Research article

Parametric inference of Akash distribution for Type-Ⅱ censoring with analyzing of relief times of patients

  • Received: 07 May 2021 Accepted: 19 July 2021 Published: 26 July 2021
  • MSC : 62F10

  • In this paper, the problem of estimating the parameter of Akash distribution applied when the lifetime of the product follow Type-Ⅱ censoring. The maximum likelihood estimators (MLE) are studied for estimating the unknown parameter and reliability characteristics. Approximate confidence interval for the parameter is derived under the s-normal approach to the asymptotic distribution of MLE. The Bayesian inference procedures have been developed under the usual error loss function through Lindley's technique and Metropolis-Hastings algorithm. The highest posterior density interval is developed by using Metropolis-Hastings algorithm. Finally, the performances of the different methods have been compared through a Monte Carlo simulation study. The application to set of real data is also analyzed using proposed methods.

    Citation: Tahani A. Abushal. Parametric inference of Akash distribution for Type-Ⅱ censoring with analyzing of relief times of patients[J]. AIMS Mathematics, 2021, 6(10): 10789-10801. doi: 10.3934/math.2021627

    Related Papers:

  • In this paper, the problem of estimating the parameter of Akash distribution applied when the lifetime of the product follow Type-Ⅱ censoring. The maximum likelihood estimators (MLE) are studied for estimating the unknown parameter and reliability characteristics. Approximate confidence interval for the parameter is derived under the s-normal approach to the asymptotic distribution of MLE. The Bayesian inference procedures have been developed under the usual error loss function through Lindley's technique and Metropolis-Hastings algorithm. The highest posterior density interval is developed by using Metropolis-Hastings algorithm. Finally, the performances of the different methods have been compared through a Monte Carlo simulation study. The application to set of real data is also analyzed using proposed methods.



    加载中


    [1] R. Shanker, Akash distribution and its applications, Int. J. Probab. Statist., 4 (2015), 65–75.
    [2] R. Shanker, H. Fesshay, S. Selvaraj, On modeling of lifetime data using one parameter Akash, Lindley and exponential distributions, Biom. Biostat. Int. J., 3 (2016), 56–62.
    [3] R. Shanker, K. K. Shukla, On two-parameter Akash distributions, Biom. Biostat. Int. J., 6 (2017), 416–425.
    [4] R. Shanker, K. K. Shukla, R. Shanker, A. Pratap, A generalized Akash distributions, Biom. Biostat. Int. J., 7 (2018), 18–26.
    [5] T. A. Abushal, Bayesian estimation of the reliability characteristic of Shanker distribution, J. Egyptian Math. Soc., 27 (2019), 1–15. doi: 10.1186/s42787-019-0001-5
    [6] A. C. Cohen, Maximum Likelihood Estimation in the Weibull Distribution Based on Complete and Censored Samples, Technometrics, 7 (1965), 579–588. doi: 10.1080/00401706.1965.10490300
    [7] J. F. Lawless, Statistical models and methods for lifetime data, John Wiley & Sons, 2003.
    [8] B. Pradhan, D. Kundu, On progressively censored generalized exponential distribution, Test, 18 (2009), 497–515. doi: 10.1007/s11749-008-0110-1
    [9] D. Kundu, B. Pradhan, Bayesian inference and life testing plans for generalized exponential distribution, Sci. China Ser. A, 52 (2009), 1373–1388. doi: 10.1007/s11425-009-0085-8
    [10] D. V. Lindley, Approximate Bayesian Method, Trabajos de estadística y de investigación operativa, 31 (1980), 223–245.
    [11] W. K. Hastings, Monte Carlo sampling methods using Markov chains and their applications, Biometrika, 57 (1970), 97–109. doi: 10.1093/biomet/57.1.97
    [12] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, E. Teller, Equations of state calculations by fast computing machines, J. Chem. Phys., 21 (1953), 1087–1092. doi: 10.1063/1.1699114
    [13] M. H. Chen, Q. M. Shao, Monte Carlo estimation of Bayesian credible and HPD intervals, J. Comput. Graph. Stat., 8 (1999), 69–92.
    [14] A. J. Gross, V. Clark, Survival distributions: Reliability applications in the biometrical sciences, John Wiley & Sons, 1975.
    [15] E. K. AL-Hussaini, A. H. Abdel-Hamid, Bayesian estimation of the parameters, reliability and hazard rate functions of mixtures under accelerated life tests, Commun. Stat. Simul. C., 33 (2004), 963–982. doi: 10.1081/SAC-200040703
    [16] L. Tierney, J. B. Kadane, Accurate approximations for posterior moments and marginal densities, J. Am. Stat. Assoc., 81 (1986), 82–86. doi: 10.1080/01621459.1986.10478240
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2258) PDF downloads(182) Cited by(9)

Article outline

Figures and Tables

Tables(11)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog