Research article Special Issues

The Faber polynomial expansion method and the Taylor-Maclaurin coefficient estimates of Bi-Close-to-Convex functions connected with the q-convolution

  • Received: 01 August 2020 Accepted: 03 September 2020 Published: 10 September 2020
  • MSC : Primary: 05A30, 30C45; Secondary: 11B65, 47B38

  • In this paper, we introduce a new class of analytic and bi-close-to-convex functions connected with q-convolution, which are defined in the open unit disk. We find estimates for the general Taylor-Maclaurin coefficients of the functions in this subclass by using the Faber polynomial expansion method. Several corollaries and consequences of our main results are also briefly indicated.

    Citation: H. M. Srivastava, Sheza M. El-Deeb. The Faber polynomial expansion method and the Taylor-Maclaurin coefficient estimates of Bi-Close-to-Convex functions connected with the q-convolution[J]. AIMS Mathematics, 2020, 5(6): 7087-7106. doi: 10.3934/math.2020454

    Related Papers:

  • In this paper, we introduce a new class of analytic and bi-close-to-convex functions connected with q-convolution, which are defined in the open unit disk. We find estimates for the general Taylor-Maclaurin coefficients of the functions in this subclass by using the Faber polynomial expansion method. Several corollaries and consequences of our main results are also briefly indicated.


    加载中


    [1] H. Aldweby, M. Darus, On a subclass of bi-univalent functions associated with the q-derivative operator, J. Math. Comput. Sci., 19 (2019), 58-64. doi: 10.22436/jmcs.019.01.08
    [2] M. Arif, M. Ul Haq, J. L. Liu, A subfamily of univalent functions associated with q-analogue of Noor integral operator, J. Funct. Spaces, 2018 (2018), 1-5.
    [3] L. de Branges, A proof of the Bieberbach conjecture, Acta Math., 154 (1985), 137-152. doi: 10.1007/BF02392821
    [4] D. A. Brannan, J. G. Clunie, Aspects of contemporary complex analysis, Proceedings of the NATO Advanced Study Institute (University of Durham, Durham; (1979), 1-20), New York and London: Academic Press, (1980), 79-95.
    [5] D. A. Brannan, J. Clunie, W. E. Kirwan, Coefficient estimates for a class of star-like functions, Canad. J. Math., 22 (1970), 476-485. doi: 10.4153/CJM-1970-055-8
    [6] D. A. Brannan, T. S. Taha, On some classes of bi-unvalent functions, In: Mathematical Analysis and Its Applications (Kuwait; (1985), 18-21) (S. M. Mazhar, A. Hamoui, N. S. Faour, Eds.), KFAS Proceedings Series, 3, Oxford: Pergamon Press (Elsevier Science Limited), (1988), 53-60; see also Studia Univ. Babeş-Bolyai Math., 31 (1986), 70-77.
    [7] T. Bulboacă, Differential subordinations and superordinations: Recent results, House of Scientific Book Publishers, Cluj-Napoca, 2005.
    [8] S. Bulut, Faber polynomial coefficient estimates for a subclass of analytic bi-univalent functions, Filomat, 30 (2016), 1567-1575. doi: 10.2298/FIL1606567B
    [9] M. Çaglar, E. Deniz, Initial coefficients for a subclass of bi-univalent functions defined by Sălăgean differential operator, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., 66 (2017), 85-91.
    [10] P. L. Duren, Univalent functions, Grundlehren der Mathematischen Wissenschaften, Bd. 259, New York, Berlin, Heidelberg and Tokyo: Springer-Verlag, 1983.
    [11] S. M. El-Deeb, Maclaurin coefficient estimates for new subclasses of bi-univalent functions connected with a q-analogue of Bessel function, Abstr. Appl. Anal., 2020 (2020), 1-7.
    [12] S. M. El-Deeb, T. Bulboacă, Fekete-Szegö inequalities for certain class of analytic functions connected with q-analogue of Bessel function, J. Egyptian Math. Soc., 27 (2019), 1-11. doi: 10.1186/s42787-019-0001-5
    [13] S. M. El-Deeb, T. Bulboacă, Differential sandwich-type results for symmetric functions connected with a q-analog integral operator, Mathematics, 7 (2019), 1-17.
    [14] S. M. El-Deeb, T. Bulboacă, B. M. El-Matary, Maclaurin coefficient estimates of bi-univalent functions connected with the q-derivative, Mathematics, 8 (2020), 1-14.
    [15] S. M. El-Deeb, T. Bulboacă, J. Dziok, Pascal distribution series connected with certain subclasses of univalent functions, Kyungpook Math. J., 59 (2019), 301-314.
    [16] S. M. El-Deeb, H. Orhan, Fekete-Szegö problem for certain class of analytic functions connected with q-analogue of integral operator, Ann. Univ. Oradea Fasc. Math., 28 (2021). In press.
    [17] S. Elhaddad, M. Darus, Coefficient estimates for a subclass of bi-univalent functions defined by q-derivative operator, Mathematics, 8 (2020), 1-14.
    [18] G. Faber, Über polynomische Entwickelungen, Math. Ann., 57 (1903), 389-408. doi: 10.1007/BF01444293
    [19] G. Gasper, M. Rahman, Basic hypergeometric series (with a Foreword by Richard Askey), Encyclopedia of Mathematics and Its Applications, 35, Cambridge, New York, Port Chester, Melbourne and Sydney: Cambridge University Press, 1990; 2 Eds., Encyclopedia of Mathematics and Its Applications, 96, Cambridge, London and New York: Cambridge University Press, 2004.
    [20] M. E. H. Ismail, E. Merkes, D. Styer, A generalization of starlike functions, Complex Variables Theory Appl., 14 (1990), 77-84. doi: 10.1080/17476939008814407
    [21] F. H. Jackson, On q-functions and a certain difference operator, Trans. Royal Soc. Edinburgh, 46 (1908), 253-281.
    [22] F. H. Jackson, On q-definite integrals, Quart. J. Pure Appl. Math., 41 (1910), 193-203.
    [23] P. N. Kamble, M. G. Shrigan, Coefficient estimates for a subclass of bi-univalent functions defined by Sălăgean type q-calculus operator, Kyungpook Math. J., 58 (2018), 677-688.
    [24] W. Kaplan, Close-to-convex schlicht functions, Michigan Math. J., 1 (1952), 169-185.
    [25] Q. Khan, M. Arif, M. Raza, et al. Some applications of a new integral operator in q-analog for multivalent functions, Mathematics, 7 (2019), 1-13.
    [26] M. Lewin, On a coefficient problem for bi-univalent functions, Proc. Amer. Math. Soc., 18 (1967), 63-68. doi: 10.1090/S0002-9939-1967-0206255-1
    [27] S. Mahmood, N. Raza, E. S. A. Abujarad, et al. Geometric properties of certain classes of analytic functions associated with a q-integral operator, Symmetry, 11 (2019), 1-14.
    [28] S. S. Miller, P. T. Mocanu, Differential subordination: Theory and applications, Series on Monographs and Textbooks in Pure and Applied Mathematics, New York and Basel: Marcel Dekker Incorporated, 225 (2000).
    [29] E. Netanyahu, The minimal distance of the image boundary from the origin and the second coefficient of a univalent function in |z| < 1, Arch. Rational Mech. Anal., 32 (1969), 100-112.
    [30] S. Porwal, An application of a Poisson distribution series on certain analytic functions, J. Complex Anal., 2014 (2014), 1-3.
    [31] F. M. Sakar, H. Ö. Güeny, Coefficient bounds for a new subclass of analytic bi-close-to-convex functions by making use of Faber polynomial expansion, Turkish J. Math., 41 (2017), 888-895. doi: 10.3906/mat-1605-117
    [32] L. Shi, Q. Khan, G. Srivastava, et al. A study of multivalent q-starlike functions connected with circular domain, Mathematics, 7 (2019), 1-12.
    [33] H. M. Srivastava, Certain q-polynomial expansions for functions of several variables, I and II, IMA J. Appl. Math., 30 (1983), 315-323; ibid. 33 (1984), 205-209. doi: 10.1093/imamat/30.3.315
    [34] H. M. Srivastava, Univalent functions, fractional calculus, and associated generalized hypergeometric functions, In: Univalent functions, fractional calculus, and their applications (H. M. Srivastava, S. Owa, Eds.), New York, Chichester, Brisbane and Toronto: Halsted Press (Ellis Horwood Limited, Chichester) and John Wiley and Sons, (1989), 329-354.
    [35] H. M. Srivastava, Operators of basic (or q-) calculus and fractional q-calculus and their applications in geometric function theory of complex analysis, Iran. J. Sci. Technol. Trans. A: Sci., 44 (2020), 327-344. doi: 10.1007/s40995-019-00815-0
    [36] H. M. Srivastava, Q. Z. Ahmad, N. Khan, et al. Some applications of higher-order derivatives involving certain subclasses of analytic and multivalent functions, J. Nonlinear Var. Anal., 2 (2018), 343-353.
    [37] H. M. Srivastava, Ş. Altinkaya, S. Yalçn, Hankel determinant for a subclass of bi-univalent functions defined by using a symmetric q-derivative operator, Filomat, 32 (2018), 503-516. doi: 10.2298/FIL1802503S
    [38] H. M. Srivastava, Ş. Altınkaya, S. Yalçin, Certain subclasses of bi-univalent functions associated with the Horadam polynomials, Iran. J. Sci. Technol. Trans. A: Sci., 43 (2019), 1873-1879. doi: 10.1007/s40995-018-0647-0
    [39] H. M. Srivastava, S. Arjika, A. S. Kelil, Some homogeneous q-difference operators and the associated generalized Hahn polynomials, Appl. Set-Valued Anal. Optim., 1 (2019), 187-201.
    [40] H. M. Srivastava, D. Bansal, Close-to-convexity of a certain family of q-Mittag-Leffler functions, J. Nonlinear Var. Anal., 1 (2017), 61-69.
    [41] H. M. Srivastava, S. S. Eker, R. M. Ali, Coefficient bounds for a certain class of analytic and bi-univalent functions, Filomat, 29 (2015), 1839-1845. doi: 10.2298/FIL1508839S
    [42] H. M. Srivastava, S. S. Eker, S. G. Hamidi, et al. Faber polynomial coefficient estimates for biunivalent functions defined by the Tremblay fractional derivative operator, Bull. Iran. Math. Soc., 44 (2018), 149-157. doi: 10.1007/s41980-018-0011-3
    [43] H. M. Srivastava, S. M. El-Deeb, A certain class of analytic functions of complex order connected with a q-analogue of integral operators, Miskolc Math. Notes, 21 (2020), 417-433. doi: 10.18514/MMN.2020.3102
    [44] H. M. Srivastava, S. Gaboury, F. Ghanim, Coefficient estimates for a general subclass of analytic and bi-univalent functions of the Ma-Minda type, Rev. Real Acad. Cienc. Exactas Fís. Natur. Ser. A Mat., (RACSAM), 112 (2018), 1157-1168.
    [45] H. M. Srivastava, P. W. Karlsson, Multiple Gaussian Hypergeometric Series, New York, Chichester, Brisbane and Toronto: Halsted Press (Ellis Horwood Limited, Chichester) and John Wiley and Sons, 1985.
    [46] H. M. Srivastava, B. Khan, N. Khan, et al. Coefficient inequalities for q-starlike functions associated with the Janowski functions, Hokkaido Math. J., 48 (2019), 407-425. doi: 10.14492/hokmj/1562810517
    [47] H. M. Srivastava, S. Khan, Q. Z. Ahmad, et al. The Faber polynomial expansion method and its application to the general coefficient problem for some subclasses of bi-univalent functions associated with a certain q-integral operator, Stud. Univ. Babeş-Bolyai Math., 63 (2018), 419- 436.
    [48] H. M. Srivastava, A. K. Mishra, P. Gochhayat, Certain subclasses of analytic and bi-univalent functions, Appl. Math. Lett., 23 (2010), 1188-1192. doi: 10.1016/j.aml.2010.05.009
    [49] H. M. Srivastava, A. Motamednezhad, E. A. Adegan, Faber polynomial coefficient estimates for biunivalent functions defined by using differential subordination and a certain fractional derivative operator, Mathematics, 8 (2020), 1-12.
    [50] H. M. Srivastava, F. M. Sakar, H. Ö. Güney, Some general coefficient estimates for a new class of analytic and bi-univalent functions defined by a linear combination, Filomat, 34 (2018), 1313- 1322.
    [51] H. M. Srivastava, N. Raza, E. S. A. AbuJarad, et al. Fekete-Szegö inequality for classes of (p, q)- starlike and (p, q)-convex functions, Rev. Real Acad. Cienc. Exactas Fís. Natur. Ser. A Mat., (RACSAM), 113 (2019), 3563-3584.
    [52] H. M. Srivastava, M. Tahir, B. Khan, et al. Some general classes of q-starlike functions associated with the Janowski functions, Symmetry, 11 (2019), 1-14.
    [53] H. M. Srivastava, M. Tahir, B. Khan, et al. Some general families of q-starlike functions associated with the Janowski functions, Filomat, 33 (2019), 2613-2626. doi: 10.2298/FIL1909613S
    [54] H. M. Srivastava, A. K. Wanas, Initial Maclaurin coefficient bounds for new subclasses of analytic and m-fold symmetric bi-univalent functions defined by a linear combination, Kyungpook Math. J., 59 (2019), 493-503.
    [55] H. Tang, Q. Khan, M. Arif, et al. Some applications of a new integral operator in q-analog for multivalent functions, Mathematics, 7 (2019), 1-13.
    [56] H. E. Ö. Uçar, Coefficient inequality for q-starlike functions, Appl. Math. Comput., 276 (2016), 122-126.
    [57] B. Wongsaijai, N. Sukantamala, Certain properties of some families of generalized starlike functions with respect to q-calculus, Abstr. Appl. Anal., 2016 (2016), 1-8.
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3656) PDF downloads(150) Cited by(13)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog