Research article Special Issues

First and second critical exponents for an inhomogeneous damped wave equation with mixed nonlinearities

  • Received: 25 July 2020 Accepted: 31 August 2020 Published: 09 September 2020
  • MSC : 35L05, 35B44, 35B33

  • We investigate the Cauchy problem for the nonlinear damped wave equation $u_{tt}-\Delta u +u_t = |u|^p+|\nabla u|^q +w(x)$, where $N\geq 1$, $p, q>1$, $w\in L^1_{loc}(\mathbb{R}^N)$, $w\geq 0$ and $w\not\equiv 0$. Namely, we first obtain the Fujita critical exponent for the considered problem. Next, we determine its second critical exponent in the sense of Lee and Ni. In particular, we show that the nonlinear gradient term $|\nabla u|^q$ induces a phenomenon of discontinuity of the Fujita critical exponent.

    Citation: Bessem Samet. First and second critical exponents for an inhomogeneous damped wave equation with mixed nonlinearities[J]. AIMS Mathematics, 2020, 5(6): 7055-7070. doi: 10.3934/math.2020452

    Related Papers:

  • We investigate the Cauchy problem for the nonlinear damped wave equation $u_{tt}-\Delta u +u_t = |u|^p+|\nabla u|^q +w(x)$, where $N\geq 1$, $p, q>1$, $w\in L^1_{loc}(\mathbb{R}^N)$, $w\geq 0$ and $w\not\equiv 0$. Namely, we first obtain the Fujita critical exponent for the considered problem. Next, we determine its second critical exponent in the sense of Lee and Ni. In particular, we show that the nonlinear gradient term $|\nabla u|^q$ induces a phenomenon of discontinuity of the Fujita critical exponent.


    加载中


    [1] M. R. Alaimia, N. E. Tatar, Blow up for the wave equation with a fractional damping, J. Appl. Anal., 11 (2005), 133-144.
    [2] I. Dannawi, M. Kirane, A. Z. Fino, Finite time blow-up for damped wave equations with space-time dependent potential and nonlinear memory, Nonlinear Differ Equ Appl., 25 (2018), 25-38. doi: 10.1007/s00030-018-0517-7
    [3] H. Fujita, On the blowing-up of solutions to the Cauchy problem for $u_t= \Delta u+ u^{1+\alpha}$, J. Fac. Sci. Univ. Tokyo. Sect IA., 13 (1990), 109-124.
    [4] M. Ikeda, Y. Wakasugi, A note on the lifespan of solutions to the semi-linear damped wave equation, Proc. Amer. Math. Soc., 143 (2015), 163-171.
    [5] M. Jleli, B. Samet, New critical behaviors for semilinear wave equations and systems with linear damping terms, Math. Meth. Appl. Sci., (2020), 1-11.
    [6] M. Kirane, M. Qafsaoui, Fujita's exponent for a semilinear wave equation with linear damping, Adv. Nonlinear Stud., 2 (2002), 41-49.
    [7] M. Kirane, N. E. Tatar, Nonexistence of solutions to a hyperbolic equation with a time fractional damping, Zeit. Anal. Anw. (J. Anal. Appl.), 25 (2006), 131-142.
    [8] N. A. Lai, H. Takamura, Blow-up for semi-linear damped wave equations with sub-strauss exponent in the scattering case, Nonlinear Anal., 168 (2018), 222-237. doi: 10.1016/j.na.2017.12.008
    [9] N. A. Lai, Y. Zhou, The sharp lifespan estimate for semi-linear damped wave equation with Fujita critical power in higher dimensions, J. Math. Pures Appl., 123 (2019), 229-243. doi: 10.1016/j.matpur.2018.04.009
    [10] TY. Lee, WM. Ni, Global existence, large time behavior and life span on solution of a semilinear parabolic Cauchy problem, Trans. Amer. Math. Soc., 333 (1992), 365-378.
    [11] E. Mitidieri, S. I. Pohozaev, A priori estimates and blow-up of solutions of nonlinear partial differential equations and inequalities, Proc. Steklov. Inst. Math., 234 (2001), 1-362.
    [12] G. Todorova, B. Yordanov, Critical exponent for a nonlinear wave equation with damping, J. Differ. Equa., 174 (2001), 464-489. doi: 10.1006/jdeq.2000.3933
    [13] Y. Wakasugi, Scaling variables and asymptotic profiles for the semilinear damped wave equation with variable coefficients, J. Math. Anal. Appl., 447 (2017), 452-487. doi: 10.1016/j.jmaa.2016.10.018
    [14] Qi. S. Zhang, A new critical phenomenon for semilinear parabolic problems, J. Math. Anal. Appl., 219 (1998), 125-139. doi: 10.1006/jmaa.1997.5825
    [15] Qi. S. Zhang, A blow-up result for a nonlinear wave equation with damping: The critical case, C. R. Acad. Sci. Paris., 333 (2001), 109-114. doi: 10.1016/S0764-4442(01)01999-1
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2827) PDF downloads(110) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog