. Note that L0(D) := C \ {0}. Thus,

T (z) = zL′0(z)ϕ(L0(z)) =
zL′0(z)
L0(z)

=
2z

1 − z2 (4.4)

is analytic and also well defined. Also, we have

ℜ

{
z
T ′(z)
T (z)

}
= ℜ

{
1 + z2

1 − z2

}
> 0, z ∈ D. (4.5)

This implies that T is a starlike univalent function. From this, for a function κ(z) := ψ(L0(z)) + T (z) =
1 + T (z), z ∈ D, we get

ℜ

{
z
κ′(z)
T (z)

}
= ℜ

{
z
T ′(z)
T (z)

}
> 0, z ∈ D.

From Lemma 4.1,

1 + z
p′(z)
p(z)

≺ 1 + z
L′0(z)
L0(z)

= 1 +
2z

1 − z2 , z ∈ D,

which implies that p ≺ L0. Let us take the analytic function g with g(0) = 1 and g(z) , 0 for z ∈ D
satisfying (4.2). For a function as in (4.3), we can notice that p(0) = L0(0) = 1, p(z) , 0 for z ∈ D
and p is analytic. The proof of Theorem 4.1 is completed by observing that

1 + z
p′(z)
p(z)

= 2z
g′(z)
g(z)

+

(
1 + z
1 − z

)c

, z ∈ D.
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Theorem 4.2. Let g(z) be an analytic function with g(0) = 1 and let 0 < c ≤ 2. If

2z
g′(z)
g(z)

+

(
1 + z
1 − z

)c

≺
1 + z
1 − z

+
2z

1 − z2 , z ∈ D (4.6)

then

p(z) := z (g(z))2 exp
{
−2zβ′c(z)

} (∫ z

0
(g(ζ))2 exp

{
−2ζβ′c(ζ)

}
dζ

)−1

≺ L0(z), z ∈ D. (4.7)

Proof. Let ψ(ω) = ω,ω ∈ C and ϕ(ω) :=
1
ω
,ω ∈ C \ {0}. Note that L0(D) := C \ {0} and ψ and ϕ

are analytic in D. Thus, T defined by (4.4) is analytic and univalent and satisfies (4.5). Hence, κ(z) =
ψ(L0(z)) + T (z) = L0(z) + T (z), z ∈ D. By using (4.5) we get,

ℜ

{
z
κ′(z)
T (z)

}
= ℜ

{
z

L′0(z)
T (z)

}
+ℜ

{
z
T ′(z)
T (z)

}
= ℜ{L0(z)} +ℜ

{
z
T ′(z)
T (z)

}
> 0, z ∈ D.

Note that, p is also analytic with p(0) = L0(0) = 1 and p(z) , 0 for z ∈ D. From Lemma 4.1, we have

p(z) + z
p′(z)
p(z)

≺ L0(z) + z
L′0(z)
L0(z)

=
1 + z
1 − z

+
2z

1 − z2 , z ∈ D.

This essentially gives us that p ≺ L0. Let us take the analytic function g with g(0) = 1 and g(z) , 0
for z ∈ D satisfying (4.6). For a function defined as in (4.7), we can observe that

p(0) = lim
z→0

z (g(z))2 exp
{
−2zβ′c(z)

} (∫ z

0
(g(ζ))2 exp

{
−2ζβ′c(ζ)

}
dζ

)−1

= (g(0))2 lim
z→0

(∫ z

0
(g(ζ))2 exp

{
−2ζβ′c(ζ)

}
dζ

)−1

= 1 = L0(0).

Therefore, p(z) , 0 and analytic for all z ∈ D. The proof of the theorem is then completed by noting
that

p(z) + z
p′(z)
p(z)

= 2z
g′(z)
g(z)

+

(
1 + z
1 − z

)c

, z ∈ D.
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