Research article

Riemann-Liouville Fractional integral operators with respect to increasing functions and strongly $ (\alpha, m) $-convex functions

  • Received: 11 January 2021 Accepted: 18 July 2021 Published: 09 August 2021
  • MSC : 26A51, 26A33, 33E12

  • In this paper Hadamard type inequalities for strongly $ (\alpha, m) $-convex functions via generalized Riemann-Liouville fractional integrals are studied. These inequalities provide generalizations as well as refinements of several well known inequalities. The established results are further connected with fractional integral inequalities for Riemann-Liouville fractional integrals of convex, strongly convex and strongly $ m $-convex functions. By using two fractional integral identities some more Hadamard type inequalities are proved.

    Citation: Ghulam Farid, Hafsa Yasmeen, Hijaz Ahmad, Chahn Yong Jung. Riemann-Liouville Fractional integral operators with respect to increasing functions and strongly $ (\alpha, m) $-convex functions[J]. AIMS Mathematics, 2021, 6(10): 11403-11424. doi: 10.3934/math.2021661

    Related Papers:

  • In this paper Hadamard type inequalities for strongly $ (\alpha, m) $-convex functions via generalized Riemann-Liouville fractional integrals are studied. These inequalities provide generalizations as well as refinements of several well known inequalities. The established results are further connected with fractional integral inequalities for Riemann-Liouville fractional integrals of convex, strongly convex and strongly $ m $-convex functions. By using two fractional integral identities some more Hadamard type inequalities are proved.



    加载中


    [1] G. Farid, Some new Ostrowski type inequalities via fractional integrals, Int. J. Anal. App., 14 (2017), 64–68.
    [2] I. İşcan, M. Kunt, N.Yazici, Hermite-Hadamard-Fejér type inequalities for harmonically convex functions via fractional integrals, New Trends Math. Sci., 4 (2016), 239–253.
    [3] S. Rashid, M. A. Noor, K. I. Noor, Y. M. Chu, Ostrowski type inequalities in the sense of generalized $k$-fractional integral operator for exponentially convex functions, AIMS Math., 5 (2020), 2629–2645. doi: 10.3934/math.2020171
    [4] Y. C. Kwun, G. Farid, W. Nazeer, S. Ullah, S. M. Kang, Generalized Riemann-Liouville $k$-fractional integrals associated with Ostrowski type inequalities and error bounds of Hadamard inequalities, IEEE Access, 6 (2018), 64946–64953. doi: 10.1109/ACCESS.2018.2878266
    [5] A. Ekinci, M. E. Özdemir, Some new integral inequalities via Riemann-Liouville integral operators, Appl. Comput. Math., 3 (2019), 288–295.
    [6] E. Set, A. O. Akdemir, F. Ozata, Grüss type inequalities for fractional integral operator involving the extended generalized Mittag-Leffler function, Appl. Comput. Math., 19 (2020), 402–414.
    [7] Y. L. Dong, M. Saddiqa, S. Ullah, G. Farid, Study of fractional integral operators containing Mittag-Leffler functions via strongly $(\alpha, m)$-convex functions, Math. Probl. Eng., 2021 (2021), 6693914.
    [8] M. Z. Sarikaya, E. Set, H. Yaldiz, N. Başak, Hermite-Hadamard's inequalities for fractional integrals and related fractional inequalities, Math. Comput. Model., 57 (2013), 2403–2407. doi: 10.1016/j.mcm.2011.12.048
    [9] M. Z. Sarikaya, H. Yildirim, On Hermite-Hadamard type inequalities for Riemann-Liouville fractional integrals, Miskolc Math. Notes, 17 (2017), 1049–1059. doi: 10.18514/MMN.2017.1197
    [10] S. Mubeen, G. M. Habibullah, $k$-fractional integrals and applications, Int. J. Contemp. Math. Sci., 7 (2012), 89–94.
    [11] S. Mubeen, A. Rehman, A note on $k$-Gamma function and Pochhammer $k$-symbol, J. Math. Sci., 6 (2014), 93–107.
    [12] G. Farid, A. U. Rehman, M. Zahra, On Hadamard-type inequalities for $k$-fractional integrals, Nonlinear Funct. Anal. Appl., 21 (2016), 463–478.
    [13] G. Farid, A. U. Rehman, M. Zahra, On Hadamard inequalities for $k$-fractional integrals, Konuralp J. Maths., 4 (2016), 79–86.
    [14] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, North-Holland Mathematics Studueds, Elsevier, 2006.
    [15] K. S. Miller, B. Ross, An introduction to the fractional calculus and fractional differential equations, New York: John Wiley and Sons, Inc., 1993.
    [16] S. G. Samko, A. A. Kilbas, O. I. Marichev, Fractional integrals and derivatives: Theory and applications, USA: Gordon and Breach Science Publishers, 1993.
    [17] G. Farid, H. Yasmeen, C. Y. Jung, S. H. Shim, G. Ha, Refinements and generalizations of some fractional integral inequalities via strongly convex functions, Math. Probl. Eng., 2021 (2021), 6667226.
    [18] M. U. Awan, M. A. Noor, T. S. Du, K. I. Noor, New refinements of fractional Hermite-Hadamard inequality, RACSAM, 113 (2019), 21–29. doi: 10.1007/s13398-017-0448-x
    [19] M. U. Awan, S. Talib, Y. M. Chu, M. A. Noor, K. I. Noor, Some new refinements of Hermite-Hadamard-type inequalities involving $\psi_{k}$-Riemann-Liouville fractional integrals and applications, Math. Probl. Eng., 2020 (2020), 3051920.
    [20] K. Liu, J. R. Wang, D. O'Regan, On the Hermite-Hadamard type inequality for $\psi$-Riemann-Liouville fractional integrals via convex functions, J. Inequal. Appl., 2019 (2019), 27. doi: 10.1186/s13660-019-1982-1
    [21] Y. C. Kwun, G. Farid, S. B. Akbar, S. M. Kang, Riemann-Liouville Fractional versions of Hadamard inequality for strongly $m$-convex functions, unpublished work.
    [22] N. Merentes, K. Nikodem, Remarks on strongly convex functions, Aequationes Math., 80 (2010), 193–199. doi: 10.1007/s00010-010-0043-0
    [23] G. Farid, A. U. Rehman, B. Tariq, A. Waheed, On Hadamard type inequalities for $m$-convex functions via fractional integrals, J. Inequal. Spec. Funct., 7 (2016), 150–167.
    [24] Y. C. Kwun. G. Farid, S. B. Akbar, S. M. Kang, Riemann-Liouville fractional versions of Hadamard inequality for strongly $(\alpha, m)$-convex functions, unpublished work.
    [25] P. O. Mohammed, Hermite-Hadamard inequalities for Riemann-Liouville fractional integrals of a convex function with respect to a monotone function, Math. Methods Appl. Sci., 44 (2021), 2314–2324. doi: 10.1002/mma.5784
    [26] C. Miao, G. Farid, H. Yasmeen, Y. Bian, Generalized Hadamard fractional integral inequalities for strongly $(s, m)$-convex functions, J. Math., 2021 (2021), 6642289.
    [27] G. Farid, A. U. Rehman, B. Tariq, On Hadamard-type inequalities for $m$-convex functions via Riemann-Liouville fractional integrals, Studia Univ. Babes-Bolyai, Math., 62 (2017), 141–150. doi: 10.24193/subbmath.2017.2.01
    [28] S. S. Dragomir, R. P. Agarwal, Two inequalities for differentiable mappings and applications to special means of real numbers and to trapezoidal formula, Appl. Math. Lett., 11 (1998), 91–95.
    [29] U. S. Kirmaci, Inequalities for differentiable mappings and applications to special means of real numbers to midpoint formula, Appl. Math. Comput., 147 (2004), 137–146.
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2114) PDF downloads(100) Cited by(1)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog