The predication of the helium diffusion concentration as a function of a source term in diffusion equation is an ill-posed problem. This is called inverse radiogenic source problem. Although some classical regularization methods have been considered for this problem, we propose two new fractional regularization methods for the purpose of reducing the over-smoothing of the classical regularized solution. The corresponding error estimates are proved under the a-priori and the a-posteriori regularization parameter choice rules. Some numerical examples are shown to display the necessarity of the methods.
Citation: Xuemin Xue, Xiangtuan Xiong, Yuanxiang Zhang. Two fractional regularization methods for identifying the radiogenic source of the Helium production-diffusion equation[J]. AIMS Mathematics, 2021, 6(10): 11425-11448. doi: 10.3934/math.2021662
The predication of the helium diffusion concentration as a function of a source term in diffusion equation is an ill-posed problem. This is called inverse radiogenic source problem. Although some classical regularization methods have been considered for this problem, we propose two new fractional regularization methods for the purpose of reducing the over-smoothing of the classical regularized solution. The corresponding error estimates are proved under the a-priori and the a-posteriori regularization parameter choice rules. Some numerical examples are shown to display the necessarity of the methods.
[1] | R. Wolf, K. Farley, L. Silver, Helium diffusion and low temperature thermochronometry of apatite, Geochim. Cosmochim. Ac., 60 (1996), 4231–4240. doi: 10.1016/S0016-7037(96)00192-5 |
[2] | K. Farley, R. Wolf, L. Silver, The effects of long alpha-stopping distance on (U-Th)/He ages, Geochim. Cosmochim. Ac., 60 (1996), 4223–4230. doi: 10.1016/S0016-7037(96)00193-7 |
[3] | D. Shuster, K. Farley, 4He/3He thermochronometry, Earth Planet. Sci. Lett., 217 (2003), 1–17. |
[4] | R. Wolf, K. Farley, D. Kass, Modeling of the temperature sensitivity of the apatite (U-Th)/He thermochronometer, Chem. Geol., 148 (1998), 105–114. doi: 10.1016/S0009-2541(98)00024-2 |
[5] | D. Shuster, K. Farley, 4He/3He thermochronometry: Theory, practice, and potential complications, Rev. Mineral. Geochem., 58 (2005), 181–203. doi: 10.2138/rmg.2005.58.7 |
[6] | G. Bao, Y. Dou, T. Ehlers, P. Li, Y. Wang, Z. Xu, Quantifying tectonic and geomorphic interpretations of thermochronometer data with inverse problem theory, Commun. Comput. Phys., 9 (2011), 129–146. doi: 10.4208/cicp.090110.270410a |
[7] | I. Bushuyev, Global uniqueness for inverse parabolic problems with final observation, Inverse Probl., 11 (1995), L11–L16. doi: 10.1088/0266-5611/11/4/001 |
[8] | J. Cannon, S. Pérez-Esteva, Uniqueness and stability of 3D heat sources, Inverse Probl., 7 (1991), 57–62. doi: 10.1088/0266-5611/7/1/006 |
[9] | M. Choulli, M. Yamamoto, Conditional stability in determing a heat source, J. Inverse Ill-posed Probl., 12 (2004), 233–243. doi: 10.1515/1569394042215856 |
[10] | F. Hettlich, W. Rundell, Identification of a discontinuous source in the heat equation, Inverse Probl., 17 (2001), 1465–1482. doi: 10.1088/0266-5611/17/5/315 |
[11] | K. Sakamoto, M. Yamamoto, Inverse heat source problem from time distributing overdetermination, Appl. Anal., 88 (2009), 735–748. doi: 10.1080/00036810802713958 |
[12] | V. Isakov, Inverse source problems, American Mathematical Society, Providence, RI, 1990. |
[13] | V. Isakov, Inverse parabolic problems with the final overdetermination, Commun. Pur. Appl. Math., 44 (1991), 185–209. doi: 10.1002/cpa.3160440203 |
[14] | V. Isakov, Inverse problems for partial differential equations, Springer-Verlag, New York, 1998. |
[15] | G. Bao, T. A. Ehlers, P. Li, Radiogenic source identification for the helium production-diffusion equation, Commun. Comput. Phys., 14 (2013), 1–20. doi: 10.4208/cicp.030112.250512a |
[16] | Y. Zhang, L. Yan, The general a posteriori truncation method and its application to radiogenic source identification for the Helium production-diffusion equation, Appl. Math. Model., 43 (2017), 126–138. doi: 10.1016/j.apm.2016.10.065 |
[17] | W. Cheng, L. Zhao, C. Fu, Source term identification for an axisymmetric inverse heat conducting problem, Comput. Math. Appl., 59 (2010), 142–148. doi: 10.1016/j.camwa.2009.08.038 |
[18] | A. Farcas, D. Lesnic, The boundary element method for the determination of a heat source dependent on one variable, Comput. Math. Appl., 54 (2006), 375–388. |
[19] | T. Johansson, D. Lesnic, A variational method for identifying a spacewise-dependent heat source, IMA J. Appl. Math., 72 (2007), 748–760. doi: 10.1093/imamat/hxm024 |
[20] | J. Xie, J. Zou, Numerical reconstruction of heat fluxes, SIAM J. Numer. Anal., 43 (2005), 1504–1535. doi: 10.1137/030602551 |
[21] | M. Yamamoto, J. Zou, Simultaneous reconstruction of the initial temperature and heat radiative coefficient, Inverse Probl., 17 (2001), 1181–1202. doi: 10.1088/0266-5611/17/4/340 |
[22] | L. Yan, C. Fu, F. Dou, A computational method for identifying a spacewise-dependent heat source, Int. J. Numer. Methods Biomed. Eng., 26 (2010), 597–608. |
[23] | Z. Yi, D. Murio, Source term identification in the 1-D IHCP, Compu. Math. Applic., 47 (2004), 1921–1933. doi: 10.1016/j.camwa.2002.11.025 |
[24] | Z. Yi, D. Murio, Source term identification in the 2-D IHCP, Compu. Math. Applic., 47 (2004), 1517–1533. doi: 10.1016/j.camwa.2004.06.004 |
[25] | D. Hào, P. Thanh, D. Lesnic, M. Ivanchov, Determination of a source in the heat equation from integral observations, J. Comput. Appl. Math., 264 (2014), 82–98. doi: 10.1016/j.cam.2014.01.005 |
[26] | M. Hochstenbach, L. Reichel, Fractional Tikhonov regularization for linear discrete ill-posed problems, BIT Numer. Math., 51 (2011), 197–215. doi: 10.1007/s10543-011-0313-9 |
[27] | E. Klann, P. Maass, R. Ramlau, Two-step regularization methods for linear inverse problems, J. Inverse Ill-posed Probl., 14 (2006), 583–607. doi: 10.1515/156939406778474523 |
[28] | E. Klann, R. Ramlau, Regularization by fractional filter methods and data smoothing, Inverse Probl., 24 (2008), 025018. doi: 10.1088/0266-5611/24/2/025018 |
[29] | D. Gerth, E. Klann, R. Ramlau, L. Reichel, On fractional tikhonov regularization, J. Inverse Ill-posed Probl., 23 (2015), 611–625. |
[30] | D. Bianchi, A. Buccini, M. Donatelli, S. Serra-Capizzano, Iterated fractional tikhonov regularization, Inverse Probl., 15 (2015), 581–582. |
[31] | X. Xiong, X. Xue, Z. Qian, A modified iterative regularization method for ill-posed problems, Appl. Numer. Math., 122 (2017), 108–128. doi: 10.1016/j.apnum.2017.08.004 |
[32] | X. Xiong, X. Xue, Z. Li, On a weighted time-fractional asymptotical regularization method, J. Comput. Appl. Math., 394 (2021), 113579. doi: 10.1016/j.cam.2021.113579 |
[33] | X. Xiong, X. Xue, Fractional Tikhonov method for an inverse time-fractional diffusion problem in 2-Dimensional space, Bull. Malays. Math. Sci. Soc., 43 (2020), 25–38. doi: 10.1007/s40840-018-0662-5 |
[34] | Y. Han, X. Xiong, X. Xue, A fractional Landweber method for solving backward time-fractional diffusion problem, Comput. Math. Appl., 78 (2019), 81–91. doi: 10.1016/j.camwa.2019.02.017 |
[35] | X. Xiong, X. Xue, A fractional Tikhonov regularization method for identifying a space-dependent source in the time-fractional diffusion equation, Appl. Math. Comput., 349 (2019), 292–303. doi: 10.1016/j.cam.2018.06.011 |
[36] | C. Mekoth, S. George, P. Jidesh, Fractional Tikhonov regularization method in Hilbert scales, Appl. Math. Comput., 392 (2021), 125701. |
[37] | A. Louis, Inverse und schlecht gestellte Probleme, Stuttgart, Teubner, 1989. |
[38] | G. Vainikko, A. Veretennikov, Iteration procedures in Ill-Posed problems, Moscow, Nauka, Mc-Cormick, S. F., 1986 (in Russian). |
[39] | H. Engl, M. Hanke, A. Neubauer, Regularization of inverse problem, Kluwer Academic, Boston, MA, 1996. |
[40] | W. Press, S. Teukolsky, W. Vetterling, B. Flannery, Numerical recipes in Fortran 90: The art of parallel scientific computing, 2nd ed., Cambridge University Press, 1996. |