Research article

Monotonicity properties and bounds for the complete p-elliptic integrals

  • Received: 15 June 2020 Accepted: 03 September 2020 Published: 10 September 2020
  • MSC : 33E05, 33F05

  • In the article, we establish some monotonicity properties for certain functions involving the complete p-elliptic integrals of the first and second kinds, and find several sharp bounds for the p-elliptic integrals. Our results are the generalizations and improvements of some previously known results for the classical complete elliptic integrals.

    Citation: Xi-Fan Huang, Miao-Kun Wang, Hao Shao, Yi-Fan Zhao, Yu-Ming Chu. Monotonicity properties and bounds for the complete p-elliptic integrals[J]. AIMS Mathematics, 2020, 5(6): 7071-7086. doi: 10.3934/math.2020453

    Related Papers:

  • In the article, we establish some monotonicity properties for certain functions involving the complete p-elliptic integrals of the first and second kinds, and find several sharp bounds for the p-elliptic integrals. Our results are the generalizations and improvements of some previously known results for the classical complete elliptic integrals.


    加载中


    [1] M. K. Wang, H. H. Chu, Y. M. Li, et al. Answers to three conjectures on convexity of three functions involving complete elliptic integrals of the first kind, Appl. Anal. Discr. Math., 14 (2020), 255-271.
    [2] M. K. Wang, Y. M. Chu, Y. M. Li, et al. Asymptotic expansion and bounds for complete elliptic integrals, Math. Inequal. Appl., 23 (2020), 821-841.
    [3] M. K. Wang, Z. Y. He, Y. M. Chu, Sharp power mean inequalities for the generalized elliptic integral of the first kind, Comput. Meth. Funct. Th., 20 (2020), 111-124. doi: 10.1007/s40315-020-00298-w
    [4] T. H. Zhao, M. K. Wang, Y. M. Chu, A sharp double inequality involving generalized complete elliptic integral of the first kind, AIMS Mathematics, 5 (2020), 4512-4528. doi: 10.3934/math.2020290
    [5] Z. H. Yang, W. M. Qian, W. Zhang, et al. Notes on the complete elliptic integral of the first kind, Math. Inequal. Appl., 23 (2020), 77-93.
    [6] W. M. Qian, W. Zhang, Y. M. Chu, Bounding the convex combination of arithmetic and integral means in terms of one-parameter harmonic and geometric means, Miskolc Math. Notes, 20 (2019), 1157-1166. doi: 10.18514/MMN.2019.2334
    [7] T. H. Zhao, L. Shi, Y. M. Chu, Convexity and concavity of the modified Bessel functions of the first kind with respect to Hölder means, RACSAM, 114 (2020), 1-14. doi: 10.1007/s13398-019-00732-2
    [8] S. Rashid, R. Ashraf, M. A. Noor, et al. New weighted generalizations for differentiable exponentially convex mapping with application, AIMS Mathematics, 5 (2020), 3525-3546. doi: 10.3934/math.2020229
    [9] S. Z. Ullah, M. A. Khan, Y. M. Chu, A note on generalized convex functions, J. Inequal. Appl., 2019 (2019), 1-10. doi: 10.1186/s13660-019-1955-4
    [10] T. Abdeljawad, S. Rashid, H. Khan, et al. On new fractional integral inequalities for p-convexity within interval-valued functions, Adv. Differ. Equ., 2020 (2020), 1-17. doi: 10.1186/s13662-019-2438-0
    [11] M. B. Sun, Y. M. Chu, Inequalities for the generalized weighted mean values of g-convex functions with applications, RACSAM, 114 (2020), 1-12. doi: 10.1007/s13398-019-00732-2
    [12] I. Abbas Baloch, A. A. Mughal, Y. M. Chu, et al. A variant of Jensen-type inequality and related results for harmonic convex functions, AIMS Mathematics, 5 (2020), 6404-6418. doi: 10.3934/math.2020412
    [13] P. Agarwal, M. Kadakal, İ. İşcan, et al. Better approaches for n-times differentiable convex functions, Mathematics, 8 (2020), 1-11.
    [14] L. Xu, Y. M. Chu, S. Rashid, et al. On new unified bounds for a family of functions with fractional q-calculus theory, J. Funct. Space., 2020 (2020), 1-9.
    [15] S. Rashid, A. Khalid, G. Rahman, et al. On new modifications governed by quantum Hahn's integral operator pertaining to fractional calculus, J. Funct. Space., 2020 (2020), 1-12.
    [16] S. Rashid, M. A. Noor, K. I. Noor, et al. Ostrowski type inequalities in the sense of generalized $\mathcal{K}$-fractional integral operator for exponentially convex functions, AIMS Mathematics, 5 (2020), 2629-2645. doi: 10.3934/math.2020171
    [17] S. Rashid, F. Jarad, H. Kalsoom, et al. On Pólya-Szegö and Ćebyšev type inequalities via generalized k-fractional integrals, Adv. Differ. Equ., 2020 (2020), 1-18. doi: 10.1186/s13662-019-2438-0
    [18] M. A. Latif, S. Rashid, S. S. Dragomir, et al. Hermite-Hadamard type inequalities for co-ordinated convex and qausi-convex functions and their applications, J. Inequal. Appl., 2019 (2019), 1-33. doi: 10.1186/s13660-019-1955-4
    [19] S.-S. Zhou, S. Rashid, M. A. Noor, et al. New Hermite-Hadamard type inequalities for exponentially convex functions and applications, AIMS Mathematics, 5 (2020), 6874-6901. doi: 10.3934/math.2020441
    [20] M. U. Awan, S. Talib, A. Kashuri, et al. Estimates of quantum bounds pertaining to new q-integral identity with applications, Adv. Differ. Equ., 2020 (2020), 1-15. doi: 10.1186/s13662-019-2438-0
    [21] T. H. Zhao, Y. M. Chu, H. Wang, Logarithmically complete monotonicity properties relating to the gamma function, Abstr. Appl. Anal., 2011 (2011), 1-13.
    [22] J. M. Shen, Z. H. Yang, W. M. Qian, et al. Sharp rational bounds for the gamma function, Math. Inequal. Appl., 23 (2020), 843-853.
    [23] Y. Khurshid, M. Adil Khan, Y. M. Chu, Conformable integral version of Hermite-Hadamard-Fejér inequalities via η-convex functions, AIMS Mathematics, 5 (2020), 5106-5120. doi: 10.3934/math.2020328
    [24] S. S. Zhou, S. Rashid, F. Jarad, et al. New estimates considering the generalized proportional Hadamard fractional integral operators, Adv. Differ. Equ., 2020 (2020), 1-15. doi: 10.1186/s13662-019-2438-0
    [25] S. Hussain, J. Khalid, Y. M. Chu, Some generalized fractional integral Simpson's type inequalities with applications, AIMS Mathematics, 5 (2020), 5859-5883. doi: 10.3934/math.2020375
    [26] J. M. Shen, S. Rashid, M. A. Noor, et al. Certain novel estimates within fractional calculus theory on time scales, AIMS Mathematics, 5 (2020), 6073-6086. doi: 10.3934/math.2020390
    [27] X. Z. Yang, G. Farid, W. Nazeer, et al. Fractional generalized Hadamard and Fejér-Hadamard inequalities for m-convex function, AIMS Mathematics, 5 (2020), 6325-6340. doi: 10.3934/math.2020407
    [28] A. Iqbal, M. A. Khan, N. Mohammad, et al. Revisiting the Hermite-Hadamard integral inequality via a Green function, AIMS Mathematics, 5 (2020), 6087-6107. doi: 10.3934/math.2020391
    [29] I. A. Baloch, Y. M. Chu, Petrović-type inequalities for harmonic h-convex functions, J. Funct. Space., 2020 (2020), 1-7.
    [30] M. A. Khan, M. Hanif, Z. A. Khan, et al. Association of Jensen's inequality for s-convex function with Csiszár divergence, J. Inequal. Appl., 2019 (2019), 1-14. doi: 10.1186/s13660-019-1955-4
    [31] S. Rashid, İ. İşcan, D. Baleanu, et al. Generation of new fractional inequalities via n polynomials s-type convexixity with applications, Adv. Differ. Equ., 2020 (2020), 1-20. doi: 10.1186/s13662-019-2438-0
    [32] Y. Khurshid, M. A. Khan, Y. M. Chu, Conformable fractional integral inequalities for GG- and GA-convex function, AIMS Mathematics, 5 (2020), 5012-5030. doi: 10.3934/math.2020322
    [33] H. Ge-JiLe, S. Rashid, M. A. Noor, et al. Some unified bounds for exponentially tgs-convex functions governed by conformable fractional operators, AIMS Mathematics, 5 (2020), 6108- 6123.
    [34] S. Y. Guo, Y. M. Chu, G. Farid, et al. Fractional Hadamard and Fejér-Hadamard inequaities associated with exponentially (s, m)-convex functions, J. Funct. Space., 2020 (2020), 1-10.
    [35] M. U. Awan, S. Talib, M. A. Noor, et al. Some trapezium-like inequalities involving functions having strongly n-polynomial preinvexity property of higher order, J. Funct. Space., 2020 (2020), 1-9.
    [36] T. Abdeljawad, S. Rashid, Z. Hammouch, et al. Some new local fractional inequalities associated with generalized (s, m)-convex functions and applications, Adv. Differ. Equ., 2020 (2020), 1-27.
    [37] M. U. Awan, N. Akhtar, A. Kashuri, et al. 2D approximately reciprocal ρ-convex functions and associated integral inequalities, AIMS Mathematics, 5 (2020), 4662-4680. doi: 10.3934/math.2020299
    [38] Y. M. Chu, M. U. Awan, M. Z. Javad, et al. Bounds for the remainder in Simpson's inequality via n-polynomial convex functions of higher order using Katugampola fractional integrals, J. Math., 2020 (2020), 1-10.
    [39] M. Adil Khan, J. Pečarić, Y. M. Chu, Refinements of Jensen's and McShane's inequalities with applications, AIMS Mathematics, 5 (2020), 4931-4945. doi: 10.3934/math.2020315
    [40] S. Rashid, F. Jarad, Y. M. Chu, A note on reverse Minkowski inequality via generalized proportional fractional integral operator with respect to another function, Math. Probl. Eng., 2020 (2020), 1-12.
    [41] H. X. Qi, M. Yussouf, S. Mehmood, et al. Fractional integral versions of Hermite-Hadamard type inequality for generalized exponentially convexity, AIMS Mathematics, 5 (2020), 6030-6042. doi: 10.3934/math.2020386
    [42] P. Y. Yan, Q. Li, Y. M. Chu, et al. On some fractional integral inequalities for generalized strongly modified h-convex function, AIMS Mathematics, 5 (2020), 6620-6638. doi: 10.3934/math.2020426
    [43] H. Kalsoom, M. Idrees, D. Baleanu, et al. New estimates of q1q2-Ostrowski-type inequalities within a class of n-polynomial prevexity of function, J. Funct. Space., 2020 (2020), 1-13.
    [44] M. U. Awan, N. Akhtar, S. Iftikhar, et al. New Hermite-Hadamard type inequalities for npolynomial harmonically convex functions, J. Inequal. Appl., 2020 (2020), 1-12. doi: 10.1186/s13660-019-2265-6
    [45] H. Alzer, S. L. Qiu, Monotonicity theorems and inequalities for the complete elliptic integrals, J. Comput. Appl. Math., 172 (2004), 289-312.
    [46] M. K. Wang, S. L. Qiu, Y. M. Chu, et al. Generalized Hersch-Pfluger distortion function and complete elliptic integrals, J. Math. Anal. Appl., 385 (2012), 221-229.
    [47] Z. H. Yang, W. M. Qian, Y. M. Chu, Monotonicity properties and bounds involving the complete elliptic integrals of the first kind, Math. Inequal. Appl., 21 (2018), 1185-1199.
    [48] S. Takeuchi, A new form of the generalized complete elliptic integrals, Kodai Math. J., 39 (2016), 202-226.
    [49] S. Takeuchi, Legendre-type relations for generalized complete elliptic integrals, Journal of Classical Analysis, 9 (2016), 35-42.
    [50] S. Takeuchi, Complete p-elliptic integrals and a computation formula of πp for p = 4, Ramanujan J., 46 (2018), 309-321.
    [51] G. J. Hai, T. H. Zhao, Monotonicity properties and bounds involving the two-parameter generalized Grötzsch ring function, J. Inequal. Appl., 2020 (2020), 1-17. doi: 10.1186/s13660-019-2265-6
    [52] T. H. Zhao, Z. Y. He, Y. M. Chu, On some refinements for inequalities involving zero-balanced hypergeometric function, AIMS Mathematics, 5 (2020), 6479-6495. doi: 10.3934/math.2020418
    [53] B. C. Berndt, Ramanujan's Notebooks II, Springer-Verlag, Berlin, 1989.
    [54] G. D. Anderson, M. K. Vamanamurthy, M. Vuorinen, Conformal Invariants, Inequalities and Quasiconformal Maps, Wiley-Interscience, 1997.
    [55] Z. H. Yang, Y. M. Chu, M. K. Wang, Monotonicity criterion for the quotient of power series with applications, J. Math. Anal. Appl., 428 (2015), 587-604.
    [56] X. H. Zhang, Monotonicity and functional inequalities for the complete p-elliptic integrals, J. Math. Anal. Appl., 453 (2017), 942-953.
    [57] M. K. Wang, Z. Y. He, Y. M. Chu, Concavity of the complete p-elliptic integrals of the second kind according to Hölder mean, Acta. Math. Sci., 40 (2020), 1-13.
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2914) PDF downloads(79) Cited by(13)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog