Loading [MathJax]/jax/output/SVG/jax.js
Research article

A new approach on fractional calculus and probability density function

  • Received: 30 June 2020 Accepted: 30 August 2020 Published: 09 September 2020
  • MSC : 26A51, 26D10, 26A33

  • In statistical analysis, oftentimes a probability density function is used to describe the relationship between certain unknown parameters and measurements taken to learn about them. As soon as there is more than enough data collected to determine a unique solution for the parameters, an estimation technique needs to be applied such as "fractional calculus", for instance, which turns out to be optimal under a wide range of criteria. In this context, we aim to present some novel estimates based on the expectation and variance of a continuous random variable by employing generalized Riemann-Liouville fractional integral operators. Besides, we obtain a two-parameter extension of generalized Riemann-Liouville fractional integral inequalities, and provide several modifications in the Riemann-Liouville and classical sense. Our ideas and obtained results my stimulate further research in statistical analysis.

    Citation: Shu-Bo Chen, Saima Rashid, Muhammad Aslam Noor, Rehana Ashraf, Yu-Ming Chu. A new approach on fractional calculus and probability density function[J]. AIMS Mathematics, 2020, 5(6): 7041-7054. doi: 10.3934/math.2020451

    Related Papers:

    [1] Muhammad Tariq, Sotiris K. Ntouyas, Hijaz Ahmad, Asif Ali Shaikh, Bandar Almohsen, Evren Hincal . A comprehensive review of Grüss-type fractional integral inequality. AIMS Mathematics, 2024, 9(1): 2244-2281. doi: 10.3934/math.2024112
    [2] Saad Ihsan Butt, Artion Kashuri, Muhammad Umar, Adnan Aslam, Wei Gao . Hermite-Jensen-Mercer type inequalities via Ψ-Riemann-Liouville k-fractional integrals. AIMS Mathematics, 2020, 5(5): 5193-5220. doi: 10.3934/math.2020334
    [3] Thanin Sitthiwirattham, Muhammad Aamir Ali, Hüseyin Budak, Sotiris K. Ntouyas, Chanon Promsakon . Fractional Ostrowski type inequalities for differentiable harmonically convex functions. AIMS Mathematics, 2022, 7(3): 3939-3958. doi: 10.3934/math.2022217
    [4] Mustafa Gürbüz, Yakup Taşdan, Erhan Set . Ostrowski type inequalities via the Katugampola fractional integrals. AIMS Mathematics, 2020, 5(1): 42-53. doi: 10.3934/math.2020004
    [5] Yanping Yang, Muhammad Shoaib Saleem, Waqas Nazeer, Ahsan Fareed Shah . New Hermite-Hadamard inequalities in fuzzy-interval fractional calculus via exponentially convex fuzzy interval-valued function. AIMS Mathematics, 2021, 6(11): 12260-12278. doi: 10.3934/math.2021710
    [6] Hüseyin Budak, Fatma Ertuğral, Muhammad Aamir Ali, Candan Can Bilişik, Mehmet Zeki Sarikaya, Kamsing Nonlaopon . On generalizations of trapezoid and Bullen type inequalities based on generalized fractional integrals. AIMS Mathematics, 2023, 8(1): 1833-1847. doi: 10.3934/math.2023094
    [7] Eze R. Nwaeze, Muhammad Adil Khan, Ali Ahmadian, Mohammad Nazir Ahmad, Ahmad Kamil Mahmood . Fractional inequalities of the Hermite–Hadamard type for m-polynomial convex and harmonically convex functions. AIMS Mathematics, 2021, 6(2): 1889-1904. doi: 10.3934/math.2021115
    [8] Ghulam Farid, Hafsa Yasmeen, Hijaz Ahmad, Chahn Yong Jung . Riemann-Liouville Fractional integral operators with respect to increasing functions and strongly (α,m)-convex functions. AIMS Mathematics, 2021, 6(10): 11403-11424. doi: 10.3934/math.2021661
    [9] Miguel Vivas-Cortez, Muhammad Aamir Ali, Artion Kashuri, Hüseyin Budak . Generalizations of fractional Hermite-Hadamard-Mercer like inequalities for convex functions. AIMS Mathematics, 2021, 6(9): 9397-9421. doi: 10.3934/math.2021546
    [10] Muhammad Amer Latif, Humaira Kalsoom, Zareen A. Khan . Hermite-Hadamard-Fejér type fractional inequalities relating to a convex harmonic function and a positive symmetric increasing function. AIMS Mathematics, 2022, 7(3): 4176-4198. doi: 10.3934/math.2022232
  • In statistical analysis, oftentimes a probability density function is used to describe the relationship between certain unknown parameters and measurements taken to learn about them. As soon as there is more than enough data collected to determine a unique solution for the parameters, an estimation technique needs to be applied such as "fractional calculus", for instance, which turns out to be optimal under a wide range of criteria. In this context, we aim to present some novel estimates based on the expectation and variance of a continuous random variable by employing generalized Riemann-Liouville fractional integral operators. Besides, we obtain a two-parameter extension of generalized Riemann-Liouville fractional integral inequalities, and provide several modifications in the Riemann-Liouville and classical sense. Our ideas and obtained results my stimulate further research in statistical analysis.


    Integral inequalities exist in many branches of mathematics and physics [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20], their roles in mathematics and its associated disciplines are priceless. Despite this, it was distinctly during the 1960s that the principal work [21] was distributed and it is this exemplary work changed the field of inequalities from an assortment of secluded equations into a precise and attractive discipline [22,23,24,25,26,27,28,29,30,31,32]. In recent years, the theory of inequalities has formed into a dynamic and autonomous area of research, requiring the development of new journals that gave exclusively to inequalities and their applications. Recently, several researchers have contributed to produce different results about fractional integral inequalities and their applications utilizing Riemann, Liouville, Caputo, Wely, and Hadamard fractional integral and differential operators. Specific consideration has been given to inequalities including special functions [33,34,35,36,37,38,39], fractional calculus [40,41,42,43,44,45,46] and probability density functions and this is the place the current work lies. We concentrate our attention around variants including the fractional calculus and continuous random variables.

    A complete description of the distribution of a probability for a given random variable can be obtained by distribution function and density functions. Interestingly, they don't permit us to do comparisons between two distinct distributions. The random variables about mean that particularly portray the appropriation under reasonable conditions is helpful in making comparisons. Knowing the probability function, we can determine the expectation and variance. There are, however, applications wherein the exact forms of probability distributions are not known or are mathematically intractable so that the moments cannot be calculated–as an example, an application in insurance in connection with the insurer's payout on a given contract or group of contracts that follows a mixture or compound probability distribution. It is this problem that motivates researchers to obtain alternative estimations for the expectations and variances of a probability distribution. Applying the mathematical inequalities, some estimations for the expectation and variance of random variables were studied in [47,48].

    In 2001, Cerone and Dargomir [49] estimated the bounds of a continuous random variable whose probability density function for the expectation and variance is defined on a finite interval, some integral inequalities have been contemplated for the expectation and variance of a random variable having a probability density function. Kumar [50] derived certain variants for the moments and higher-order moments of a continuous random variable.

    The main purpose of the article is to establish some novel estimates for the expectation and variance of the continuous random variables by use of the generalized Riemann-Liouville fractional integral operator, and provide new bounds for certain consequences of the Riemann-Liouville fractional integral, Katugampola fractional integral, conformable fractional integral and Hadamard fractional integral operators by varying the domain as special cases.

    In this section, we give some basic notions for the generalized Riemann-Liouville fractional integral operators.

    Definition 2.1. (See [51]) Let p1, r0 and υ1<υ2. Then the function F(ξ) is said to be in Lp,r(υ1,υ2)-space if

    FLp,r(υ1,υ2)=(υ2υ1|F(ξ)|pξrdξ)1p<.

    If r=0, then we denote

    Lp(υ1,υ2)=Lp,0(υ1,υ2)={F:FLp(υ1,υ2)=(υ2υ1|F(ξ)|pdξ)1p<}.

    Definition 2.2. (See [52]) Let FL1[0,) and u be an increasing and positive function defined on [0,) such that u is continuous on [0,) and u(0)=0. Then the space χpu(0,)(1p<) is all the real-valued Lebesgue measureable functions F defined on [0,) such that

    Fχpu=(0|F(ξ)|pu(ξ)dξ)1p<(1p<).

    If p=, then Fχu is defined by

    Fχu=esssup0ξ<[u(ξ)F(ξ)].

    In particular, if u(ς)=ς(1p<), then the space χpu(0,) coincides with the Lp[0,)-space; if u(ς)=ςr+1r+1(1p<,r0), the the space χpu(0,) reduces to the Lp,u[0,)-space.

    Definition 2.3. (See [51]) Let FL1([η1,η2]). Then the left-sided and right-sided Riemann-Liouville fractional integrals of order δ>0 are defined by

    Jδη+1F(ς)=1Γ(δ)ςη1(ςξ)δ1F(ξ)dξς>η1

    and

    Jδη2F(ς)=1Γ(δ)η2ς(ξς)δ1F(ξ)dξς<η2,

    where Γ(δ)=0ewwδ1dw is the Gamma function.

    A generalization of the Riemann-Liouville fractional integrals with respect to another function can be found in [51].

    Definition 2.4. (See [51]) Let δ>0, (η1,η2)(η1<η2) be a finite or infinite real interval, and u(ξ) be an increasing and positive function defined on (η1,η2] such that u is continuous on [0,) and u(0)=0. Then the left-sided and right-sided generalized Riemann-Liouville fractional integrals of a function F with respect to another function u of order δ>0 are defined by

    Jδu,η+1F(ς)=1Γ(δ)ςη1u(ξ)(u(ς)u(ξ))δ1F(ξ)dξ (2.1)

    and

    Jδu,η2F(ς)=1Γ(δ)η2ςu(ξ)(u(ξ)u(ς))δ1F(ξ)dξ. (2.2)

    Remark 2.1. From Definition 2.4 we clearly see that

    (1) If u(ς)=ς, then we get Definition 2.3.

    (2) If u(ς)=logς, then Definition 2.4 reduces to the Hadamard fractional integral operator given in [51].

    (3) If u(ς)=ςββ(β>0), then Definition 2.4 becomes the Katugampola fractional integrals operators [53].

    (4) If u(ς)=(ςa)ββ(β>0), then it reduces to the conformable fractional integrals operator defined by Jarad et al. [54].

    (5) If u(ς)=ςu+vu+v, then it becomes the generalized conformable fractional integrals defined by Khan et al. [55].

    Definition 2.5. Let Y be a random variable with a positive probability density function F defined on [η1,η2] and u(ξ) be an increasing and positive function defined on (η1,η2]. Then the fractional expectation function EY,δ(ς) of order δ0 is defined by

    EY,δ(ς)=Ju,δη+1[ςF(ς)]=1Γ(δ)ςη1u(ξ)[u(ς)u(ξ)]δ1ξF(ξ)dξ(η1<ξη2). (2.3)

    Similarly, we define the fractional expectation function of YE(Y) as follows.

    Definition 2.6. Let u(ξ) be an increasing and positive function defined on (η1,η2]. Then the fractional expectation function EYE(Y),δ(ς) of order δ0 for a random variable YE(Y) with a positive probability density function F defined on [η1,η2] is defined by

    EYE(Y),δ(ς)=Ju,δη+1[ςF(ς)]=1Γ(δ)ξη1u(ξ)[u(ς)u(ξ)]δ1(ξE(Y))F(ξ)dξ,η1<ξη2, (2.4)

    where F:[η1,η2]R+ is the probability density function.

    If ξ=η2, then we present the following definitions.

    Definition 2.7. Let η10 and u(ξ) be an increasing and positive function defined on (η1,η2]. Then the fractional expectation function of order δ0 for a random variable Y with a positive probability density function F defined on [η1,η2] is defined by

    EY,δ(ς):=Ju,δη+1[ςF(ς)]=1Γ(δ)η2η1u(ξ)[u(η2)u(ξ)]δ1ξF(ξ)dξ(η1<ξη2). (2.5)

    Definition 2.8. Let η10 and u(ξ) be an increasing and positive function defined on (η1,η2]. Then the generalized fractional variance function of order δ0 for a random variable Y with a positive probability density function F defined on [η1,η2] is defined by

    σ2Y,δ(ξ):=Ju,δη+1[(ςE(Y))2F(ς)]=1Γ(δ)ςη1u(ξ)[u(ς)u(ξ)]δ1(ξE(Y))2F(ξ)dξ(η1<ξη2), (2.6)

    where E(Y)=η2η1ξF(ξ)dξ represents the classical expectation of Y.

    If ξ=η2, then we have the following definition.

    Definition 2.9. Let η10 and u(ξ) be an increasing and positive function defined on (η1,η2]. Then the generalized fractional variance function of order δ0 for a random variable Y with a positive probability density function F:[η1,η2]R+ is defined by

    σ2Y,δ(ξ):=1Γ(δ)η2η1u(ξ)[u(η2)u(ξ)]δ1(ξE(Y))2F(ξ)dξ. (2.7)

    Remark 2.2. Definitions 2.5–2.9 lead to the conclusions that

    (1) It δ=1 and u(ς)=ς, then Definition 2.5 leads to definition of the classical expectation.

    (2) If δ=1 and u(ς)=ς, then Definition 2.8 becomes the definition of the classical variance.

    (3) If u(ς)=ς, then from Definitions 2.5–2.9 we obtain Definitions 2.2–2.6 in [56].

    The key aim of this section is to establish several results for the continuous random variable having probability density functions via generalized Riemann-Liouville fractional integral operator. Throughout this paper, we assume that u(ξ) is an increasing and positive function defined defined on [0,) such that u(0)=0 and u(ξ) is continuous on [0,).

    Lemma 3.1. Let Y be a continuous random variable with probability density function F:[η1,η2]R+. Then

    σ2Y,δ=EY2,δ2E(Y)EY,δ+E(Y)2Ju,δη+1[F(η2)] (3.1)

    for all δ0.

    Proof. It follows from Definition (2.9) that

    σ2Y,δ=1Γ(δ)η2η1[u(η2)u(ξ)]δ1u(ξ)[ξ2+E(Y)22ξE(Y)]F(ξ)dξ

    and

    σ2Y,δ=1Γ(δ)η2η1[u(η2)u(ξ)]δ1u(ξ)ξ2F(ξ)dξ+E(Y)2Γ(δ)η2η1[u(η2)u(ξ)]δ1u(ξ)F(ξ)dξ2E(Y)Γ(δ)η2η1[u(η2)u(ξ)]δ1u(ξ)ξF(ξ)dξ.

    Therefore,

    σ2Y,δ=EY2,δ2E(Y)EY,δ+E(Y)2Ju,δη+1[F(η2)].

    Theorem 3.2. Let Y be a continuous random variable wtih probability density function F:[η1,η2]R+. Then the following statements are true:

    (1) For all δ0 and η1<ξη2, one has

    Ju,δη+1[F(ξ)]σ2Y,δ(EYE(Y),δ(ξ))2F2[2(u(ξ)u(η1))δΓ(δ+1)Ju,δη+1[ξ2]2(Ju,δη+1[ξ])2] (3.2)

    if FL([η1,η2]).

    (2) The inequality

    Ju,δη+1[F(ξ)]σ2Y,δ(EYE(Y),δ(ξ))212(u(ξ)u(η1))2(Ju,δη+1F(ξ))2 (3.3)

    holds for all δ0 and η1<ξη2.

    Proof. Let η1<ξη2 and x,y(η1,ξ). Then

    J(x,y)=(G(x)G(y))(H(x)H(y))=G(x)H(x)+G(y)H(y)G(x)H(y)G(y)H(x). (3.4)

    Multiplying both sides of (3.2) by [u(ξ)u(x)]δ1u(x)P(x)Γ(δ)(x(η1,ξ)) and then integrating the obtained result with respect to x from (η1,ξ) leads to

    1Γ(δ)ξη1[u(ξ)u(x)]δ1u(x)P(x)J(x,y)dx=1Γ(δ)ξη1[u(ξ)u(x)]δ1u(x)P(x)G(x)H(x)dx+1Γ(δ)ξη1[u(ξ)u(x)]δ1u(x)P(x)G(y)H(y)1Γ(δ)ξη1[u(ξ)u(x)]δ1u(x)P(x)G(x)H(y)1Γ(δ)ξη1[u(ξ)u(x)]δ1u(x)P(x)G(y)H(x)dx.

    Therefore, we obtain

    1Γ(δ)ξη1[u(ξ)u(x)]δ1u(x)P(x)J(x,y)dx=(Ju,δη+1PGH(ξ))+(Ju,δη+1P(ξ))G(y)H(y)(Ju,δη+1PG(ξ))H(y)(Ju,δη+1PH(ξ))G(y). (3.5)

    Again, multiplying both sides of (3.5) by [u(ξ)u(y)]δ1u(y)P(y)Γ(δ)(y(η1,ξ)) and then integrating the obtained result with respect to y from (η1,ξ) gives

    1(Γ(δ))2ξη1ξη1[u(ξ)u(x)]δ1[u(ξ)u(y)]δ1u(x)P(x)u(y)P(y)J(x,y)dxdy=2(Ju,δη+1P(ξ))(Ju,δη+1PGH(ξ))2(Ju,δη+1PH(ξ))(Ju,δη+1PG(ξ)). (3.6)

    Substituting P(ξ)=F(ξ) and G(ξ)=H(ξ)=u(ξ)E(Y)(ξ(η1,η2)), we have

    1(Γ(δ))2ξη1ξη1[u(ξ)u(x)]δ1[u(ξ)u(y)]δ1u(x)P(x)u(y)P(y)F(x)F(y)(u(x)u(y))2dxdy=2(Ju,δη+1F(ξ))(Ju,δη+1F(ξ)(u(ξ)E(Y))2)2(Ju,δη+1F(ξ)(u(ξ)E(Y))2). (3.7)

    Similarly, we have

    1(Γ(δ))2ξη1ξη1[u(ξ)u(x)]δ1[u(ξ)u(y)]δ1u(x)P(x)u(y)P(y)F(x)F(y)(u(x)u(y))2dxdyF21(Γ(δ))2ξη1ξη1[u(ξ)u(x)]δ1[u(ξ)u(y)]δ1u(x)P(x)u(y)P(y)(u(x)u(y))2dxdyF2[2(u(ξ)u(η1))δΓ(δ+1)Ju,δη+1[ξ2]2(Ju,δη+1[ξ])2]. (3.8)

    From (3.7) and (3.8) we get the first inequality of Theorem 3.2.

    Next, we prove the the second part of Theorem 3.2. Note that

    1(Γ(δ))2ξη1ξη1[u(ξ)u(x)]δ1[u(ξ)u(y)]δ1u(x)P(x)u(y)P(y)F(x)F(y)(u(x)u(y))2dxdysupx,y[η1,ξ]|(u(x)u(y))|2(Ju,δη+1F(ξ))2=(u(ξ)u(η1))2(Ju,δη+1F(ξ))2. (3.9)

    From (3.7) and (3.9) we derive the inequality (3.3).

    Theorem 3.2 leads to Corollary 3.3 immediately.

    Corollary 3.3. Let Y be a continuous random variable with probability density function F:[η1,η2]R+. Then one has the following two conclusion.

    (1) For all δ0 and η1<ξη2, we have the inequlaity

    (u(η2)u(η1))δ1Γ(δ)σ2Y,δE2Y,δF2[2(u(η2)u(η1))2δ+2Γ(δ+1)Γ(δ+3)((u(η2)u(η1))δ+1Γ(δ+2))2].

    (2) The inequality

    (u(η2)u(η1))δ1Γ(δ)σ2Y,δ(EYE(Y),δ(ξ))212(u(η2)u(η1))2δΓ2(δ),

    holds for all δ0 and η1<ξη2.

    Remark 3.1. We clearly see that

    (1) If we choose Ψ(ς)=ς, then Theorem 3.2 reduces to Theorem 3.1 of [56].

    (2) If we choose Ψ(ς)=ς, then Corollary 3.3 becomes Corollary 3.1 of [56].

    (3) If we choose δ=1 and Ψ(ς)=ς in part (1) of Corollary 3.3, then we get the first part of Theorem 1 in [48].

    (4) If we choose δ=1 and Ψ(ς)=ς in part (2) of Corollary 3.3, then we get the last part of Theorem 1 in [48].

    Next we provide more general form of Theorem 3.2 by proposing two fractional parameters.

    Theorem 3.4. Let Y be a continuous random variable with probability density function F:[η1,η2]R+. Then the following statements are true:

    (1) For all δ,γ0 and η1<ξη2, one has

    (Ju,δη+1F(ξ))σ2Y,β+(Ju,γη+1F(ξ))σ2Y,α(EYE(Y),δ(ξ))(EYE(Y),γ(ξ))F2[(u(ξ)u(η1))δΓ(δ+1)(Ju,δη+1ξ2)+(u(ξ)u(η1))γΓ(γ+1)(Ju,γη+1ξ2)(Ju,δη+1ξ)(Ju,γη+1ξ)], (3.10)

    where FL([δ,γ]).

    (2) The inequality

    (Ju,δη+1F(ξ))σ2Y,β+(Ju,γη+1F(ξ))σ2Y,α(EYE(Y),δ(ξ))(EYE(Y),γ(ξ))(u(ξ)u(η1))2(Ju,δη+1F(ξ))(Ju,γη+1F(ξ)) (3.11)

    holds for any η1<ξη2, δ0 and γ0.

    Proof. Taking product on both sides of (3.5) by [u(ξ)u(y)]γ1u(y)P(y)Γ(γ), we obtain

    1Γ(δ)1Γ(γ)ξη1ξη1[u(ξ)u(x)]δ1[u(ξ)u(y)]γ1u(y)P(y)u(x)P(x)J(x,y)dxdy=(Ju,γη+1P(ξ))(Ju,δη+1PGH(ξ))+(Ju,δη+1P(ξ))(Ju,γη+1PGH(ξ))(Ju,δη+1PG(ξ))(Ju,γη+1PH(ξ))(Ju,δη+1PH(ξ))(Ju,γη+1PG(ξ)). (3.12)

    Taking P(ξ)=F(ξ) and G(ξ)=H(ξ)=u(ξ)E(Y)(ξ(η1,η2)) in (3.12), we get

    1Γ(δ)1Γ(γ)ξη1ξη1[u(ξ)u(x)]δ1[u(ξ)u(y)]γ1u(y)u(x)(u(x)u(y))2F(x)F(y)dxdy=(Ju,γη+1F(ξ))(Ju,δη+1F(ξ)[u(ξ)E(Y)]2)+(Ju,δη+1F(ξ))(Ju,γη+1F(ξ)[u(ξ)E(Y)]2)2(Ju,δη+1F(ξ)[u(ξ)E(Y)])(Ju,γη+1F(ξ)[u(ξ)E(Y)]). (3.13)

    Moreover, we have

    1Γ(δ)1Γ(γ)ξη1ξη1[u(ξ)u(x)]δ1[u(ξ)u(y)]γ1u(y)u(x)(u(x)u(y))2F(x)F(y)dxdyF21Γ(δ)1Γ(γ)ξη1ξη1[u(ξ)u(x)]δ1[u(ξ)u(y)]γ1u(y)u(x)(u(x)u(y))2dxdyF2[(u(ξ)u(η1))δΓ(δ+1)(Ju,δη+1ξ2)+(u(ξ)u(η1))γΓ(γ+1)(Ju,γη+1ξ2)2(Ju,δη+1ξ)(Ju,γη+1ξ)]. (3.14)

    Therefore, (3.10) follows from (3.12) and (3.14).

    For inequality (3.11), using (3.12) and the fact that supx,y[η1,ξ]|u(x)u(y)|2=(u(ξ)u(η1))2, we have

    1Γ(δ)1Γ(γ)ξη1ξη1[u(ξ)u(x)]δ1[u(ξ)u(y)]γ1u(y)u(x)(u(x)u(y))2F(x)F(y)dxdy(u(ξ)u(η1))2(Ju,δη+1F(ξ))(Ju,γη+1F(ξ)), (3.15)

    which gives the desired inequality (3.11).

    Remark 3.2. We clearly see that

    (1) If we choose δ=γ, then Theorem 3.4 reduces to Theorem 3.2.

    (2) If we choose u(ς)=ς, then Theorem 3.4 reduces to Theorem 3.2 of [56].

    (3) If we choose u(ς)=ς and δ=γ=1, then Theorem 3.4 becomes the first inequality given in [48].

    (4) If we choose u(ς)=ς and δ=γ=1, then Theorem 3.4 reduces to the first inequality of Theorem 1 given in [48].

    (5) If we choose u(ς)=ς and δ=γ=1, then Theorem 3.4 becomes the last part of Theorem 1 in [48].

    Theorem 3.5. Let Y be a continuous random variable with probability density function F:[η1,η2]R+. Then

    (Ju,γη+1F(ξ))σ2Y,δ(ξ)(EYE(Y),δ(ξ))214(u(η2)u(η1))2(Ju,γη+1ξ)2. (3.16)

    Proof. It follows from Theorem 1 of [57] that

    |(Ju,γη+1P(ξ))(Ju,γη+1PG2(ξ))(Ju,γη+1PG(ξ))2|14(Ju,γη+1P(ξ))2(Υγ)2. (3.17)

    Substituting P(ξ)=F(ξ) and G(ξ)=u(ξ)E(Y)(ξ(η1,η2)), then Υ=u(η2)E(Y), γ=u(η1)E(Y) and (3.18) can be rewritten as

    0(Ju,γη+1F(ξ))(Ju,γη+1F(ξ)(u(ξ)E(Y))2)(Ju,γη+1F(ξ)(u(ξ)E(Y)))214(Ju,γη+1F(ξ))2(u(η2)u(η1))2. (3.18)

    Therefore, we get

    (Ju,γη+1F(ξ))σ2Y,δ(ξ)(EYE(Y),δ(ξ))214(u(η2)u(η1))2(Ju,γη+1ξ)2,

    which is the required result.

    Let ξ=η2. Then Theorem 3.5 leads to Corollary 3.6.

    Corollary 3.6. Let Y be a continuous random variable with probability density function F:[η1,η2]R+. Then

    (u(η2)u(η1))δ1Γ(δ)σ2Y,δ(ξ)(EYE(Y),δ(ξ))214(u(η2)u(η1))2αΓ2(δ).

    Remark 3.3. We clearly see that

    (1) If we choose u(ς)=ς, then Theorem 3.5 reduces to Theorem 3.3 of [56].

    (2) If we choose u(ς)=ς, then Corollary 3.6 reduces to Corollary 3.2 of [56].

    (3) If we choose u(ς)=ς and δ=1, then Corollary 3.6 becomes Theorem 2 of [48].

    In the aritcle, we have derived numerous new inequalities in the frame of generalized Riemann-Liouville fractional integral operators via a continuous random variable, our obtained results are the generalizations and refinements of the known results given in [47] and [56]. In the special case of δ=1, it is worth mentioning that our results can recapture many previously existing operators. Adopting our ideas and approach, researchers can also generate several variants by use of the Hadamard and conformable fractional integral operators and obtain many new inequalities for the probability density functions using different parameters and random variables.

    The authors would like to thank the anonymous referees for their valuable comments and suggestions, which led to considerable improvement of the article.

    This work was supported by the National Natural Science Foundation of China (Grant Nos. 11401192, 11971142, 61673169, 11701176, 11871202).

    The authors declare that they have no competing interests.



    [1] T. H. Zhao, M. K. Wang, Y. M. Chu, A sharp double inequality involving generalized complete elliptic integral of the first kind, AIMS Math., 5 (2020), 4512-4528. doi: 10.3934/math.2020290
    [2] I. A. Baloch, Y. M. Chu, Petrović-type inequalities for harmonic h-convex functions, J. Funct. Space., 2020 (2020), 1-7.
    [3] M. Adil Khan, J. Pečarić, Y. M. Chu, Refinements of Jensen's and McShane's inequalities with applications, AIMS Math., 5 (2020), 4931-4945. doi: 10.3934/math.2020315
    [4] S. Rashid, R. Ashraf, M. A. Noor, et al. New weighted generalizations for differentiable exponentially convex mapping with application, AIMS Math., 5 (2020), 3525-3546. doi: 10.3934/math.2020229
    [5] M. A. Khan, M. Hanif, Z. A. Khan, et al. Association of Jensen's inequality for s-convex function with Csiszár divergence, J. Inequal. Appl., 2019 (2019), 1-14. doi: 10.1186/s13660-019-1955-4
    [6] S. Rashid, İ. İşcan, D. Baleanu, et al. Generation of new fractional inequalities via n polynomials s-type convexixity with applications, Adv. Differ. Equ., 2020 (2020), 1-20. doi: 10.1186/s13662-019-2438-0
    [7] Y. Khurshid, M. A. Khan, Y. M. Chu, Conformable fractional integral inequalities for GG- and GA-convex function, AIMS Math., 5 (2020), 5012-5030. doi: 10.3934/math.2020322
    [8] T. Abdeljawad, S. Rashid, H. Khan, et al. On new fractional integral inequalities for p-convexity within interval-valued functions, Adv. Differ. Equ., 2020 (2020), 1-17. doi: 10.1186/s13662-019-2438-0
    [9] H. Ge-JiLe, S. Rashid, M. A. Noor, et al. Some unified bounds for exponentially tgs-convex functions governed by conformable fractional operators, AIMS Math., 5 (2020), 6108-6123. doi: 10.3934/math.2020392
    [10] M. B. Sun, Y. M. Chu, Inequalities for the generalized weighted mean values of g-convex functions with applications, RACSAM, 114 (2020), 1-12. doi: 10.1007/s13398-019-00732-2
    [11] S. Y. Guo, Y. M. Chu, G. Farid, et al. Fractional Hadamard and Fejér-Hadamard inequaities associated with exponentially (s, m)-convex functions, J. Funct. Space., 2020 (2020), 1-10.
    [12] M. U. Awan, S. Talib, M. A. Noor, et al. Some trapezium-like inequalities involving functions having strongly n-polynomial preinvexity property of higher order, J. Funct. Space., 2020 (2020), 1-9.
    [13] T. Abdeljawad, S. Rashid, Z. Hammouch, et al. Some new local fractional inequalities associated with generalized (s, m)-convex functions and applications, Adv. Differ. Equ., 2020 (2020), 1-27.
    [14] Y. Khurshid, M. Adil Khan, Y. M. Chu, Conformable integral version of Hermite-Hadamard-Fejér inequalities via η-convex functions, AIMS Math., 5 (2020), 5106-5120. doi: 10.3934/math.2020328
    [15] P. Agarwal, M. Kadakal, İ. İşcan, et al. Better approaches for n-times differentiable convex functions, Mathematics, 8 (2020), 1-11.
    [16] M. U. Awan, N. Akhtar, A. Kashuri, et al. 2D approximately reciprocal ρ-convex functions and associated integral inequalities, AIMS Math., 5 (2020), 4662-4680. doi: 10.3934/math.2020299
    [17] P. Y. Yan, Q. Li, Y. M. Chu, et al. On some fractional integral inequalities for generalized strongly modified h-convex function, AIMS Math., 5 (2020), 6620-6638. doi: 10.3934/math.2020426
    [18] S. S. Zhou, S. Rashid, F. Jarad, et al. New estimates considering the generalized proportional Hadamard fractional integral operators, Adv. Differ. Equ., 2020 (2020), 1-15. doi: 10.1186/s13662-019-2438-0
    [19] J. M. Shen, S. Rashid, M. A. Noor, et al. Certain novel estimates within fractional calculus theory on time scales, AIMS Math., 5 (2020), 6073-6086. doi: 10.3934/math.2020390
    [20] S. Rashid, F. Jarad, H. Kalsoom, et al. On Pólya-Szegö and Ćebyšev type inequalities via generalized k-fractional integrals, Adv. Differ. Equ., 2020 (2020), 1-18. doi: 10.1186/s13662-019-2438-0
    [21] E. F. Beckenbach, R. Bellman, Inequalities, Springer-Verlag, Berlin-Göttingen-Heidelberg (2020).
    [22] G. J. Hai, T. H. Zhao, Monotonicity properties and bounds involving the two-parameter generalized Grötzsch ring function, J. Inequal. Appl., 2020 (2020), 1-17. doi: 10.1186/s13660-019-2265-6
    [23] T. H. Zhao, L. Shi, Y. M. Chu, Convexity and concavity of the modified Bessel functions of the first kind with respect to Hölder means, RACSAM, 114 (2020), 1-14. doi: 10.1007/s13398-019-00732-2
    [24] M. K. Wang, Z. Y. He, Y. M. Chu, Sharp power mean inequalities for the generalized elliptic integral of the first kind, Comput. Meth. Funct. Th., 20 (2020), 111-124. doi: 10.1007/s40315-020-00298-w
    [25] T. H. Zhao, Y. M. Chu, H. Wang, Logarithmically complete monotonicity properties relating to the gamma function, Abstr. Appl. Anal., 2011 (2011), 1-13.
    [26] J. M. Shen, Z. H. Yang, W. M. Qian, et al. Sharp rational bounds for the gamma function, Math. Inequal. Appl., 23 (2020), 843-853.
    [27] M. K. Wang, H. H. Chu, Y. M. Li, et al. Answers to three conjectures on convexity of three functions involving complete elliptic integrals of the first kind, Appl. Anal. Discrete Math., 14 (2020), 255- 271.
    [28] M. K. Wang, Y. M. Chu, Y. M. Li, et al. Asymptotic expansion and bounds for complete elliptic integrals, Math. Inequal. Appl., 23 (2020), 821-841.
    [29] S. Z. Ullah, M. A. Khan, Y. M. Chu, A note on generalized convex functions, J. Inequal. Appl., 2019 (2019), 1-10. doi: 10.1186/s13660-019-1955-4
    [30] W. M. Qian, W. Zhang, Y. M. Chu, Bounding the convex combination of arithmetic and integral means in terms of one-parameter harmonic and geometric means, Miskolc Math. Notes, 20 (2019), 1157-1166. doi: 10.18514/MMN.2019.2334
    [31] I. A. Baloch, A. A. Mughal, Y. M. Chu, et al. A variant of Jensen-type inequality and related results for harmonic convex functions, AIMS Mathematics, 5 (2020), 6404-6418. doi: 10.3934/math.2020412
    [32] T. H. Zhao, Z. Y. He, Y. M. Chu, On some refinements for inequalities involving zero-balanced hypergeometric function, AIMS Math., 5 (2020), 6479-6495. doi: 10.3934/math.2020418
    [33] Y. M. Chu, M. U. Awan, M. Z. Javad, et al. Bounds for the remainder in Simpson's inequality via n-polynomial convex functions of higher order using Katugampola fractional integrals, J. Math., 2020 (2020), 1-10.
    [34] H. Kalsoom, M. Idrees, D. Baleanu, et al. New estimates of q1q2-Ostrowski-type inequalities within a class of n-polynomial prevexity of function, J. Funct. Space., 2020 (2020), 1-13.
    [35] A. Iqbal, M. A. Khan, N. Mohammad, et al. Revisiting the Hermite-Hadamard integral inequality via a Green function, AIMS Math., 5 (2020), 6087-6107. doi: 10.3934/math.2020391
    [36] M. U. Awan, N. Akhtar, S. Iftikhar, et al. New Hermite-Hadamard type inequalities for npolynomial harmonically convex functions, J. Inequal. Appl., 2020 (2020), 1-12. doi: 10.1186/s13660-019-2265-6
    [37] M. A. Latif, S. Rashid, S. S. Dragomir, et al. Hermite-Hadamard type inequalities for co-ordinated convex and qausi-convex functions and their applications, J. Inequal. Appl., 2019 (2019), 1-33. doi: 10.1186/s13660-019-1955-4
    [38] H. X. Qi, M. Yussouf, S. Mehmood, et al. Fractional integral versions of Hermite-Hadamard type inequality for generalized exponentially convexity, AIMS Math., 5 (2020), 6030-6042. doi: 10.3934/math.2020386
    [39] S. S. Zhou, S. Rashid, M. A. Noor, et al. New Hermite-Hadamard type inequalities for exponentially convex functions and applications, AIMS Math., 5 (2020), 6874-6901. doi: 10.3934/math.2020441
    [40] S. Hussain, J. Khalid, Y. M. Chu, Some generalized fractional integral Simpson's type inequalities with applications, AIMS Math., 5 (2020), 5859-5883. doi: 10.3934/math.2020375
    [41] L. Xu, Y. M. Chu, S. Rashid, et al. On new unified bounds for a family of functions with fractional q-calculus theory, J. Funct. Space., 2020 (2020), 1-9.
    [42] S. Rashid, A. Khalid, G. Rahman, et al. On new modifications governed by quantum Hahn's integral operator pertaining to fractional calculus, J. Funct. Space., 2020 (2020), 1-12.
    [43] S. Rashid, F. Jarad, Y. M. Chu, A note on reverse Minkowski inequality via generalized proportional fractional integral operator with respect to another function, Math. Probl. Eng., 2020 (2020), 1-12.
    [44] S. Rashid, M. A. Noor, K. I. Noor, et al. Ostrowski type inequalities in the sense of generalized K-fractional integral operator for exponentially convex functions, AIMS Math., 5 (2020), 2629- 2645.
    [45] M. U. Awan, S. Talib, A. Kashuri, et al. Estimates of quantum bounds pertaining to new q-integral identity with applications, Adv. Differ. Equ., 2020 (2020), 1-15. doi: 10.1186/s13662-019-2438-0
    [46] X. Z. Yang, G. Farid, W. Nazeer, et al. Fractional generalized Hadamard and Fejér-Hadamard inequalities for m-convex function, AIMS Math., 5 (2020), 6325-6340. doi: 10.3934/math.2020407
    [47] N. S. Barnett, S. S. Dragomir, Some inequalities for random variables whose probability density functions are bounded using a pre-Grüss inequality, Kyungpook Math. J., 40 (2020), 299-311.
    [48] N. S. Barnett, P. Cerone, S. S. Dargomir, et al. Some inequalities for the expectation and variance of a random variable whose PDF is n-time differentiable, JIPAM. J. Inequal. Pure Appl. Math., 1 (2020), 1-13.
    [49] P. Cerone, S. S. Dargomir, On some inequalities for the expectation and variance, Korean J. Comput. Appl. Math., 8 (2001), 357-380. doi: 10.1007/BF02941972
    [50] P. Kumar, Inequalities involving moments of a continuous random variable defined over a finite interval, Comput. Math. Appl., 48 (2004), 257-273. doi: 10.1016/j.camwa.2003.02.014
    [51] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier Science B.V., Amsterdam (2006).
    [52] E. Kacar, Z. Kacar, H. Yildirim, Integral inequalities for Riemann-Liouville fractional integrals of a function with respect to another function, Iran. J. Math. Sci. Inform., 13 (2018), 1-13. doi: 10.22457/jmi.v13a1
    [53] U. N. Katugampola, New fractional integral unifying six existing fractional integrals, Preprint, arXiv:1612.08596 [math.CA], Available from: https://arxiv.org/pdf/1612.08596.pdf.
    [54] F. Jarad, E. Uǧurlu, T. Abdeljawad, et al. On a new class of fractional operators, Adv. Differ. Equ., 2017 (2017), 1-16. doi: 10.1186/s13662-016-1057-2
    [55] T. U. Khan, M. Adil Khan, Generalized conformable fractional operators, J. Comput. Appl. Math., 346 (2019), 378-389. doi: 10.1016/j.cam.2018.07.018
    [56] Z. Dahmani, Fractional integral inequalities for continous random variables, Malaya J. Mat. , 2 (2014), 172-179.
    [57] Z. Dahmani, L. Tabharit, On weighted Gruss type inequalities via fractional integrals, J. Adv. Res. Pure Math., 2 (2010), 31-38.
  • This article has been cited by:

    1. Maysaa Al Qurashi, Saima Rashid, Sobia Sultana, Hijaz Ahmad, Khaled A. Gepreel, New formulation for discrete dynamical type inequalities via h-discrete fractional operator pertaining to nonsingular kernel, 2021, 18, 1551-0018, 1794, 10.3934/mbe.2021093
    2. Shu-Bo Chen, Saima Rashid, Muhammad Aslam Noor, Zakia Hammouch, Yu-Ming Chu, New fractional approaches for n-polynomial P-convexity with applications in special function theory, 2020, 2020, 1687-1847, 10.1186/s13662-020-03000-5
    3. Shuang-Shuang Zhou, Saima Rashid, Saima Parveen, Ahmet Ocak Akdemir, Zakia Hammouch, New computations for extended weighted functionals within the Hilfer generalized proportional fractional integral operators, 2021, 6, 2473-6988, 4507, 10.3934/math.2021267
    4. Saima Rashid, Rehana Ashraf, Kottakkaran Sooppy Nisar, Thabet Abdeljawad, Imtiaz Ahmad, Estimation of Integral Inequalities Using the Generalized Fractional Derivative Operator in the Hilfer Sense, 2020, 2020, 2314-4785, 1, 10.1155/2020/1626091
    5. Shyam S. Santra, Omar Bazighifan, Hijaz Ahmad, Yu-Ming Chu, Fateh Mebarek-Oudina, Second-Order Differential Equation: Oscillation Theorems and Applications, 2020, 2020, 1563-5147, 1, 10.1155/2020/8820066
    6. Saad Ihsan Butt, Muhammad Umar, Saima Rashid, Ahmet Ocak Akdemir, Yu-Ming Chu, New Hermite–Jensen–Mercer-type inequalities via k-fractional integrals, 2020, 2020, 1687-1847, 10.1186/s13662-020-03093-y
    7. Guangli Fan, Hassan Abdulwahab Anjal, Raed Qahiti, Nidal H. Abu-Hamdeh, Abdullah M. Abusorrah, Jin Xu, Hailong Zhang, Zhixiong Li, Comparison of different lobe-injectors on fuel mixing characteristics of single jet at the supersonic combustion chamber, 2021, 119, 12709638, 107193, 10.1016/j.ast.2021.107193
    8. Kamal Mamehrashi, Ritz approximate method for solving delay fractional optimal control problems, 2023, 417, 03770427, 114606, 10.1016/j.cam.2022.114606
    9. Peijiang Liu, Taj Munir, Ting Cui, Anwarud Din, Peng Wu, Mathematical assessment of the dynamics of the tobacco smoking model: An application of fractional theory, 2022, 7, 2473-6988, 7143, 10.3934/math.2022398
    10. Si Yuanlei, Bassem F. Felemban, Ali Bahadar, Yahya Ali Rothan, Mahmoud M. Selim, Investigation of nanofluid flow within a duct with complicated swirl flow device using numerical computing technology, 2022, 33, 0129-1831, 10.1142/S0129183122500954
    11. Saima Rashid, Fahd Jarad, Fatimah S. Bayones, On new computations of the fractional epidemic childhood disease model pertaining to the generalized fractional derivative with nonsingular kernel, 2022, 7, 2473-6988, 4552, 10.3934/math.2022254
    12. Xue-De Luan, Yi-Peng Xu, Hamdi Ayed, Mahmoud M. Selim, Heat transfer treatment of nanomaterial with considering turbulator effects, 2022, 131, 07351933, 105787, 10.1016/j.icheatmasstransfer.2021.105787
    13. Amir Ali, Abid Ullah Khan, Obaid Algahtani, Sayed Saifullah, Semi-analytical and numerical computation of fractal-fractional sine-Gordon equation with non-singular kernels, 2022, 7, 2473-6988, 14975, 10.3934/math.2022820
    14. Jinyuan Wang, Yi-Peng Xu, Raed Qahiti, M. Jafaryar, Mashhour A. Alazwari, Nidal H. Abu-Hamdeh, Alibek Issakhov, Mahmoud M. Selim, Simulation of hybrid nanofluid flow within a microchannel heat sink considering porous media analyzing CPU stability, 2022, 208, 09204105, 109734, 10.1016/j.petrol.2021.109734
    15. Ahmed E. Abouelregal, Meshari Alesemi, Vibrational analysis of viscous thin beams stressed by laser mechanical load using a heat transfer model with a fractional Atangana-Baleanu operator, 2022, 34, 2214157X, 102028, 10.1016/j.csite.2022.102028
    16. Huseyin Budak, Hasan Kara, Muhammad Aamir Ali, Sundas Khan, Yuming Chu, Fractional Hermite-Hadamard-type inequalities for interval-valued co-ordinated convex functions, 2021, 19, 2391-5455, 1081, 10.1515/math-2021-0067
    17. Anwarud Din, Qura Tul Ain, Stochastic Optimal Control Analysis of a Mathematical Model: Theory and Application to Non-Singular Kernels, 2022, 6, 2504-3110, 279, 10.3390/fractalfract6050279
    18. Ting Cui, Anwarud Din, Peijiang Liu, Amir Khan, Impact of Levy noise on a stochastic Norovirus epidemic model with information intervention, 2022, 1025-5842, 1, 10.1080/10255842.2022.2106784
    19. Xiao-Yong Shen, Hong-Qin Xu, M. Barzegar Gerdroodbary, S. Valiallah Mousavi, Amir Musa Abazari, S. Misagh Imani, Numerical simulation of blood flow effects on rupture of aneurysm in middle cerebral artery, 2022, 33, 0129-1831, 10.1142/S0129183122500309
    20. MAYSAA AL-QURASHI, SAIMA RASHID, YELIZ KARACA, ZAKIA HAMMOUCH, DUMITRU BALEANU, YU-MING CHU, ACHIEVING MORE PRECISE BOUNDS BASED ON DOUBLE AND TRIPLE INTEGRAL AS PROPOSED BY GENERALIZED PROPORTIONAL FRACTIONAL OPERATORS IN THE HILFER SENSE, 2021, 29, 0218-348X, 2140027, 10.1142/S0218348X21400272
    21. Saima Rashid, Sobia Sultana, Zakia Hammouch, Fahd Jarad, Y.S. Hamed, Novel aspects of discrete dynamical type inequalities within fractional operators having generalized ℏ-discrete Mittag-Leffler kernels and application, 2021, 151, 09600779, 111204, 10.1016/j.chaos.2021.111204
    22. SAIMA RASHID, SOBIA SULTANA, YELIZ KARACA, AASMA KHALID, YU-MING CHU, SOME FURTHER EXTENSIONS CONSIDERING DISCRETE PROPORTIONAL FRACTIONAL OPERATORS, 2022, 30, 0218-348X, 10.1142/S0218348X22400266
    23. Tiehong Zhao, Miaokun Wang, Yuming Chu, On the Bounds of the Perimeter of an Ellipse, 2022, 42, 0252-9602, 491, 10.1007/s10473-022-0204-y
    24. Soubhagya Kumar Sahoo, Pshtiwan Othman Mohammed, Bibhakar Kodamasingh, Muhammad Tariq, Y. S. Hamed, New Fractional Integral Inequalities for Convex Functions Pertaining to Caputo–Fabrizio Operator, 2022, 6, 2504-3110, 171, 10.3390/fractalfract6030171
    25. YONG-MIN LI, SAIMA RASHID, ZAKIA HAMMOUCH, DUMITRU BALEANU, YU-MING CHU, NEW NEWTON’S TYPE ESTIMATES PERTAINING TO LOCAL FRACTIONAL INTEGRAL VIA GENERALIZED p-CONVEXITY WITH APPLICATIONS, 2021, 29, 0218-348X, 2140018, 10.1142/S0218348X21400181
    26. Yahya Ali Rothan, Investigation of hybrid nanomaterial application in melting process of paraffin enhanced with nanoparticles, 2021, 96, 0031-8949, 125253, 10.1088/1402-4896/ac3877
    27. Weerawat Sudsutad, Nantapat Jarasthitikulchai, Chatthai Thaiprayoon, Jutarat Kongson, Jehad Alzabut, Novel Generalized Proportional Fractional Integral Inequalities on Probabilistic Random Variables and Their Applications, 2022, 10, 2227-7390, 573, 10.3390/math10040573
    28. Abdelkader Moumen, Hamid Boulares, Badreddine Meftah, Ramsha Shafqat, Tariq Alraqad, Ekram E. Ali, Zennir Khaled, Multiplicatively Simpson Type Inequalities via Fractional Integral, 2023, 15, 2073-8994, 460, 10.3390/sym15020460
    29. Juan Zhang, Hassan Abdulwahab Anjal, Ahmed Msmali, Fuzhang Wang, Taher A. Nofal, Mahmoud M. Selim, Heat transfer of nanomaterial with involve of MHD through an enclosure, 2022, 30, 2214157X, 101747, 10.1016/j.csite.2021.101747
    30. Saima Rashid, Saima Parveen, Hijaz Ahmad, Yu-Ming Chu, New quantum integral inequalities for some new classes of generalizedψ-convex functions and their scope in physical systems, 2021, 19, 2391-5471, 35, 10.1515/phys-2021-0001
    31. Muhammad Samraiz, Ahsan Mehmood, Sajid Iqbal, Saima Naheed, Gauhar Rahman, Yu-Ming Chu, Generalized fractional operator with applications in mathematical physics, 2022, 165, 09600779, 112830, 10.1016/j.chaos.2022.112830
    32. Xin Liu, Yi-Peng Xu, Hamdi Ayed, Yahya Ali Rothan, Mahmoud M. Selim, Modeling for solidification of paraffin equipped with nanoparticles utilizing fins, 2022, 45, 2352152X, 103763, 10.1016/j.est.2021.103763
    33. Saima Rashid, Fahd Jarad, Taghreed M. Jawa, A study of behaviour for fractional order diabetes model via the nonsingular kernel, 2022, 7, 2473-6988, 5072, 10.3934/math.2022282
    34. Sayyedeh Narges Hajiseyedazizi, Mohammad Esmael Samei, Jehad Alzabut, Yu-ming Chu, On multi-step methods for singular fractional q-integro-differential equations, 2021, 19, 2391-5455, 1378, 10.1515/math-2021-0093
    35. Hamdi Ayed, Modeling of nanomaterial transportation within an enclosure with imposing external magnetic source, 2022, 2190-5509, 10.1007/s13204-021-02136-4
    36. BO WANG, SAMANEH SADAT SAJJADI, HADI JAHANSHAHI, YELIZ KARACA, DINGKUN HOU, LI PI, WEI-FENG XIA, AYMAN A. ALY, PREDICTIVE CONTROL OF THE VARIABLE-ORDER FRACTIONAL CHAOTIC ECOLOGICAL SYSTEM, 2022, 30, 0218-348X, 10.1142/S0218348X22401788
    37. Muhammad Samraiz, Ahsan Mehmood, Saima Naheed, Gauhar Rahman, Artion Kashuri, Kamsing Nonlaopon, On Novel Fractional Operators Involving the Multivariate Mittag–Leffler Function, 2022, 10, 2227-7390, 3991, 10.3390/math10213991
    38. Hui-Zuo Xu, Wei-Mao Qian, Yu-Ming Chu, Sharp bounds for the lemniscatic mean by the one-parameter geometric and quadratic means, 2022, 116, 1578-7303, 10.1007/s13398-021-01162-9
    39. Mohammed N. Ajour, Muhyaddin J. H. Rawa, Ahmad H. Milyani, Meicheng Li, Mahmoud M. Selim, RETRACTED ARTICLE: Solar system treatment with incorporating nanomaterial within the absorber tube employing turbulator, 2022, 2190-5509, 10.1007/s13204-021-02308-2
    40. Shuang-Shuang Zhou, Saima Rashid, Asia Rauf, Fahd Jarad, Y. S. Hamed, Khadijah M. Abualnaja, Efficient computations for weighted generalized proportional fractional operators with respect to a monotone function, 2021, 6, 2473-6988, 8001, 10.3934/math.2021465
    41. Yahya Ali Rothan, Physical features of ferrofluid under the impact of magnetic force inside a complex domain, 2022, 36, 0217-9849, 10.1142/S0217984922500026
    42. Md. Tarikul Islam, Mst. Armina Akter, J. F. Gómez-Aguilar, Md. Ali Akbar, Novel and diverse soliton constructions for nonlinear space–time fractional modified Camassa–Holm equation and Schrodinger equation, 2022, 54, 0306-8919, 10.1007/s11082-022-03602-1
    43. PEIJIANG LIU, ABDULLAHI YUSUF, TING CUI, ANWARUD DIN, STOCHASTIC OPTIMAL CONTROL ANALYSIS FOR THE COVID-19 EPIDEMIC MODEL UNDER REAL STATISTICS, 2022, 30, 0218-348X, 10.1142/S0218348X22402204
    44. Qingji Tian, Yi-Peng Xu, Nidal H. Abu-Hamdeh, Abdullah M. Abusorrah, Mahmoud M. Selim, Flow structure and fuel mixing of hydrogen multi-jets in existence of upstream divergent ramp at supersonic combustion chamber, 2022, 121, 12709638, 107299, 10.1016/j.ast.2021.107299
    45. Saima Rashid, Fahd Jarad, Khadijah M. Abualnaja, On fuzzy Volterra-Fredholm integrodifferential equation associated with Hilfer-generalized proportional fractional derivative, 2021, 6, 2473-6988, 10920, 10.3934/math.2021635
    46. Abha Singh, Abdul Hamid Ganie, Mashael M. Albaidani, Antonio Scarfone, Some New Inequalities Using Nonintegral Notion of Variables, 2021, 2021, 1687-9139, 1, 10.1155/2021/8045406
    47. Xinglong Liu, Zahir Shah, Mohammed R. Alzahrani, Numerical modeling of nanofluid exergy loss within tube with multi-helical tapes, 2022, 137, 2190-5444, 10.1140/epjp/s13360-021-02327-6
    48. Tahir Khan, Rahman Ullah, Thabet Abdeljawad, Manar A. Alqudah, Faizullah Faiz, A Theoretical Investigation of the SARS-CoV-2 Model via Fractional Order Epidemiological Model, 2023, 135, 1526-1506, 1295, 10.32604/cmes.2022.022177
    49. A. DLAMINI, EMILE F. DOUNGMO GOUFO, M. KHUMALO, CHAOTIC BEHAVIOR OF MODIFIED STRETCH–TWIST–FOLD FLOW UNDER FRACTAL-FRACTIONAL DERIVATIVES, 2022, 30, 0218-348X, 10.1142/S0218348X22402071
    50. Shuang-Shuang Zhou, Saima Rashid, Erhan Set, Abdulaziz Garba Ahmad, Y. S. Hamed, On more general inequalities for weighted generalized proportional Hadamard fractional integral operator with applications, 2021, 6, 2473-6988, 9154, 10.3934/math.2021532
    51. Mohammed N. Ajour, Muhyaddin J. H. Rawa, Ahmad H. Milyani, Meicheng Li, Mahmoud M. Selim, RETRACTED ARTICLE: Solar radiation impact on ferrofluid convection with applying electric field, 2022, 2190-5509, 10.1007/s13204-021-02325-1
    52. Juan Zhang, Fuzhang Wang, Yahya Ali Rothan, Taher A. Nofal, Mahmoud M. Selim, Simulation of charging of PCM within a duct containing nanoparticles, 2022, 102, 0044-2267, 10.1002/zamm.202100375
    53. Peijiang Liu, Rukhsar Ikram, Amir Khan, Anwarud Din, The measles epidemic model assessment under real statistics: an application of stochastic optimal control theory, 2023, 26, 1025-5842, 138, 10.1080/10255842.2022.2050222
    54. Mohammed Algarni, Turbulent transportation of hybrid nanofluid in a tube with helical tapes utilizing in solar system, 2022, 2190-5509, 10.1007/s13204-022-02341-9
    55. Yahya Ali Rothan, Modeling approach for nanomaterial convective migration with inclusion of Lorentz force, 2022, 102, 0044-2267, 10.1002/zamm.202100204
    56. Si Yuanlei, Bandar Almohsen, M. Sabershahraki, Alibek Issakhov, Muhammad Asif Zahoor Raja, Nanomaterial migration due to magnetic field through a porous region utilizing numerical modeling, 2021, 785, 00092614, 139162, 10.1016/j.cplett.2021.139162
    57. SAIMA RASHID, ELBAZ I. ABOUELMAGD, AASMA KHALID, FOZIA BASHIR FAROOQ, YU-MING CHU, SOME RECENT DEVELOPMENTS ON DYNAMICAL ℏ-DISCRETE FRACTIONAL TYPE INEQUALITIES IN THE FRAME OF NONSINGULAR AND NONLOCAL KERNELS, 2022, 30, 0218-348X, 10.1142/S0218348X22401107
    58. Guangli Fan, Adel Almarashi, Peixi Guo, Nidal H. Abu-Hamdeh, Abdullah M. Abusorrah, R. Moradi, Comparison of convergent/divergent ramp on fuel mixing of single jet at supersonic crossflow, 2022, 120, 12709638, 107236, 10.1016/j.ast.2021.107236
    59. Peixi Guo, Xiaowei Li, Nidal H. Abu-Hamdeh, Rashad A.R. Bantan, Mixing efficiency of hydrogen jet through multi lobe-injectors at scramjet engine: A numerical study, 2022, 120, 12709638, 107293, 10.1016/j.ast.2021.107293
    60. Faiz Muhammad Khan, Amjad Ali, Zia Ullah Khan, On existence and semi-analytical results to fractional order mathematical model of COVID-19, 2022, 29, 2576-5299, 40, 10.1080/25765299.2022.2037843
    61. Anastacia Dlamini, Emile F. Doungmo Goufo, Melusi Khumalo, On the Caputo-Fabrizio fractal fractional representation for the Lorenz chaotic system, 2021, 6, 2473-6988, 12395, 10.3934/math.2021717
    62. Farhat Safdar, Muhammad Attique, Extended weighted Simpson-like type inequalities for preinvex functions and their use in physical system, 2022, 1016-2526, 621, 10.52280/pujm.2022.541001
    63. Shanhe Wu, Muhammad Adil Khan, Shah Faisal, Tareq Saeed, Eze R. Nwaeze, Derivation of Hermite-Hadamard-Jensen-Mercer conticrete inequalities for Atangana-Baleanu fractional integrals by means of majorization, 2024, 57, 2391-4661, 10.1515/dema-2024-0024
    64. Adefisayo Ojo, Peter Olamide Olanipekun, Refinements of generalised Hermite-Hadamard inequality, 2023, 188, 00074497, 103316, 10.1016/j.bulsci.2023.103316
    65. SHANHE WU, MUHAMMAD SAMRAIZ, AHSAN MEHMOOD, FAHD JARAD, SAIMA NAHEED, SOME SYMMETRIC PROPERTIES AND APPLICATIONS OF WEIGHTED FRACTIONAL INTEGRAL OPERATOR, 2023, 31, 0218-348X, 10.1142/S0218348X2340011X
    66. Muhammad Younis, Ahsan Mehmood, Muhammad Samraiz, Gauhar Rahman, Salma Haque, Ahmad Aloqaily, Nabil Mlaiki, Computational Representation of Fractional Inequalities Through 2D and 3D Graphs with Applications, 2025, 13, 2079-3197, 46, 10.3390/computation13020046
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(5621) PDF downloads(489) Cited by(66)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog