Citation: Bessem Samet. First and second critical exponents for an inhomogeneous damped wave equation with mixed nonlinearities[J]. AIMS Mathematics, 2020, 5(6): 7055-7070. doi: 10.3934/math.2020452
[1] | M. R. Alaimia, N. E. Tatar, Blow up for the wave equation with a fractional damping, J. Appl. Anal., 11 (2005), 133-144. |
[2] | I. Dannawi, M. Kirane, A. Z. Fino, Finite time blow-up for damped wave equations with space-time dependent potential and nonlinear memory, Nonlinear Differ Equ Appl., 25 (2018), 25-38. doi: 10.1007/s00030-018-0517-7 |
[3] | H. Fujita, On the blowing-up of solutions to the Cauchy problem for $u_t= \Delta u+ u^{1+\alpha}$, J. Fac. Sci. Univ. Tokyo. Sect IA., 13 (1990), 109-124. |
[4] | M. Ikeda, Y. Wakasugi, A note on the lifespan of solutions to the semi-linear damped wave equation, Proc. Amer. Math. Soc., 143 (2015), 163-171. |
[5] | M. Jleli, B. Samet, New critical behaviors for semilinear wave equations and systems with linear damping terms, Math. Meth. Appl. Sci., (2020), 1-11. |
[6] | M. Kirane, M. Qafsaoui, Fujita's exponent for a semilinear wave equation with linear damping, Adv. Nonlinear Stud., 2 (2002), 41-49. |
[7] | M. Kirane, N. E. Tatar, Nonexistence of solutions to a hyperbolic equation with a time fractional damping, Zeit. Anal. Anw. (J. Anal. Appl.), 25 (2006), 131-142. |
[8] | N. A. Lai, H. Takamura, Blow-up for semi-linear damped wave equations with sub-strauss exponent in the scattering case, Nonlinear Anal., 168 (2018), 222-237. doi: 10.1016/j.na.2017.12.008 |
[9] | N. A. Lai, Y. Zhou, The sharp lifespan estimate for semi-linear damped wave equation with Fujita critical power in higher dimensions, J. Math. Pures Appl., 123 (2019), 229-243. doi: 10.1016/j.matpur.2018.04.009 |
[10] | TY. Lee, WM. Ni, Global existence, large time behavior and life span on solution of a semilinear parabolic Cauchy problem, Trans. Amer. Math. Soc., 333 (1992), 365-378. |
[11] | E. Mitidieri, S. I. Pohozaev, A priori estimates and blow-up of solutions of nonlinear partial differential equations and inequalities, Proc. Steklov. Inst. Math., 234 (2001), 1-362. |
[12] | G. Todorova, B. Yordanov, Critical exponent for a nonlinear wave equation with damping, J. Differ. Equa., 174 (2001), 464-489. doi: 10.1006/jdeq.2000.3933 |
[13] | Y. Wakasugi, Scaling variables and asymptotic profiles for the semilinear damped wave equation with variable coefficients, J. Math. Anal. Appl., 447 (2017), 452-487. doi: 10.1016/j.jmaa.2016.10.018 |
[14] | Qi. S. Zhang, A new critical phenomenon for semilinear parabolic problems, J. Math. Anal. Appl., 219 (1998), 125-139. doi: 10.1006/jmaa.1997.5825 |
[15] | Qi. S. Zhang, A blow-up result for a nonlinear wave equation with damping: The critical case, C. R. Acad. Sci. Paris., 333 (2001), 109-114. doi: 10.1016/S0764-4442(01)01999-1 |