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1. Introduction

Consider D = {z: |z] < 1}, an open unit disc in the complex plane C, H as the collection of all
analytic functions in D. Let (A be the subclass of H consisting of all functions of the form

f@=z+ Zanz”, zeD
n=2

and S be a subclass of (A containing all univalent functions. A function f € A is starlike if f(D) is
starlike with respect to origin and the class of all starlike functions f € A is denoted by S7°. Similarly,
a function f € A is convex if f(ID) is convex with respect to all points of f(ID) and the class of all
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convex functions f € A is denoted by CV. An analytic function p : D — C of the form
P@ =1+ pd's Ipal <2 (L.1)
n=1

satisfying R (p(z)) > O for all z € D is known as a function with positive real part. The class of such
functions, denoted by P, is known as the class of Carathéodory functions. Note that R (p(z)) > 0 can be

written as | arg (p(z)) | < g Connections between 87 and £ and CV and P are as follows: a function

z2f(2) z2f"(2)

f € 8T if and only if Q) € P, z € D and a function f € CV if and only if 1 + Q) P, zeD.
< <

Thus, the properties of S7~ and CV functions can be obtained from the properties of functions in the
class . Note that the Mobius function
1+

Lo(z) = —= :1+2z+2z2+...:1+222", zeD, (1.2)
l-z

n=1

is analytic and univalent in the open unit disc D and it maps D onto the right half-plane and is in the
class P.

Even though many authors extensively explored the concept of starlikeness of a given order for a
long time, Robertson [16] was the pioneer in introducing the concept of an analytic univalent functions
mapping an open unit disc onto a starlike domain with respect to the boundary point. He constructed
the subclass G* of H of functions g,g(0) = 1 mapping D onto a starlike domain with respect to
g(1) = lim,_- g(r) = 0 and R (eif’g(z)) > ( for some real p and all z € D. Assume also that the
constant function 1 belongs to the class G*. He conjectured that the class G* coincides with the class G,

g:{geﬂ:g(z)¢0,g(z):1+Zdnz”, zeD}, (1.3)
n=1
such that )
%(255’ @) +ﬂ) >0, zeD (14)
gy 1-z

and proved that G C G*. Later, this conjecture was confirmed by Lyzzaik [11] who proved G* C G.
Furthermore, if g € G, g # 1 then g is univalent close-to-convex in D, as proved by Robertson [16]. It
is worth mentioning that the analytic characterization (1.4) was known earlier to Styer [19].

In [3], aclass G(M), M > 1, consisting of all analytic and non-vanishing functions of the form (1.3),

such that
’ Pl ; M
% (2Zg @ , P@M)
g2 Pz M)
which is a closely related function to the class G was introduced by Jakubowski [3]. Here,

4z
P(z; M) = 5> z€D

(M+I—Z)

is the Pick function. The class G(1) was also considered in [3], where

)>0, z €D,

G(1) = (g eH :g(2) # 0,‘)%(1 + 2zg/(z)) >0, z€ ID)).
8(2)
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Todorov [20] linked the class G with a functional f(z)/(1 — z) for z € D and obtained a structural
formula and coefficient estimates. Silverman and Silvia [17] introduced an interesting class G (8) C
G",0 < B <1, consisting of all analytic function g of the form (1.3) and satisfying

! 1+
‘R(zg @, a —ﬁ)—z) >0, zeD.
8(2) -z
Clearly, Q(%) =@G. For-1 <A <1and —-A < B < 1, Jakubowski and Wtodarczyk [4] defined the
g'(2) N 1+Az

g 1-Bz
of Sivasubramanian [18]). Related works on the class G were considered earlier by [1,6-10,14]. We

remark at this point, that the function

class G(A, B), of all g of the form (1.3), satisfying ‘R (2z ) > (0, z € D (see also the work

Z2n+1

2n+1

3
Z
_ln_:z+§+...+ + ..

is univalent in D. In this article, we are interested in introducing and investigating a new class as
follows.
Definition 1.1. Let G, be the class consisting of all functions of the form (1.3) satisfying

R {2z g£Q@ , (ﬂ) } >0, zeD, (1.5)
g(2) -z

where 0 < ¢c < 2.

If ¢ = 1, the class G; = G was introduced and investigated by Robertson [16]. For this new
class of functions, we obtain representation theorem, interesting coefficient estimates and also certain
differential subordination implications involving this new class.

1+£\¢
1 1 7f{m) -1
812 = 1—zexp{_§fo {(1 )f ]dt}

is in the class G., where 0 < ¢ < 2.

Example 1.1. The function

Proof. Taking logarithm on both sides and by a simple differentiation, one can easily get

416) +1(1+Z)C_ 1+z
81 z C(l-2)

e e R
‘R{Zzgl(z)+ - =R T >0

AIMS Mathematics Volume 8, Issue 10, 23146-23163.
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Example 1.2. The function

2 (1 ‘_ 1
82(z) = exp {—%fo (%]dt}

is in the class G., where 0 < ¢ < 2.
Proof. Taking logarithm on both sides and by a simple differentiation, one can easily get

28§(Z)+1(1+z)c_ 1

e \1-z] ~ 7

‘R{Zzgz(z)+ T =1>0

Therefore,

implies that g, € G..

Similarly, we can show that

_ 1 L) -
83(2) = \/l_—zeXp{_Ej;[f]dl}

is in the class G., where 0 < ¢ < 2.

1 () -
g4(Z)— meXp{_EL [f]dl}

is in the class G., where 0 < ¢ < 2.

Example 1.3. The function

Example 1.4. The function

The above examples show that there are many functions present in the class G. proving that the
class G, is non empty.

2. Representation theorems

Theorem 2.1. Let 0 < ¢ < 2. Furthermore, let

1+¢

z [ [+ ‘_ 1
A(2) = —% fo [%]dt. 2.1

A function g is in G, if and only if there exists a starlike function s € ST such that

s(2)

8(@) = (7) exp {c Be(2)} - (2.2)

AIMS Mathematics Volume 8, Issue 10, 23146-23163.
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Proof. Suppose that s € 87 and g is given by (2.2). Then, g is analytic and g(0) = 1. Therefore,
from (1.5), we have for some function g satisfying (2.2), there exists a starlike function s such that

(8(2))* (z exp {=2¢B.(2)) = 5(2).

Hence,
2log g(z) + log z — 2¢B.(2) = log 5(2).

By a simple differentiation followed by simplification we get,

»38 (2) +(1 +z) _zs (Z),
8(2) -z s(z)
where X . )
1 ¢ 2c 2
) I RID P el e B ol el T
1-z 3 3
Therefore, )
g@ (1+z) s'(2)
R<2z +(—)}:%(z > 0.
{ gz) \1-z s(z)
Hence, g € G..

On the other hand, suppose g € G. and

5(z) = 2 8% (2) exp {-2¢B.(2)} .

2'@) _ gk  (1+z)
R Z9) w2 £9 (155])

The above expression is positive as g € G. which implies s € ST .

Then, s(0) =0, s’(0) = 1 and

For the choices of ¢ = 1 and ¢ = 2 we get the following corollaries as listed below.
Corollary 2.1. [16] A function g is in G, if and only if there exists a function s € ST such that
5(z)
(8(2))* = (7) (1-27".

Corollary 2.2. A function g is in G, if and only if there exists a function s € ST such that g(z) =

) ol i)
— ] exp|—|
Z 1-z2

Theorem 2.2. (Herglotz representation theorem) Let 0 < ¢ < 2 and let g be an analytic function in D
such that g(0) = 1. Then, g € G. if and only if

T

- it 1™ (E)C_l
g(z) =exp |- | log(l —ze )dﬂ(f)—i N e dt

-

) (2.3)

where u(t) is a probability measure on [—n, rt].
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Proof. Let(0 < c <2.1f g € G., we can write

7@ (1+z\ f’l+ze""
2 R I )
Zg&>+(1—J [—gen

/s

By a simple integration and simplification we get,

T

21 [ () -1 it
ogg(z)——fO — dt—2flog<1—ze )d,u(t).

/4

Upon simplification of the above equation, one can obtain (2.3). The converse part can be proved by
similar lines as in the necessary part and hence the details are omitted.

For ¢ = 1 and ¢ = 2 we get the following corollaries.

Corollary 2.3. [16] Let g be an analytic function in D such that g(0) = 1. Then, g € G, if and only if

—flog(l ze”)du(t)].

Corollary 2.4. Let g be an analytic function in D such that g(0) = 1. Then, g € G, if and only if

g(z) =(1-2) exp

2 .
g(z) =exp — [I——Z + flog(l - ze”)d,u(t)].

Theorem 2.3. Let 0 < ¢ < 2. A function g € G, if and only if there exists a function p € P such that

]J o

1+t
1 r@ , f ﬁ -1
)= —
8(@) \/z [ [ f d¢ -
Proof. Let g € G.. Then, by the definition of G,, for some function p € P,

SCIRIIES i
8(2) l1-z2 z

Upon integration and simplification, we get

by@@f—fﬂaﬂ f[ ]m

which proves the necessary part of the theorem. Conversely, assume p € £ and p(0) = 1 and let g be as
in (2.4). Then, g is analytic in D and by applying simple calculations we can easily prove that g € G..

For ¢ = 1 and ¢ = 2, we get the following corollaries.

AIMS Mathematics Volume 8, Issue 10, 23146-23163.
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Corollary 2.5. Let g € G, if and only if there exists a function p € P such that

-z p(é)
g(z) = > eXP[Ef ; {]

0

Corollary 2.6. Let g € G, if and only if there exists a function p € P such that

p(é) 2z
g(@) = E exp [QIT fl—_z]

0

Theorem 2.4. Let 0 < ¢ < 2. A function g € G. if and only if there exists a function p € H such
+2

and for z € D,
—Z

ool L1E

Proof. The proof follows from Theorem 2.3.

1
that p < I

3. Coefficient estimates for the class G,

Theorem 3.1. Let 0 < c <2 and z € D. If g € G, we have the following sharp inequalities.

lc+d| <1, (3.1)
|c® +2d, - df| < 1, (3.2)
and
2¢* + ¢ +9d5 — 9d,d, + 33| < 3. (3.3)
Further, for « € R, let
H(a,c) = 4dy — 8acd, — 2d7i(1 + 2 ) + 2¢*(1 - 2a). (3.4)
Then,
2(1 =2alc +di?), ifa < i,
Ha, o < |21 - 20w diP) o< 3 1 (3.5)
2(1-201 - @)l +diP), ifa = L.
Proof. Let .
g (1+ z)°
= —=|, zeD.
p(@) = Q) (1 ]
On expanding the right hand side of the above function p, we get
2
p@) =1+2(c+d)z+2(c*+2d, - d}) & + 3 (2% + ¢ +9dy = 9dydy + 3d3) 2+ . (3.6)

AIMS Mathematics Volume 8, Issue 10, 23146-23163.
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By making use of the known inequality |p;| < 2 for all p € P, we can get the sharp inequalities given
in (3.1)—(3.3). From (1.1) and (3.6) and from the known fact that

2 - 2 ifa<i,
pr—apll<{> TPl o<y
2-(-a)piP, ifazl,

we can obtain (3.5)
For ¢ = 1 and ¢ = 2, we have the following corollaries as stated below.

Corollary 3.1. [2] Let z € D. If g € G, we have the following inequalities.

di| <1, |1 +3ds - 3d\d> + dj| < 1.

Further,
2(1-20|l +diP), ifa < %

[H(a, DI < { (1 -2(1 — )|l +d| ) ifa

NI’—‘

All of these inequalities are sharp.

Corollary 3.2. Let z € D. If g € G, the following inequalities hold.

3didy +d3| < 1.

d
1+—<— 4 +2d, -
‘ 2 4+ 24;

Also,
2(1-202 +diP), ifa <}

2
|H (a, )|§{ (1—2(1—a)|2+d1|) lfch%.

All of these inequalities are sharp.

Theorem 3.2. Let 0 < ¢ < 2 and let the function g(z) be of the form (1.3) belong to the class G..
Then, forn =2,3,---, the following estimates

1

cic=1D)(c=2)---(c—-
2n!

]c(c—l)---(c—n+2)
2(n—1)!

nd, —c(n—2)d,_ +--+ [1 + (=1t

+[1-(=1)"]

n-1 1cc=Dcc=2)---(c—k+2)
< 1+;'(k+ Ddi — c(k = Ddj—y + -+ + [1 +3(-1) 1] & =D} d;
o clc=1)---(c—
+ {1+ (=1 o

hold.

AIMS Mathematics Volume 8, Issue 10, 23146-23163.
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Proof. Let the function g of the form (1.3) belong to the class G.. Then, there exists a function p € P
such that,

’ 1+7z\°
p@ =259 (—Z) zeD. 3.7)
giz) \l-z
Since p € P, there exists a function w of the form
-1
w(2) = p(2)

’ GD7
p)+1 ¢

where w is analytic in D, w (0) = 0, |w (z)| < 1 for z € D. Furthermore,

1+ w(z)
= i 3.8
P@) =1 o) (3.8)
From (3.7) and (3.8), we have
(1-2%@+22(1 -2 ¢'(@) + (1 +2)° 8(@) w(z) = (1 - 2)° (22¢'(2) — g(2)) + (1 + 2) 8(2).
Let .
w(z) = Z wp".
n=1
Considering the expansion of the function of g as power series, we get
(2 + ZZOZI (dn _ Cdn_l + C(C—l)d R (_l)n—l L(L_I(L_(;)7n+2)d +( l)n c(c—-1)- (L n+1))
+2 32 (ndy = cn = Dd,y + 95 1>( = Dy + e+ (~1y e ) g
1 Z;ozl (dn +ed, | + C(Cz_!l)dn— I 1()n (f)'n+2)d 4 =D (c n+1)) ) (Zn L WnZ )
=25, (nd, = c(n = e,y + %5 ”( —Ddyn + -+ (= 1)" 1 et Llend) 2
+ Zn 1(d +ed,  + c(c l)d . c(c— 1()n (lc)‘n+2)d + c(c—=1)- n(‘c n+1))
_ anl ( - Cdn—l + c(cz!l)dn_2 +( 1)n 1 c(c— I(L_(f)zHZ)dl +( 1)11 c(c=1)- (L n+1))
For z € D, this can be again simplified to bring into the form,
> 1cc—Dc=2)---(c—n+2)
[1+ ;((n+1)dn—c(n—1)d,,_1+-~+[1+3(—1) | =D d,
-1 (c—- 1 >
+ [1+(-1)] ezl 3 (,C il ))z”) [Z wnz”D
n! —
RN cc—1-(c—n+2)
_nzz;(ndn—c(n—Q)dn_l+...+[l+(—1) ] =D d,
cc=1)(c=2)---(c=n+1)
1—(=1)" " (39
#1111 - 2. 69
For n=2,3,---, let
—1D)c=2)--(c — 2
Pa(©) = (n+ Dy = e = Doy + -+ [1+3(=17"""] de-Dle-2)(emn+2),
2(n—1)!
cc—=1)(c—n+1)
+[1+(=1)"] o (3.10)

AIMS Mathematics Volume 8, Issue 10, 23146-23163.
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and
a1 cc=1)---(c—n+2)
5a(0) = ndy = c(n = ey + -+ [1+ (=1)""] IO d,
cc=1)(c=2)---(c—=n+1)
1-(=1)" . 3.11
+[1= (=17 o @.11)
From (3.9)—(3.11), we have
D @+ D (prOwe + - paa(@w) ' = Y s,(0)F, zED. (3.12)
n=1 n=2 n=1
Equating the coeflicient of z, we have
2w = dl + 2c.
Since |w;| £ 1, we obtain
d
El +c| <1

and forn=2,3,---,
Wy + p1(CQ)wy_y + -+ + proiwy = 5,(0).

From the Eqgs (3.9)—(3.12), we have

n—1 00
(1 +;pk(c)) [kZ J s + Y B,

=1 k=1 k=n+1

where E; are the appropriate coefficients. Since |w(z)| < 1 forz € D,

n 00 n—-1
Z sk(c)zk + Z Ekz <|1+ pk(c)z
k=1 k=n+1 k=1
By simplifying this, we have
n n—1
D UIsoF < 1+ Ipico).
k=1 k=1
Since |sg(c)? > 0fork =1,2,--- ,n— 1, we obtain

n—1
Isw(@F < 1+ D Ipu(o)P,n =23,

This essentially completes the proof of Theorem 3.2.

Let us consider the class B defined by B = {w € H : |w(z)| < 1,z € D} and B be the subclass of B
consisting of functions w such that w(0) = 0. The elements of B, are also known as Schwarz functions.

AIMS Mathematics Volume 8, Issue 10, 23146-23163.
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Lemma 3.1. /5] If w € By is of the form w(z) = Z wyZ", 7 €D, then forv e C,

n=1

|wz = vei| < max {1, v]}.

Lemma 3.2. If w € By is of the form w(z) = Z wyZ", z € D, then for any real numbers q, and q,, the
n=1
following sharp estimates holds:

|lws + g1 w1 w2 + g2 W}| < Higy, g2, (3.13)

where
1 if(q1,92) € Dy U D,

g2l if (g1, 92) € U]_; Dy
1
2 lq11+1 2 .
H(gi.qo) = {5 (il + 1)(3<|q1|1+1+1q2>) (a1, q2) € Ds U Dy

2_4 -4 \2 .
%z( o )(35;2_1)) if(q1,92) € D1o U D1y / {2, 1}

=4

1
2l - D (52 )" i @1,92) € Dio
and the sets Dy, k = 1,2,---are defined in [15].

Now we obtain a few upper bounds for early coefficients and for the Fekete-Szego functional in the
class G..

Theorem 3.3. Let g € G.,0 < c < 2. Then,

c+dil <1, (3.14)
ldil < 1+¢, (3.15)
Ic? +2d, - d?| < 1, (3.16)
ldb) < 1 +c, (3.17)
4¢3 +2c+3
3ds - 3dyds + &) < % (3.18)
and 3+2 8c? +10c3
+2c+ 18c" + 1
dof < TTET2C T (3.19)
18
Furthermore, for 6 € R
1
\dy — 6d3| < 5 max{1,2]1 = 6} + cl26 - 1] + c? -4 (3.20)
Proof. From the class G, there exists w € B, of the form w(z) = io] w,7", z € D, such that
n=1
g (1+ z)c 1 +w(z)
2z + = . 3.21
g(2) (1—z 1 - w(z) (.20

AIMS Mathematics Volume 8, Issue 10, 23146-23163.
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Since ,
’ 1 c

5 g(z)+( +z)
gz \l-z

2
= 1+2(c+d1)z)z+2(c2+2d2—dlz)z2+5(2c3+c+9d3—9d1d2+3df)+---

and .

+

1 —ZZ; =1 +2w1z+(2w% +2a)2)z2 + (Zw? + 4wiwy +w3)z3 4o

By comparing the corresponding coeflicients from (3.21)—(3.23), we have the following:
2(c+ dl) = 2w,
2(c +2dy — d}) = 2 (w] + w))

and
2
3 (2¢* + ¢ + 9ds — 9d1dy + 3d3) = 20} + dwiw; + w3,

Since |w;| < 1, from (3.24),
|C + d1| <1

and hence
ldi| <1 +c.

From (3.25) and by Lemma 3.1, we have
|c® +2d, = d}| = |wr + wi] < 1

and
2d, = wy + 2w% - 2cwy,

which in turn gives
2|dy| < max{1,2} + 2¢|w]

and hence
ld] <1 +c.
From (3.26) and by Lemma 3.2, we get
3ds - 3did> + | < % + %& - %c.
Hence, we obtain
3d; = 3did> + di| < m#
Substituting the formulas for d; and d,, we obtain
|3ds| = B (w3 + Twiw, + 6w?) - %c(wg + wa) + 3w, - 3aw; + %c3 + %c

(3.22)

(3.23)

(3.24)

(3.25)

(3.26)

AIMS Mathematics Volume 8, Issue 10, 23146-23163.
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1 3 1 1
3 |w3 + Twiw, + 6wf| + §c|w2 + 2w%| +3¢? || + 3¢ |wq| + §c3 + gc

IA

1 3 1 1
SH(1.6)+ Semax (1, =2} + 3¢ + 3¢ + 3¢+ zc.

IA

Therefore,
3 +38¢ + 18¢%2 + 23

18

|d5] <
Furthermore, we get
1
[ds = odi] < = o +2(1 = ) wi| + ¢ (26 = Dlw| + ¢4l

The proof of the theorem is completed by virtue of Lemma 3.1.

It can be remarked here that if v is a real number, Lemma 3.1 can be improved in the following way
and can be found in [2] .

Lemma 3.3. If w € By is of the form w(z) = Z wyZ", z €D, then

n=1

-y, v< -1,
|ws —vef] <41, -1 <v <, (3.27)
v, v>1.

Forv < =1 orv > 1, equality holds if and only if w (z) = z or one of its rotations. For -1 < v < 1,
equality holds if and only if w(z) = z°, z € D or one of its rotations. For v = —1 equality holds if

and only if w(z) = (Ziﬁ?),z € D or one of its rotations, while for v = 1 equality holds if and only
ifw(z) = ZIZS;Z))’ 0 <A< 1,z € Dor one of its rotations.

We can improve the results obtained in (3.20), in view of Lemma 3.3 as follows: For ¢ € R, we get,

(1+¢)—2(1+¢)%, 6§ <0,
_ 2 _
2 1 2c+22(c 2C)5,OS6S%,
o= 6di| <31 oey S v 205 1 3 (3.28)
, = <0< -,
2 2 2
(1+¢6-2(1+0¢), 6> 3.
Theorem 3.4. Let O <r < 1. Ifg € G. thenfor|z| =r < 1,
f71) lg(2)] e 2P < Ja(=1) (3.29)
r r
Proof. Let us define
f@) =z (8()* exp {-22B.(2)} . (3.30)

Note that the function g is non-vanishing in D. Therefore, f is analytic in D and a simple computation

shows that @ @ . .
"(z g'(z +z
=2 —, D.
e +( ) ‘€

- (3.31)

AIMS Mathematics Volume 8, Issue 10, 23146-23163.
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From (3.31), we can see that g € G. if and only if f < 1 7 € D. By applying the result of Ma and

1-z°

Minda [12], we infer that
—fo(=1) S |f@ < fo(=1), 2| = 1.

Hence,
~fol=1) < [z (8(2))* exp{=22B.))| < fol=7). lel =,
which gives (3.29).
For ¢ = 1 and ¢ = 2 we have the following corollaries.

Corollary 3.3. For0 <r < 1, if g € G| then we have for |zl =r < 1

V0 - <lgan < (2204,

Corollary 3.4. For0 <r < 1, if g € G, then we have for |z| = r < 1,

[~f(= 2 [ 2
f: r)eXpl_rSIg(Z)IS f(rr)eXp1+r'

Theorem 3.5. Let g € G.. Then,

|d1| < 1’ |d2| < la |d3| < 15 |d4| <1

and
d5 — d| < 1.

Proof. Since g € G, there is a Schwarz function w satisfying that

g N (1 +z)c 1+ ()

2z =
8(2) l-z 1 - w(2)

=l+ciz+c+--.

If w(z) = z, we have

2Zg(z)+(ﬂ) =1 +27+272 422 +---.
g \l-z
Equating the coeflicients using (3.22),

6—1lc+6c¢*-2¢° 32 1 5 23
d:l—’dzl—,d: ’dzl____z _3__4.
T Teer e s 9 +T 73679 To¢ Ta6C

Since 0 < ¢ < 2, (3.36) holds.
Also, since 0 < ¢ £ 2,

8 5
|5 — ds| = |(1 — ) - (1 -3¢+ §c3)

implies that (3.37) holds.

(3.32)

(3.33)

(3.34)

(3.35)

(3.36)

(3.37)

(3.38)

(3.39)
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4. Differential subordination involving the class G.

In this section we are connecting the class G., 0 < ¢ < 2 by taking the equivalent condition of G,

1+
0 < ¢ < 2 associated with Ly(z) = 1—Z Note that the definition G.,0 < ¢ < 2 can be rewritten in the
-z
equivalent form as g € G. if
) g'(2)
8(2)
To prove the differential subordination results, we need the following lemma which is stated below.

+ (#) < Lo(2). z€D. @.1)
—Z

Lemma 4.1. [13] Let T be univalent in D, ¥ and ¢ be analytic in a domain D containing (D)
with ¢(w) # 0 when w € (D). Let T(z) = z7'¢(1(2)) and «(2) = Y(1(2)) + T(2) for z € D and satisfy
either T is starlike univalent in D or k is convex univalent in D. Also, assume that ‘R {Z;((ZZ))} >0,z€D.
If p € H with p(0) = 7(0), p(D) C D, and

Y(p(2) + 20" (DP(p(2) < Y(7(2) + 27 (2)P(7(2)), z € D

then p < 7 and 7 is the best dominant.

Theorem 4.1. Let g be an analytic function with g(0) = 1 and let 0 < ¢ < 2. If g satisfies

g@ [(1+z)
2Zg(z) +(1—_Z) <1+1_Z2,zeID) 4.2)
then
p(2) = (2(2))* exp {—22B.(2)} < Lo(z), z € D. (4.3)

Proof. LetY(w) = 1,w € C and ¢(w) := i,w € C\ {0}. Note that Ly(D) := C\ {0}. Thus,

zLy(2) 27
T(2) = zLg Ly(z)) = = 4.4
(2) = zLy(2)¢(Lo(2)) Lo 1-2 4.4)
is analytic and also well defined. Also, we have
T (2) 1 + 72
=R 0 D. 4.5
sR{ZT(Z)} {1—22}> h @)

This implies that T is a starlike univalent function. From this, for a function «(z) := Y(Ly(2)) + T(2) =
1+7(z),z€D, we get
K'(2) T'(2)
R =R >0, ze€D.
{ZT(@} {Z @ } :

! Li(z 2
zp(Z) zo()=1+—z,z€D,

p(@) Lo(2) 1-22
which implies that p < L,. Let us take the analytic function g with g(0) = 1 and g(z) # O forz € D
satisfying (4.2). For a function as in (4.3), we can notice that p(0) = Ly(0) = 1,p(z) # Oforz € D

and p is analytic. The proof of Theorem 4.1 is completed by observing that

Y@ g@ (1+2)
p(z)_zzg(z)+(1—z)’ b

From Lemma 4.1,

1+ <1+

1+z
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Theorem 4.2. Let g(z) be an analytic function with g(0) = 1 and let 0 < ¢ < 2. If

/ l+2\¢ 1 2
g(Z)+( +Z) < F2, T eD (4.6)
gy \1-z -z

2
¢ 1-z 1-z

then
z -1
P :=z(g(z))26Xp{—2Zﬁ2(Z)}( fo (g({))zexp{—zmg(o}d{) < Ly(2), z€D. (4.7)

1
Proof. Let Y(w) = w,w € C and ¢(w) := —,w € C\ {0}. Note that Ly(D) := C\ {0} and ¢ and ¢
)
are analytic in D. Thus, T defined by (4.4) is analytic and univalent and satisfies (4.5). Hence, k(z) =
U(Lo(2)) + T(z) = Lo(z) + T(2), z € D. By using (4.5) we get,

K’(Z) _ LE)(Z) T/(Z) _ T/(Z)
%{ZT(Z)} - 9%{Z T(2) } " %{Z T(z) } = R{L(2)} + %{z o } >0,z €D.

Note that, p is also analytic with p(0) = Ly(0) = 1 and p(z) # O for z € D. From Lemma 4.1, we have

P (2) Ly 1+z 2z

2)+2 < Ly(z) +z = +
s S B e
This essentially gives us that p < L,. Let us take the analytic function g with g(0) = 1 and g(z) # 0

for z € D satistying (4.6). For a function defined as in (4.7), we can observe that

2’Z€D'

p(0)

. 1
lim (¢ exp{—zzﬁ;<z>}( f @) exp{—Zéﬁé(f)}dé)
1

(5(0? ggg( fo (8(0))° exp{—zfﬁ;(g)}dg) = 1= Ly(0).

Therefore, p(z) # 0 and analytic for all z € D. The proof of the theorem is then completed by noting
that

p(2) + Zp’(z) = ZZgI(Z) + (1 al Z) , zeD.

P el \1-z
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