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1. Introduction

The study of helium diffusion dynamics has attracted the attention of many scholars in recent years.
Compared with other isotope systems, helium has a high yield. In addition, high-precision and high-
sensitivity helium analysis is relatively easy, and the (U-Th)/He isotopes dating has reached a relatively
low-temperature condition, which is very important for the study of thermochronology. In [1], the
author gives the helium diffusion and low-temperature thermochronometry of apatite. The effects of
long alpha-stopping distance on (U-Th)/He ages are studied in literature [2]. For the application of
helium isotope as thermochronometer in terrestrial and extrater restrial materials, refer to the paper [3].
For more important applications of helium isotopes in physics, please refer to the literature [4–6].

This article will consider the prediction of helium concentration as a function of the spatial
variable source term, which is closely related to helium isotope dating and is a low-temperature
thermochronometry method. The helium production-diffusion model is as follows:
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∂u(r,t)
∂t = a(t)[∂

2u(r,t)
∂r2 + 2

r
∂u(r,t)
∂r ] + f (r), t ∈ (0,T ), 0 < r < R,

u(r, 0) = 0, 0 < r < R,
u(R, t) = 0, t ∈ (0,T ),
lim
r→0

u(r, t) bounded, t ∈ (0,T ),

(1.1)

where 0 < a0 ≤ a(t) ≤ a1(a0 and a1 are constants), r is the dimensional radial variable, R is the radius
of the spherical diffusion domain, given the final observation of the helium concentration as follows

u(r,T ) = g(r), 0 < r < R. (1.2)

The object is to reconstruct the source term f (r).
Inverse source problem is a typical ill-posed problem, which has been studied by many scholars.

For the discussion of the existence, uniqueness and stability of solutions, please refer to reference
[7–11]. In reference [12,13], Isakov has given some theoretical studies on the inverse source problem,
and in [14], Isakov explains the general inverse problem of partial differential equations. In [15],
Bao et al. has used the Tikhonov method and the truncation method with a-priori parameter choice
rule to study the problem of the inverse radiogenic source identification problem. In [16], Zhang
and Yan applied a-posteriori truncation method to the radiogenic source identification for the helium
production-diffusion equation, which is closely connected to the helium isotopes dating as one method
of the low-temperature thermochronometry. For more literature on numerical methods, see [17–25].

Regarding the research on the regularization theory of inverse radiogenic source problem, most
of the results are discussed in the context of a-priori parameter selection, the numerical results of
posterior parameters are more less. The a-priori method is based on the smoothness conditions of the
solution, which is convenient for theoretical analysis, but it is difficult to verify. Therefore, in actual
calculations, the regularization method of the posterior parameter selection rule is more widely used.
In order to better identify the radiation source problem of helium production-diffusion Eq (1.1), we
will give two fractional regularization methods, namely weighted fractional Tikhonov regularization
method (WTRM) and fractional Landweber regularization method (FLRM). For related research on
fractional regularization methods, please refer to the literatures [26–32]. Also, for the application of
more fractional regularization methods please refer to [33–36].

The outline of the paper is as follows. In Section 2, we give some preliminary results; In order
to overcome the difficulty, a novel a-priori bound is introduced. In Section 3, the ill-posedness of
inverse radiogenic source promblem (1.1) is also given. In Section 4, we constructed the regularization
solution by a WTRM. Moreover, we have performed a detailed convergence analysis and given the
a-priori and a-posterior regularization parameters choice rule. In Section 5, we use the FLRM to give
the regularization solution of the inverse source problem, and give the regularization parameter choice
rule of the provided method and the corresponding error estimate. In Section 6, Numerical examples
are given, and the numerical results show that the proposed method is accurate and effective. This
article summarizes some general conclusions in Section 7.

2. Preliminaries

The following lemmas will be used.
Lemma 2.1. Given 0 < α ≤ 1, for constants x > 0, c = R2

2a1π2 and c = R2

a0π2 , a0 and a1 are the
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diffusivity [15], we hold the following inequality

cαx2

cα+1 + µx2α+2 ≤ c1µ
− 1
α+1 . (2.1)

where c1 =
cαα

α
α+1

cα(α+1) > 0 are independent of α, c, c.
Proof. For 0 < α ≤ 1, we define the following function:

h1(x) =
cαx2

cα+1 + µx2α+2 ,

where x > 0, h1(x) has a unique point x0 =
(

cα+1

αµ

) 1
α+1
≥ 0 such that h′1(x0) = 0.

Clearly we have

h1(x) ≤ h1(x0) =
cαα

α
α+1

cα(α + 1)
µ−

1
α+1 := c1µ

− 1
α+1 .

Lemma 2.2. For constants x > 0, 0 < α ≤ 1 and p > 0, we have

µx2α+2−p

cα+1 + µx2α+2 ≤

{
c2µ

p
2α+2 , 0 < p < 2α + 2,

c3µ, p ≥ 2α + 2.
(2.2)

where c2 = c−
p
2
(
1 − p

2α+2

)(
p

2α+2−p

) p
2α+2

, c3 = c−(α+1).
Proof. Given the following function:

h2(x) =
µx2α+2−p

cα+1 + µx2α+2 ,

where x > 0.
If 0 < p < 2α + 2, then lim

x→0
h2(x) = lim

x→∞
h2(x) = 0. Thus there exists a x0 = c

1
2
(

2α+2−p
µp

) 1
2α+2
≥ 0 which is

a global maximizer such that h′2(x0) = 0, we have

h2(x) ≤ sup
x∈(0,∞)

h2(x) ≤ h2(x0),

Thus, we have

h2(x) ≤ h2(x0) = c−
p
2

(
1 −

p
2α + 2

)( p
2α + 2 − p

) p
2α+2

µ
p

2α+2 := c2µ
p

2α+2 .

If p ≥ 2α + 2, for x ≥ 1 then we have

h2(x) =
1

(cα+1
+ µx2α+2)xp−(2α+2)

µ ≤
1

cα+1
+ µx2α+2

µ ≤ c−(α+1)µ := c3µ.

Lemma 2.3. For constants x > 0 and 0 < α ≤ 1, we have

cµx2α−p

cα+1 + µx2α+2 ≤

{
c4µ

p+2
2α+2 , 0 < p < 2α,

c5µ, p ≥ 2α.
(2.3)
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where c4 =
c(p+2)2+p(2α−p)

2α−p
2α+2

c1+
p
2 (2α+2)

, c5 = c
cα+1 > 0.

Proof. Define the following function:

h3(x) =
cµx2α−p

cα+1 + µx2α+2 .

If 0 < p < 2α, then lim
x→0

h3(x) = lim
x→∞

h3(x) = 0. Thus there exists a unique x0 = c
1
2

(
2α−p
µ(p+2)

) 1
2α+2

≥ 0 which

is a global maximizer such that h′3(x0) = 0, we have

h3(x) ≤ sup
x∈(0,∞)

h3(x) ≤ h3(x0),

Therefore, we have

h3(x) ≤ h3(x0) =
c(p + 2)2+p(2α − p)

2α−p
2α+2

c1+
p
2 (2α + 2)

µ
p+2

2α+2 := c4µ
p+2

2α+2 .

If p ≥ 2α, x ≥ 1, we have

h3(x) =
cµ

(cα+1 + µx2α+2)xp−2α ≤
c

cα+1 + µx2α+2µ ≤
c

cα+1µ := c5µ.

Lemma 2.4. [37, 38] For 0 < λ < 1, υ > 0, m ∈ N, let rm(λ) := (1 − λ)m, there holds:

rm(λ)λυ ≤ θυ(m + 1)−υ,

where

θυ =

{
1, 0 ≤ υ ≤ 1,
υυ, υ > 1.

Lemma 2.5. For kn > 0 and 1
2 < α < 1, 0 < βk2

n < 1,m ≥ 1, we have

k−1
n [1 − (1 − βk2

n)m]α ≤ β
1
2 m

1
2 . (2.4)

Proof. We define two functions with τ2 := βk2
n:

ψ(τ) = βτ−2[1 − (1 − τ2)m]2α, (2.5)

and
φ(τ) = τ−2[1 − (1 − τ2)m]2α. (2.6)

Obviously ψ(τ) = βφ(τ). These two functions are continuous in τ ∈ (0, 1).
For 1

2 < α < 1 and τ ∈ (0, 1), using the Lemma 3.3 in [28], we have

φ(τ) ≤ m, ψ(τ) ≤ βm.

AIMS Mathematics Volume 6, Issue 10, 11425–11448.



11429

Therefore,
k−1

n [1 − (1 − βk2
n)m]α ≤ β

1
2 m

1
2 .

Lemma 2.6. For m ≥ 1, kn > 0, 0 < βk2
n < 1, we have

k
p
2
n (1 − βk2

n)m ≤ c(β, p)m−
p
4 := c6m−

p
4 , (2.7)

where the constant c6 =
(

p
4β

) p
4 .

Proof. We introduce a new variable x := k2
n, x < 1/β, and let

h4(x) = (1 − βx)mx
p
4 .

It is easy to see that there exists a unique x0 = z
β(z+m) with z =

p
4 such that h′4(x0) = 0. We find that

h4(x) ≤ h4(x0) ≤
(
1 −

z
z + m

)m( z
β(z + m)

)z

<
( z
β

)z( 1
z + m

)z

<
( z
β

)z( 1
m

)z

:= c6m−
p
4 .

3. Problem formulation and Ill-posedness

In this section, we derive an analytical solution for the inverse radiogenic source problem based on
the eigenfunction expansion, and give an analysis on the ill-posedness of the inverse source problem
(1.1).

Throughout this paper, the Hilbert space of square integrable functions on [0,R] is denoted as
L2([0,R]). 〈·, ·〉 and ‖ · ‖ are the inner product and norm on L2([0,R]) respectively, introduced as
follows

〈 f , g〉 =

∫ R

0
f (r)g(r)dr, and ‖u‖ = (

∫ R

0
| f (r)|2dr)

1
2 .

In order to solve the problem (1.1), we introduce a new function ω(r, t) under the substitution

ω(r, t) = ru(r, t).

It follows from the inverse radiogenic source problem (1.1), that ω satisfies:
∂ω(r,t)
∂t = a(t)∂

2ω(r,t)
∂r2 + r f (r), t ∈ (0,T ), 0 < r < R,

ω(r, 0) = 0, 0 < r < R,
ω(R, t) = 0 t ∈ (0,T ),
lim
r→0

ω(r, t) bounded, t ∈ (0,T ).

(3.1)

The corresponding final observation of the helium concentration becomes

ω(r,T ) = rg(r), 0 < r < R. (3.2)

Applying the method of separation of variables, consider the solution of problem (3.1) of the form

ω(r, t) = X(r)Y(t), (3.3)
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substitute it into the (3.1), we obtain the following Sturm-Liouville problem

X
′′

(r) + λX(r) = 0. 0 < r < R,
X(R) = 0,
lim
r→0

r−1X(r) bounded,
(3.4)

where λ is an unknown constant.
Through calculation, we can get the eigenvalues of (3.4) as follows

λn =

(nπ
R

)2

, n = 1, 2, · · · , (3.5)

and the corresponding eigenfunctions are

Xn(r) = sin
(nπr

R

)
. (3.6)

From the orthogonality and completeness of the eigenfunction system {sin( nπr
R )}∞n=1 in L2([0,R]), we

get the solution ω(r, t) and the source term r1 f (r) can be represented as

ω(r, t) =

∞∑
n=1

Xn(r)Yn(t), (3.7)

r f (r) =

∞∑
n=1

fnXn(r), (3.8)

where

fn =

∫ R

0
r f (r) sin(nπr

R )dr∫ R

0
sin2( nπr

R )dr
=

2
R

∫ R

0
r f (r) sin

(nπr
R

)
dr, n = 1, 2, . . . . (3.9)

Substituting (3.7) and (3.8) into (3.1), we have

Y
′

n(t) + λa(t)Yn(t) = fn,

Yn(0) = 0.

Solving the above initial-value problem yields the solution

Yn(t) = fn

∫ t

0
e−λn

∫ t
τ

a(s)dsdτ.

Therefore, the solution of (3.1) can be written as the infinite series

ω(r, t) =

∞∑
n=1

fnXn(r)
∫ t

0
e−λn

∫ t
τ

a(s)dsdτ. (3.10)

Evaluating (3.10) at t = T on both sides and using the final helium concentration (3.2) give

ω(r,T ) = ru(r,T ) = rg(r) =

∞∑
n=1

fnXn(r)
∫ T

0
e−λn

∫ T
τ

a(s)dsdτ. (3.11)
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Define

ϕn(r) =

√
2
R

Xn(r) =

√
2
R

sin
(nπr

R

)
. (3.12)

It is easy to verify that the eigenfunctions {ϕn(r)}∞n=1 form an orthonormal basis in L2([0,R]). Using the
eigenfunctions as a basis, formula (3.8) can be rewritten as:

rg(r) =

∞∑
n=1

∫ T

0
e−λn

∫ T
τ

a(s)dsdτ〈 fr(r), ϕn(r)〉ϕn(r). (3.13)

For convenience, we denote
fr(r) = r f (r) and gr(r) = rg(r). (3.14)

To get fr, define an operator K : fr → gr, then the inverse source problem can be represented by the
following linear operator equation:

K fr(r) = gr(r). (3.15)

Using (3.13), it holds

K fr(r) =

∞∑
n=1

kn〈 fr(r), ϕn(r)〉ϕn(r) = gr(r), (3.16)

with

kn =

∫ T

0
e−λn

∫ T
τ

a(s)dsdτ, n = 1, 2, . . . . (3.17)

Therefore, the analytical solution of the inverse source problem is:

fr(r) =

∞∑
n=1

k−1
n 〈gr(r), ϕn(r)〉ϕn(r). (3.18)

Because measurement errors exist in the data function gr, the solution has to be reconstructed from
noisy data gδr which is assumed to satisfy

‖gδr − gr‖ ≤ δ. (3.19)

Here δ > 0 represents the noise level, and both gr(r) and gδr(r) are assumed to be functions in L2([0,R]).
To study the ill-posed nature of the inverse problem, it is sufficient to investigate the decay property

of the eigenvalues. From [15], we can see that the upper and lower bounds of kn are as follows

c
n2 ≤ kn ≤

c
n2 , as n→ ∞, (3.20)

where the constant c = R2

2a1π2 and c = R2

a0π2 .
From (3.20), we note that when n→ ∞, the eigenvalue kn → 0 [15, p7]. Fixed size data error can be

amplified arbitrarily much by the factors k−1
n . Therefore, the problem of identifying f (r) is ill-posed. In

the following, we will use two fractional regularization methods to solve the inverse radiogenic source
promblem.

AIMS Mathematics Volume 6, Issue 10, 11425–11448.
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To obtain the error estimates, it is necessary to assume certain regularity of the exact source function.
Here we assume that there exists an a priori estimate for the source function fr(r), i.e.,

‖ fr‖p ≤ E, for p > 0, (3.21)

where E > 0 is a constant. where the norm is defined in terms of the eigenfunctions

‖ fr‖p =
∥∥∥∥ ∞∑

n=1

np〈 fr, ϕn〉ϕn

∥∥∥∥. (3.22)

It is easy to check ‖ fr‖0 = ‖ fr‖.

4. Regularization solution of WTRM and convergence analysis

In this section, we propose a WTRM to solve the ill-posed problem (1.1) and give convergence
estimate under the a-priori regularization parameter choice rule.

Then we consider WTRM to solve the ill-posed problem, the regularization solution is

f δ,µr (r) =

∞∑
n=1

kαn
kα+1

n + µ
〈gδr(r), ϕn(r)〉ϕn(r), (4.1)

where µ > 0 plays the role of regularization parameter, we define α as the fractional parameter. When
α = 1, it expresses the classic Tikhonov method. However, for 0 < α < 1 we can see it prevent the
effect of oversmoothing and obtain a more accurate numerical results for the discontinuity of solution.

4.1. Convergence analysis of WTRM under an a-priori parameter choice rule

Theorem 4.1. Suppose the a priori condition (3.21) and the noise assumption (3.19) hold,

(1) If 0 < p < 2α + 2 and choice µ =
(
δ
E

) 2α+2
p+2 , we have a convergence estimate

‖ f δ,µr (r) − fr(r)‖ ≤ (c1 + c2)E
2

p+2 δ
p

p+2 . (4.2)

(2) If p ≥ 2α + 2 and choice µ =
(
δ
E

) α+1
α+2 , we have a convergence estimate

‖ f δ,µr (r) − fr(r)‖ ≤ (c1 + c3)E
1
α+2 δ

α+1
α+2 . (4.3)

Proof. By the triangle inequality, we know

‖ f δ,µr (r) − fr(r)‖ ≤ ‖ f δ,µr (r) − f µr (r)‖ + ‖ f µr (r) − fr(r)‖ = I1 + I2. (4.4)

We first give the estimate of I1, with Lemma 2.1 and (3.19), we have

I1 = ‖ f δ,µr (r) − f µr (r)‖ =

∥∥∥∥∥ ∞∑
n=1

kαn
kα+1

n + µ
〈gδr − gr, ϕn〉rϕn

∥∥∥∥∥
AIMS Mathematics Volume 6, Issue 10, 11425–11448.
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≤ δ sup
n>0

( c
n2 )α

( c
n2 )α+1 + µ

≤ c1µ
− 1
α+1 δ.

Now we estimate I2, by Lemma 2.2 and a priori bound condition (3.21), we can deduce that

I2 = ‖ f µr (r) − fr(r)‖ =

∥∥∥∥∥ ∞∑
n=1

(
1 −

kα+1
n

kα+1
n + µ

)
k−1

n 〈gr, ϕn〉rϕn

∥∥∥∥∥
≤

∥∥∥∥∥ ∞∑
n=1

µn−p

kα+1
n + µ

np〈 fr, ϕn〉rϕn

∥∥∥∥∥
≤ E sup

n>0

µn2α+2−p

cα+1 + µn2α+2

≤

{
c2µ

p
2α+2 E, 0 < p < 2α + 2,

c3µE, p ≥ 2α + 2.

Combining the above two inequality and choose the regularization parameter µ, we obtain

‖ f δ,µr (r) − fr(r)‖ ≤

 (c1 + c2)E
2

p+2 δ
p

p+2 , 0 < p < 2α + 2,
(c1 + c3)E

1
α+2 δ

α+1
α+2 , p ≥ 2α + 2.

4.2. Convergence analysis of WTRM under an a-posteriori parameter selection rule

In this section, we give the regularization parameter choice rule of the posterior fractional
regularization method. We can also obtain a convergence rate for the regularized solution (4.1) under
this parameter choice rule. The most general a posteriori rule is the Morozovs discrepancy
principle [39].

We use the discrepancy principle in the following form:∥∥∥K f δ,µr (r) − gδr(r)
∥∥∥ = τδ, (4.5)

where 0 < α ≤ 1, τ > 1 is a constant, µ > 0 is regularization parameter, K is defined by the operator
Eq (3.15). According to the following lemma, we know there exists a unique solution for Eq (4.5) if
0 < τδ < ‖gδr‖.
Lemma 4.2. Let d(µ) = ‖K f δ,µr (r) − gδr(r)‖, then we have the following conclusions: (1) d(µ) is a
continuous function; (2) lim

µ→0
d(µ) = ‖gδr(r)‖; (3) lim

µ→∞
d(µ) = 0; (4) d(µ) is a strictly decreasing function

over (0,∞).
Proof. The proofs are straightforward results by virtue of

d(µ) =
( ∞∑

n=1

( µ

kα+1
n + µ

)2
(gδr)

2
) 1

2
.
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Lemma 4.3. If µ is the solution of Eq (4.5), we also obtain the following inequality:

µ−
1
α+1 ≤


( c4
τ−1

) 2
p+2

(E
δ

) 2
p+2 , 0 < p < 2α,( c5

τ−1

) 1
α+1

(E
δ

) 1
α+1 , p ≥ 2α.

(4.6)

Proof. From (4.5), and according to Lemma 4.2, we obtain

τδ =
∥∥∥K f δ,µr (r) − gδr(r)‖

≤

∥∥∥∥ ∞∑
n=1

µ

kα+1
n + µ

〈gδr − gr, ϕn〉rϕn

∥∥∥∥ +
∥∥∥∥ ∞∑

n=1

µ

kα+1
n + µ

〈gδr , ϕn〉rϕn

∥∥∥∥
≤ δ +

∥∥∥∥ ∞∑
n=1

µknn−p

kα+1
n + µ

npk−1
n 〈g

δ
r , ϕn〉rϕn

∥∥∥∥
≤ δ + E sup

n>0

cµn2α−p

cα+1 + µn2α+2 .

According to Lemma 2.3, we have

τδ ≤ δ + E
{

c4 µ
p+2

2α+2 , 0 < p < 2α,
c5 µ, p ≥ 2α.

This yields

µ−
1
α+1 ≤


( c4
τ−1

) 2
p+2

(E
δ

) 2
p+2 , 0 < p < 2α,( c5

τ−1

) 1
α+1

(E
δ

) 1
α+1 , p ≥ 2α.

�
Theorem 4.4. Suppose the a priori condition (3.21) and the noise assumption (3.19) hold, and the
regularization parameter µ is chosen by discrepancy principle (4.5), then,
(1) If 0 < p < 2α, we have a convergence estimate

‖ f δ,µr (r) − fr(r)‖ ≤
(
c1

( c4

τ − 1

) 2
p+2

+
(τ + 1

C

) p
p+2

)
E

2
p+2 δ

p
p+2 . (4.7)

(2) If p ≥ 2α, we have a convergence estimate

‖ f δ,µr (r) − fr(r)‖ ≤
(( c6

τ − 1

) 1
α+1

+
(τ + 1

C

) α
α+1
λ

2α−p
2(α+1)

1

)
E

1
α+1 δ

α
α+1 . (4.8)

Proof. By the triangle inequality, we know

‖ f δ,µr (r) − fr(r)‖ ≤ ‖ f δ,µr (r) − f µr (r)‖ + ‖ f µr (r) − fr(r)‖ = I1 + I2. (4.9)

(1) For 0 < p < 2α. We first give the estimate of I1, with Lemma 4.3 we have

I1 = ‖ f δ,µr (r) − f µr (r)‖ ≤ c1µ
− 1
α+1 δ ≤ c1

( c3

τ − 1

) 2
p+2 E

2
p+2 δ

p
p+2 . (4.10)
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Now we estimate I2, by (3.19) and (3.21), we can deduce that

I2 = ‖ f µr (r) − fr(r)‖ =
∥∥∥∥ ∞∑

n=1

µ

kα+1
n + µ

k−1
n 〈gr, ϕn〉ϕn

∥∥∥∥
=

∥∥∥∥∥ ∞∑
n=1

µkn

kα+1
n + µ

〈 fr, ϕn〉ϕn

kn

∥∥∥∥∥
≤

∥∥∥∥∥ ∞∑
n=1

µkn

kα+1
n + µ

〈 fr, ϕn〉ϕn

∥∥∥∥∥ p
p+2

·

∥∥∥∥∥ µkn

kα+1
n + µ

〈 fr, ϕn〉ϕn

k
p+2

2
n

∥∥∥∥∥ 2
p+2

≤

∥∥∥∥∥ ∞∑
n=1

µ

kα+1
n + µ

〈gr, ϕn〉ϕn

∥∥∥∥∥ p
p+2

·

∥∥∥∥∥ ∞∑
n=1

µnp

k
p
2
n (kα+1

n + µ)
n−p〈 fr, ϕn〉ϕn

∥∥∥∥∥ 2
p+2

≤

(∥∥∥∥∥ ∞∑
n=1

µ

kα+1
n + µ

〈gr − gδr , ϕn〉ϕn

∥∥∥∥∥
+

∥∥∥∥∥ ∞∑
n=1

µ

kα+1
n + µ

〈gδr , ϕn〉ϕn

∥∥∥∥∥) p
p+2

sup
n>0

(
n−p

( c
n2 )

p
2

) 2
p+2

E
2

p+2

≤
(τ + 1

c

) p
p+2 E

2
p+2 δ

p
p+2 .

(4.11)

Combining (4.9), (4.10) and (4.11), we obtain

‖ f δ,µr (r) − fr(r)‖ ≤
(
c1

( c4

τ − 1

) 2
p+2

+
(τ + 1

c

) p
p+2

)
E

2
p+2 δ

p
p+2 .

(2) For p ≥ 2α. From (4.9), we first give the estimate of I1, with Lemma 4.2 we have

I1 = ‖ f δ,µr (r) − f δr (r)‖ ≤ c1δµ
− 1
α+1 ≤

( c5

τ − 1

) 1
α+1 E

1
α+1 δ

α
α+1 . (4.12)

Then we estimate I2, by Lemma 2.3 and (3.21), we known

I2 = ‖ f µr (r) − fr(r)‖ =
∥∥∥∥ ∞∑

n=1

µ

kα+1
n + µ

k−1
n 〈gr, ϕn〉ϕn

∥∥∥∥ =

∥∥∥∥∥ ∞∑
n=1

µkn

kα+1
n + µ

〈 fr, ϕn〉ϕn

kn

∥∥∥∥∥
≤

∥∥∥∥∥ ∞∑
n=1

µkn

kα+1
n + µ

〈 fr, ϕn〉ϕn

∥∥∥∥∥ α
α+1

·

∥∥∥∥∥ µkn

kα+1
n + µ

〈 fr, ϕn〉ϕn

kα+1
n

∥∥∥∥∥ 1
α+1

≤

∥∥∥∥∥ ∞∑
n=1

µ

kα+1
n + µ

〈gr, ϕn〉ϕn

∥∥∥∥∥ α
α+1

·

∥∥∥∥∥ ∞∑
n=1

µn−p

kαn (kα+1
n + µ)

np〈 fr, ϕn〉ϕn

∥∥∥∥∥ 1
α+1

≤

(∥∥∥∥∥ ∞∑
n=1

µ

kα+1
n + µ

〈gr − gδr , ϕn〉ϕn

∥∥∥∥∥
+

∥∥∥∥∥ ∞∑
n=1

µ

kα+1
n + µ

〈gδr , ϕn〉ϕn

∥∥∥∥∥) α
α+1

∥∥∥∥∥ n−p

( c
n2 )α

np〈 fr, ϕn〉ϕn

∥∥∥∥∥ 1
α+1

≤
(τ + 1

c

) α
α+1 E

1
α+1 δ

α
α+1 .

(4.13)
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Combining (4.9), (4.12) and (4.13), we obtain

‖ f δ,µr (r) − fr(r)‖ ≤
(( c5

τ − 1

) 1
α+1

+
(τ + 1

c

) α
α+1

)
E

1
α+1 δ

α
α+1 .

This completes the proof.

5. Regularization solution of FLRM and convergence analysis

In this section, we propose a FLRM to solve the ill-posed problem (1.1) and give convergence
estimate under the a-priori regularization parameter choice rule.

We denote regularization solution of FLRM with the noisy data as follows:

f δ,mr (r) =

∞∑
n=1

[1 − (1 − βk2
n)m]αk−1

n 〈g
δ
r(r), ϕn(r)〉ϕn(r),

1
2
< α ≤ 1, (5.1)

where m ≥ 1 plays the role of regularization parameter, 0 < β < 2
k2

n
, α is called the fractional parameter.

When α = 1, it is the classic Landweber iterative method.

5.1. Convergence analysis of FLRM under an a-priori parameter selection rule

Now we give the main result of this section.
Theorem 5.1. Suppose the a priori condition (3.21) and the noise assumption (3.19) hold, let m =

b( E
δ
)

4
p+2 c, we have the convergence estimate

‖ f δ,mr (r) − fr(r)‖ ≤ (β
1
2 + c6c−

p
2 )E

2
p+2 δ

p
p+2 , (5.2)

where bsc denotes the largest integer smaller than or equal to s, c5 are the positive constants depending
on β, p, α, and c.
Proof. By the triangle inequality, we know

‖ f δ,mr (r) − fr(r)‖ ≤ ‖ f δ,mr (r) − f m
r (r)‖ + ‖ f m

r (r) − fr(r)‖ = J1 + J2. (5.3)

As in the estimate of I1, by Lemma 2.5 and (3.19), we have

J1 = ‖ f δ,mr (r) − f m
r (r)‖

=

∥∥∥∥∥ ∞∑
n=1

[1 − (1 − βk2
n)m]αk−1

n 〈g
δ
r − gr, ϕn〉ϕn

∥∥∥∥∥
≤ δ sup

n>0
k−1

n [1 − (1 − βk2
n)m]α

≤ β
1
2 m

1
2 δ.

Now we estimate J2, by Lemma 2.6 and the a-priori bound condition (3.21), we can deduce that

J2 = ‖ f m
r (r) − fr(r)‖
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=

∥∥∥∥∥ ∞∑
n=1

[
1 − [1 − (1 − βk2

n)m]α
]
k−1

n 〈gr, ϕn〉ϕn

∥∥∥∥∥
≤

∥∥∥∥∥ ∞∑
n=1

(1 − βk2
n)mn−pnpk−1

n 〈gr, ϕn〉ϕn

∥∥∥∥∥
≤ E sup

n>0
(1 − βk2

n)mn−p

≤ c6c−
p
2 m−

p
4 E.

Combining the above two inequalities, we obtain

‖ f δm(r) − f (r)‖ ≤ β
1
2 m

1
2 δ + c6c−

p
2 m−

p
4 E.

Choose the regularization parameter m by

m = b

(E
δ

) 4
p+2

c,

then we have the following result

‖ f δ,mr (r) − fr(r)‖ ≤ (β
1
2 + c6c−

p
2 )E

2
p+2 δ

p
p+2 .

5.2. Convergence analysis of FLRM under an a-posteriori parameter selection rule

Due to the semi-convergence property of iterative methods for ill-posed problems, we need a reliable
stopping rule for detecting the moment from convergence to divergence. In this section, we give the
a-posteriori parameter choice rule for the FLRM. We can obtain a convergence rate for the regularized
solution (4.1) under this parameter choice rule. The most general a-posteriori rule is the Morozov’s
discrepancy principle [39].

We use the discrepancy principle in the following form:∥∥∥K f δ,mr (r) − gδr(r)
∥∥∥ ≤ τδ, (5.4)

where τ > 1 is a user-supplied constant independent on δ, m > 0 is regularization parameter which
makes (5.4) hold at the first time, K is defined by the operator Eq (3.15).
Lemma 5.2. Let d(m) = ‖K f δ,mr (r) − gδr(r)

∥∥∥∥, then we have the following conclusions: (1) d(m) is
a continuous function; (2) lim

m→0
d(m) = ‖gδr(r)‖; (3) lim

m→∞
d(m) = 0; (4) d(m) is a strictly decreasing

function over (0,∞).
Proof. By (5.1) and (5.4), we have

d(m) =
( ∞∑

n=1

[
1 − [1 − (1 − βk2

n)m]α
]2

(gδr)
2
) 1

2
.

Obviously, lim
m→0

d(m) =
(∑∞

n=1(gδr)
2
) 1

2
= ‖gδr(r)‖. Therefore the conclusions (1)–(4) are obvious.

Remark 5.3. We assume that the noisy data ‖gδr‖ is large enough such that 0 < τδ < ‖gδr‖, thus
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according to Lemma 5.2, there exists a unique minimum solution for inequality (5.4).
Lemma 5.4. If m is the solution of Eq (5.4), we can obtain the following inequality:

(mβ)
1
2 ≤

( θ p+2
4

c
p
2 (τ − 1)

) 2
p+2

(E
δ

) 2
p+2

, (5.5)

where

θ p+2
4

=

 1, 0 ≤ p ≤ 2,(
p+2

4

) p+2
4
, p > 2.

Proof. From (5.4), and according to Lemma 2.4, we obtain

τδ ≤
∥∥∥K f δ,mr (r) − gδr(r)

∥∥∥
=

∥∥∥∥ ∞∑
n=1

[
1 − [1 − (1 − βk2

n)m−1]α
]
〈gδr , ϕn〉ϕn

∥∥∥∥∥
≤

∥∥∥∥ ∞∑
n=1

(1 − βk2
n)m−1〈gδr − gr, ϕn〉ϕn

∥∥∥∥ +
∥∥∥∥ ∞∑

n=1

(1 − βk2
n)m−1〈gδr , ϕn〉ϕn

∥∥∥∥,
then

τδ ≤ δ + E sup
n>0

(1 − βk2
n)m−1knn−p

≤ δ + c−
p
2 E sup

n>0
(1 − βk2

n)m−1(βk2
n)

p+2
4 β−

p+2
4

≤ δ + c−
p
2 θ p+2

4
(mβ)−

p+2
4 E.

This yields

(mβ)
1
2 ≤

( θ p+2
4

c
p
2 (τ − 1)

) 2
p+2

(E
δ

) 2
p+2

. (5.6)

Theorem 5.5. Suppose the a priori condition (3.21) and the noise assumption (3.19) hold, then we
have the convergence estimate

‖ f δ,mr (r) − fr(r)‖ ≤
(( θ p+2

4

c
p
2 (τ − 1)

) 2
p+2

+
(τ + 1

c

) p
p+2

)
E

2
p+2 δ

p
p+2 .

Proof. By the triangle inequality, we know

‖ f δ,mr (r) − fr(r)‖ ≤ ‖ f δ,mr (r) − f m
r (r)‖ + ‖ f m

r (r) − fr(r)‖ = J1 + J2. (5.7)

On the estimate of J1, by Lemma 5.4, we have

J1 = ‖ f δ,mr (r) − f m
r (r)‖ ≤ β

1
2 m

1
2 δ ≤

( θ p+2
4

c
p
2 (τ − 1)

) 2
p+2

E
2

p+2 δ
p

p+2 . (5.8)
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Now we estimate J2, by the a priori bound condition (3.21), we can deduce that

J2 = ‖ f m
r (r) − fr(r)‖

=

∥∥∥∥∥ ∞∑
n=1

[
1 − [1 − (1 − βE2

α,1(−λnTα))m]α
]
fnϕn

∥∥∥∥∥
≤

∥∥∥∥∥ ∞∑
n=1

(1 − βk2
n)m〈 fr, ϕn〉ϕn

∥∥∥∥∥
≤

∥∥∥∥∥ ∞∑
n=1

(1 − βk2
n)m〈 fr, ϕn〉ϕn

∥∥∥∥∥ p
p+2

∥∥∥∥∥ ∞∑
n=1

(1 − βk2
n)mn−pnp〈 fr, ϕn〉ϕn

∥∥∥∥∥ 2
p+2

,

(5.9)

where we have used the Hölder inequality. Therefore, by the triangle inequality, we obtain

J2 ≤

(∥∥∥∥∥ ∞∑
n=1

(1 − βk2
n)mk−1

n 〈(gr − gδr), ϕn〉ϕn

∥∥∥∥∥
+

∥∥∥∥∥ ∞∑
n=1

(1 − βk2
n)mk−1

n gδnϕn

∥∥∥∥∥) p
p+2

∥∥∥∥∥ ∞∑
n=1

n−pnp〈( fr, ϕn〉ϕn

∥∥∥∥∥ 2
p+2

≤ (δ + τδ)
p

p+2 sup
n>0

(knn2)−
p

p+2

≤
(τ + 1

c

) p
p+2 E

2
p+2 δ

p
p+2 .

(5.10)

Combining (5.7), (5.8) and (5.10), we can get the conclusion.

6. Numerical examples

In this section, three simple numerical examples are presented to show the validity of the two
fractional regularization methods. the simulated data aregenerated as:

gδ = g(1 + δ · randn(size(g))).

where g is the solution of the forward problem, and randn is the white noise, the magnitude δ indicates
the noise level of the measured data. In the numerical experiment, we use the spatial discretization
number M = 401, and we fix a(t) = 1,T = 1,R = 1. f (r) is the exact solution, f δ,µ(r) and f δ,m(r)
are regularized solutions of the WTRM and FLRM, respectively. The relative error calculations of the
WTRM and FLRM are as follows

RE(WTRM) =

√√
M∑

i=1

r(i)( f (i) − f δ,µ(i))2

/√√
M∑

i=1

r(i)( f (i))2,

RE(FLRM) =

√√
M∑

i=1

r(i)( f (i) − f δ,m(i))2

/√√
M∑

i=1

r(i)( f (i))2,

where ‖ · ‖ is the L2([0,R]) norm.
In order to obtain the artificial data gδ, we need to solve the following forward problem:

∂u(r,t)
∂t = a(t)[∂

2u(r,t)
∂r2 + 2

r
∂u(r,t)
∂r ] + f (r), t ∈ (0, 1), 0 < r < 1,

u(r, 0) = 0,
u(1, t) = 0.
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Since the diffusivity a(t) is taken to be a constant, the specific representation of the eigenvalues,
eigenfunctions and the regularization solution could be calculated as follows

kn =

∫ T

0
e−λn

∫ T
τ

a(t)dtdτ =
1 − e−aλnT

aλn
=

1 − e−a(nπ)2

a(nπ)2 ,

and the eigenfunctions
ϕn(r) =

√
2 sin(nπr).

Substituting the eigenfunctions gives a formula to compute the coefficients

〈rg(r), ϕn(r)〉 =
√

2
∫ 1

0
rg(r) sin(nπr)dr.

Note that the right hand side is essentially the sine transform of the function rg(r), which can
be efficiently implemented by using a version of the fast Fourier transform for real functions [40].
Based on the explicit expressions for the eigensystems, the regularization solution of WTRM could be
calculated as follows

f δ,µ(r) =
2
r

∞∑
n=1

kαn
kα+1

n + µ

[ ∫ 1

0
rgδ(r) sin(nπr)dr

]
sin(nπr),

1
2
< α ≤ 1. (6.1)

the regularization solution of FLRM could be calculated as follows

f δ,m(r) =
2
r

∞∑
n=1

[1 − (1 − βk2
n)m]αk−1

n

[ ∫ 1

0
rgδ(r) sin(nπr)dr

]
sin(nπr),

1
2
< α ≤ 1. (6.2)

In practical computation, we take the first n = 40 terms of the sum (6.1) and (6.2).
Example 6.1. Consider a smooth exact solution:

f1(r) = 100(1 − r2), (6.3)

in interval [0, 1].

(a) (b) r
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

g(
r)

0

2

4

6

8

10

12
unperturbed data function g(r)

g(r)

Figure 1. Example 6.1: (a) Solution of forward problem; (b) The unperturbed data function
g(r).
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Figure 2. Example 6.1: Source function f(r) reconstructed by WTRM.
(a) δ = 0.01, α = 0.65, µpriori = 0.0015, µposterior = 1 ∗ 10−5;
(b) δ = 0.05, α = 0.65, µpriori = 0.0043, µposterior = 1 ∗ 10−4.
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Figure 3. Example 6.1: Source function f(r) reconstructed by FLRM.
(a) δ = 0.01, α = 0.8, β = 30, mpriori = 5407, mposterior = 500;
(b) δ = 0.05, α = 0.8, β = 30, mpriori = 1849, mposterior = 500.

Table 1. Numerical results of Example 6.1.

(a)
δ 0.01 0.05

REpriori 0.0444 0.1199
REposterior 0.0216 0.0386

(b)
δ 0.01 0.05

REpriori 0.0438 0.1178
REposterior 0.0117 0.0606

Relative error of WTRM (α = 0.65); Relative error of FLRM (α = 0.8).

Figures 1–3 show the numerical results of Example 6.1. Figure 1 shows the solution of forward
problem and the unperturbed data function g(r). Figure 2 shows the comparison for the regularization
parameter chosen by both the a-priori WTRM and the a-posteriori WTRM with respect to different
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noise level. Figure 3 shows the comparison for the regularization parameter chosen by both the a-
priori FLRM and the a-posteriori FLRM with respect to different noise level. Table 1(a) and 1(b) show
the relative error between the exact solution and the approximate solution calculated by the WTRM
and the FLRM, respectively.

From the numerical results, the approximate solution calculated by the a-posterior method is better
than the a-prior method, and the relative error of the a-posterior calculation is smaller than that of the
a-priori parameter choice. As the noise level increases, the numerical performance deteriorates.

Example 6.2. Consider the oscillating source function

f2(r) = 2[1 + cos(3πr)], (6.4)

in interval [0, 1].

(a) (b) r
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
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0.35
unperturbed data function g(r)

g(r)

Figure 4. Example 6.2: (a) Solution of forward problem; (b) The unperturbed data function
g(r).
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Figure 5. Example 6.2: Source function f(r) reconstructed by WTRM.
(a) δ = 0.01, α = 0.65, µpriori = 1.1 ∗ 10−4, µposterior = 1.1 ∗ 10−6;
(b) δ = 0.05, α = 0.65, µpriori = 1.7 ∗ 10−4, µposterior = 1.0 ∗ 10−5.
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Figure 6. Example 6.2: Source function f(r) reconstructed by FLRM.
(a) δ = 0.01, α = 0.8, β = 20, mpriori = 31075, mposterior = 5000;
(b) δ = 0.05, α = 0.8, β = 20, mpriori = 16324, mposterior = 5000.

Table 2. Numerical results of Example 6.2.

(a)
δ 0.01 0.05

REpriori 0.1940 0.2912
REposterior 0.1356 0.2306

(b)
δ 0.01 0.05

REpriori 0.1077 0.3394
REposterior 0.0411 0.1670

Relative error of WTRM (α = 0.65); Relative error of FLRM (α = 0.8).

The numerical experiments of Example 6.2 is similar to those of Example 6.1. The result of
Example 6.2 is shown in Figures 4–6 and Table 2.

Example 6.3. Consider the nonsmooth source function:

f3(r) =

{
5, 0 < r ≤ 0.5,
80(1 − r)4, 0.5 < r < 1.

(6.5)
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Figure 7. Example 6.3: (a) Solution of forward problem; (b) The unperturbed data function
g(r).
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Figure 8. Example 6.3: Source function f(r) reconstructed by WTRM.
(a) δ = 0.01, α = 0.65, µpriori = 5.3 ∗ 10−4, µposterior = 3.0 ∗ 10−5;
(b) δ = 0.05, α = 0.65, µpriori = 1.3 ∗ 10−3, µposterior = 3.0 ∗ 10−5;
(c) δ = 0.01, α = 1, µpriori = 1.1 ∗ 10−4, µposterior = 3.0 ∗ 10−5;
(d) δ = 0.05, α = 1, µpriori = 3.1 ∗ 10−4, µposterior = 1.0 ∗ 10−5.

Table 3. Numerical results of Example 6.3.

(a)
δ 0.01 0.05

REpriori 0.1124 0.1475
REposterior 0.0499 0.0849

(b)
δ 0.01 0.05

REpriori 0.1194 0.1607
REposterior 0.1162 0.1047

(a) Relative error of weighted fractional Tikhonov method (α = 0.65);
(b) Relative error of classic Tikhonov method (α = 1).

In this example, we compare the numerical results of two fractional regularization methods and
classical regularization methods under the same parameter choice. Figure 7 shows the solution of
forward problem and the unperturbed data function g(r) of Example 6.3. Figure 8 and Table 3 show
the comparison of the numerical results of the weighted fractional Tikhonov regularization method
and the classical Tikhonov regularization method. The result shows that the weighted fractional
Tikhonov method outperforms the classical Tikhonov method under the same parameters, and the
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classic Tikhonov regularized solution oversmooths.
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Figure 9. Example 6.3: Source function f(r) reconstructed by FLRM.
(a) δ = 0.01, α = 0.8, β = 20, mpriori = 9423,mposterior = 1000;
(b) δ = 0.05, α = 0.8, β = 20, mpriori = 3222, mposterior = 1000;
(c) δ = 0.01, α = 1, β = 20, mpriori = 9423, mposterior = 1000;
(d) δ = 0.05, α = 1, β = 20, mpriori = 3222, mposterior = 1000.

Table 4. Numerical results of Example 6.3.

(a)
δ 0.01 0.05

REpriori 0.0453 0.1123
REposterior 0.0699 0.0953

(b)
δ 0.01 0.05

REpriori 0.0422 0.1220
REposterior 0.0769 0.0981

(a) Relative error of fractional Landweber method (α = 0.8);
(b) Relative error of classic Landweber method (α = 1).

Figure 9 and Table 4 show the comparison of the numerical results of the fractional Landweber
regularization method and the classical Landweber regularization method. We can see that the
fractional Landweber method provides better numerical result than the classical Landweber method
under the same iterative steps.
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7. Conclusions

As we have seen, the fractional methods include the classical method by introducing a new
fractional parameter. We have proved the error estimates for the fractional regularization methods
under the the a-priori parameter choice rule and the Morozov’s parameter choice rule. The error
estimates are order-optimal. This shows that in theory the fractional regularization methods are not
inferior to the classical regularization method. Numerical results are also displays that the fractional
methods can overcome the disadvantage of over-smoothing of the classical methods. The future
research will be generalize the fractional regularization methods to some fractional differential
equations with important application background.
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