Research article

A new approach on fractional calculus and probability density function

  • Received: 30 June 2020 Accepted: 30 August 2020 Published: 09 September 2020
  • MSC : 26A51, 26D10, 26A33

  • In statistical analysis, oftentimes a probability density function is used to describe the relationship between certain unknown parameters and measurements taken to learn about them. As soon as there is more than enough data collected to determine a unique solution for the parameters, an estimation technique needs to be applied such as "fractional calculus", for instance, which turns out to be optimal under a wide range of criteria. In this context, we aim to present some novel estimates based on the expectation and variance of a continuous random variable by employing generalized Riemann-Liouville fractional integral operators. Besides, we obtain a two-parameter extension of generalized Riemann-Liouville fractional integral inequalities, and provide several modifications in the Riemann-Liouville and classical sense. Our ideas and obtained results my stimulate further research in statistical analysis.

    Citation: Shu-Bo Chen, Saima Rashid, Muhammad Aslam Noor, Rehana Ashraf, Yu-Ming Chu. A new approach on fractional calculus and probability density function[J]. AIMS Mathematics, 2020, 5(6): 7041-7054. doi: 10.3934/math.2020451

    Related Papers:

  • In statistical analysis, oftentimes a probability density function is used to describe the relationship between certain unknown parameters and measurements taken to learn about them. As soon as there is more than enough data collected to determine a unique solution for the parameters, an estimation technique needs to be applied such as "fractional calculus", for instance, which turns out to be optimal under a wide range of criteria. In this context, we aim to present some novel estimates based on the expectation and variance of a continuous random variable by employing generalized Riemann-Liouville fractional integral operators. Besides, we obtain a two-parameter extension of generalized Riemann-Liouville fractional integral inequalities, and provide several modifications in the Riemann-Liouville and classical sense. Our ideas and obtained results my stimulate further research in statistical analysis.


    加载中


    [1] T. H. Zhao, M. K. Wang, Y. M. Chu, A sharp double inequality involving generalized complete elliptic integral of the first kind, AIMS Math., 5 (2020), 4512-4528. doi: 10.3934/math.2020290
    [2] I. A. Baloch, Y. M. Chu, Petrović-type inequalities for harmonic h-convex functions, J. Funct. Space., 2020 (2020), 1-7.
    [3] M. Adil Khan, J. Pečarić, Y. M. Chu, Refinements of Jensen's and McShane's inequalities with applications, AIMS Math., 5 (2020), 4931-4945. doi: 10.3934/math.2020315
    [4] S. Rashid, R. Ashraf, M. A. Noor, et al. New weighted generalizations for differentiable exponentially convex mapping with application, AIMS Math., 5 (2020), 3525-3546. doi: 10.3934/math.2020229
    [5] M. A. Khan, M. Hanif, Z. A. Khan, et al. Association of Jensen's inequality for s-convex function with Csiszár divergence, J. Inequal. Appl., 2019 (2019), 1-14. doi: 10.1186/s13660-019-1955-4
    [6] S. Rashid, İ. İşcan, D. Baleanu, et al. Generation of new fractional inequalities via n polynomials s-type convexixity with applications, Adv. Differ. Equ., 2020 (2020), 1-20. doi: 10.1186/s13662-019-2438-0
    [7] Y. Khurshid, M. A. Khan, Y. M. Chu, Conformable fractional integral inequalities for GG- and GA-convex function, AIMS Math., 5 (2020), 5012-5030. doi: 10.3934/math.2020322
    [8] T. Abdeljawad, S. Rashid, H. Khan, et al. On new fractional integral inequalities for p-convexity within interval-valued functions, Adv. Differ. Equ., 2020 (2020), 1-17. doi: 10.1186/s13662-019-2438-0
    [9] H. Ge-JiLe, S. Rashid, M. A. Noor, et al. Some unified bounds for exponentially tgs-convex functions governed by conformable fractional operators, AIMS Math., 5 (2020), 6108-6123. doi: 10.3934/math.2020392
    [10] M. B. Sun, Y. M. Chu, Inequalities for the generalized weighted mean values of g-convex functions with applications, RACSAM, 114 (2020), 1-12. doi: 10.1007/s13398-019-00732-2
    [11] S. Y. Guo, Y. M. Chu, G. Farid, et al. Fractional Hadamard and Fejér-Hadamard inequaities associated with exponentially (s, m)-convex functions, J. Funct. Space., 2020 (2020), 1-10.
    [12] M. U. Awan, S. Talib, M. A. Noor, et al. Some trapezium-like inequalities involving functions having strongly n-polynomial preinvexity property of higher order, J. Funct. Space., 2020 (2020), 1-9.
    [13] T. Abdeljawad, S. Rashid, Z. Hammouch, et al. Some new local fractional inequalities associated with generalized (s, m)-convex functions and applications, Adv. Differ. Equ., 2020 (2020), 1-27.
    [14] Y. Khurshid, M. Adil Khan, Y. M. Chu, Conformable integral version of Hermite-Hadamard-Fejér inequalities via η-convex functions, AIMS Math., 5 (2020), 5106-5120. doi: 10.3934/math.2020328
    [15] P. Agarwal, M. Kadakal, İ. İşcan, et al. Better approaches for n-times differentiable convex functions, Mathematics, 8 (2020), 1-11.
    [16] M. U. Awan, N. Akhtar, A. Kashuri, et al. 2D approximately reciprocal ρ-convex functions and associated integral inequalities, AIMS Math., 5 (2020), 4662-4680. doi: 10.3934/math.2020299
    [17] P. Y. Yan, Q. Li, Y. M. Chu, et al. On some fractional integral inequalities for generalized strongly modified h-convex function, AIMS Math., 5 (2020), 6620-6638. doi: 10.3934/math.2020426
    [18] S. S. Zhou, S. Rashid, F. Jarad, et al. New estimates considering the generalized proportional Hadamard fractional integral operators, Adv. Differ. Equ., 2020 (2020), 1-15. doi: 10.1186/s13662-019-2438-0
    [19] J. M. Shen, S. Rashid, M. A. Noor, et al. Certain novel estimates within fractional calculus theory on time scales, AIMS Math., 5 (2020), 6073-6086. doi: 10.3934/math.2020390
    [20] S. Rashid, F. Jarad, H. Kalsoom, et al. On Pólya-Szegö and Ćebyšev type inequalities via generalized k-fractional integrals, Adv. Differ. Equ., 2020 (2020), 1-18. doi: 10.1186/s13662-019-2438-0
    [21] E. F. Beckenbach, R. Bellman, Inequalities, Springer-Verlag, Berlin-Göttingen-Heidelberg (2020).
    [22] G. J. Hai, T. H. Zhao, Monotonicity properties and bounds involving the two-parameter generalized Grötzsch ring function, J. Inequal. Appl., 2020 (2020), 1-17. doi: 10.1186/s13660-019-2265-6
    [23] T. H. Zhao, L. Shi, Y. M. Chu, Convexity and concavity of the modified Bessel functions of the first kind with respect to Hölder means, RACSAM, 114 (2020), 1-14. doi: 10.1007/s13398-019-00732-2
    [24] M. K. Wang, Z. Y. He, Y. M. Chu, Sharp power mean inequalities for the generalized elliptic integral of the first kind, Comput. Meth. Funct. Th., 20 (2020), 111-124. doi: 10.1007/s40315-020-00298-w
    [25] T. H. Zhao, Y. M. Chu, H. Wang, Logarithmically complete monotonicity properties relating to the gamma function, Abstr. Appl. Anal., 2011 (2011), 1-13.
    [26] J. M. Shen, Z. H. Yang, W. M. Qian, et al. Sharp rational bounds for the gamma function, Math. Inequal. Appl., 23 (2020), 843-853.
    [27] M. K. Wang, H. H. Chu, Y. M. Li, et al. Answers to three conjectures on convexity of three functions involving complete elliptic integrals of the first kind, Appl. Anal. Discrete Math., 14 (2020), 255- 271.
    [28] M. K. Wang, Y. M. Chu, Y. M. Li, et al. Asymptotic expansion and bounds for complete elliptic integrals, Math. Inequal. Appl., 23 (2020), 821-841.
    [29] S. Z. Ullah, M. A. Khan, Y. M. Chu, A note on generalized convex functions, J. Inequal. Appl., 2019 (2019), 1-10. doi: 10.1186/s13660-019-1955-4
    [30] W. M. Qian, W. Zhang, Y. M. Chu, Bounding the convex combination of arithmetic and integral means in terms of one-parameter harmonic and geometric means, Miskolc Math. Notes, 20 (2019), 1157-1166. doi: 10.18514/MMN.2019.2334
    [31] I. A. Baloch, A. A. Mughal, Y. M. Chu, et al. A variant of Jensen-type inequality and related results for harmonic convex functions, AIMS Mathematics, 5 (2020), 6404-6418. doi: 10.3934/math.2020412
    [32] T. H. Zhao, Z. Y. He, Y. M. Chu, On some refinements for inequalities involving zero-balanced hypergeometric function, AIMS Math., 5 (2020), 6479-6495. doi: 10.3934/math.2020418
    [33] Y. M. Chu, M. U. Awan, M. Z. Javad, et al. Bounds for the remainder in Simpson's inequality via n-polynomial convex functions of higher order using Katugampola fractional integrals, J. Math., 2020 (2020), 1-10.
    [34] H. Kalsoom, M. Idrees, D. Baleanu, et al. New estimates of q1q2-Ostrowski-type inequalities within a class of n-polynomial prevexity of function, J. Funct. Space., 2020 (2020), 1-13.
    [35] A. Iqbal, M. A. Khan, N. Mohammad, et al. Revisiting the Hermite-Hadamard integral inequality via a Green function, AIMS Math., 5 (2020), 6087-6107. doi: 10.3934/math.2020391
    [36] M. U. Awan, N. Akhtar, S. Iftikhar, et al. New Hermite-Hadamard type inequalities for npolynomial harmonically convex functions, J. Inequal. Appl., 2020 (2020), 1-12. doi: 10.1186/s13660-019-2265-6
    [37] M. A. Latif, S. Rashid, S. S. Dragomir, et al. Hermite-Hadamard type inequalities for co-ordinated convex and qausi-convex functions and their applications, J. Inequal. Appl., 2019 (2019), 1-33. doi: 10.1186/s13660-019-1955-4
    [38] H. X. Qi, M. Yussouf, S. Mehmood, et al. Fractional integral versions of Hermite-Hadamard type inequality for generalized exponentially convexity, AIMS Math., 5 (2020), 6030-6042. doi: 10.3934/math.2020386
    [39] S. S. Zhou, S. Rashid, M. A. Noor, et al. New Hermite-Hadamard type inequalities for exponentially convex functions and applications, AIMS Math., 5 (2020), 6874-6901. doi: 10.3934/math.2020441
    [40] S. Hussain, J. Khalid, Y. M. Chu, Some generalized fractional integral Simpson's type inequalities with applications, AIMS Math., 5 (2020), 5859-5883. doi: 10.3934/math.2020375
    [41] L. Xu, Y. M. Chu, S. Rashid, et al. On new unified bounds for a family of functions with fractional q-calculus theory, J. Funct. Space., 2020 (2020), 1-9.
    [42] S. Rashid, A. Khalid, G. Rahman, et al. On new modifications governed by quantum Hahn's integral operator pertaining to fractional calculus, J. Funct. Space., 2020 (2020), 1-12.
    [43] S. Rashid, F. Jarad, Y. M. Chu, A note on reverse Minkowski inequality via generalized proportional fractional integral operator with respect to another function, Math. Probl. Eng., 2020 (2020), 1-12.
    [44] S. Rashid, M. A. Noor, K. I. Noor, et al. Ostrowski type inequalities in the sense of generalized $\mathcal{K}$-fractional integral operator for exponentially convex functions, AIMS Math., 5 (2020), 2629- 2645.
    [45] M. U. Awan, S. Talib, A. Kashuri, et al. Estimates of quantum bounds pertaining to new q-integral identity with applications, Adv. Differ. Equ., 2020 (2020), 1-15. doi: 10.1186/s13662-019-2438-0
    [46] X. Z. Yang, G. Farid, W. Nazeer, et al. Fractional generalized Hadamard and Fejér-Hadamard inequalities for m-convex function, AIMS Math., 5 (2020), 6325-6340. doi: 10.3934/math.2020407
    [47] N. S. Barnett, S. S. Dragomir, Some inequalities for random variables whose probability density functions are bounded using a pre-Grüss inequality, Kyungpook Math. J., 40 (2020), 299-311.
    [48] N. S. Barnett, P. Cerone, S. S. Dargomir, et al. Some inequalities for the expectation and variance of a random variable whose PDF is n-time differentiable, JIPAM. J. Inequal. Pure Appl. Math., 1 (2020), 1-13.
    [49] P. Cerone, S. S. Dargomir, On some inequalities for the expectation and variance, Korean J. Comput. Appl. Math., 8 (2001), 357-380. doi: 10.1007/BF02941972
    [50] P. Kumar, Inequalities involving moments of a continuous random variable defined over a finite interval, Comput. Math. Appl., 48 (2004), 257-273. doi: 10.1016/j.camwa.2003.02.014
    [51] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier Science B.V., Amsterdam (2006).
    [52] E. Kacar, Z. Kacar, H. Yildirim, Integral inequalities for Riemann-Liouville fractional integrals of a function with respect to another function, Iran. J. Math. Sci. Inform., 13 (2018), 1-13. doi: 10.22457/jmi.v13a1
    [53] U. N. Katugampola, New fractional integral unifying six existing fractional integrals, Preprint, arXiv:1612.08596 [math.CA], Available from: https://arxiv.org/pdf/1612.08596.pdf.
    [54] F. Jarad, E. Uǧurlu, T. Abdeljawad, et al. On a new class of fractional operators, Adv. Differ. Equ., 2017 (2017), 1-16. doi: 10.1186/s13662-016-1057-2
    [55] T. U. Khan, M. Adil Khan, Generalized conformable fractional operators, J. Comput. Appl. Math., 346 (2019), 378-389. doi: 10.1016/j.cam.2018.07.018
    [56] Z. Dahmani, Fractional integral inequalities for continous random variables, Malaya J. Mat. , 2 (2014), 172-179.
    [57] Z. Dahmani, L. Tabharit, On weighted Gruss type inequalities via fractional integrals, J. Adv. Res. Pure Math., 2 (2010), 31-38.
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(4898) PDF downloads(483) Cited by(62)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog