The main objective of this study is to establish error estimates of the new parameterized quadrature rule similar to and covering the second Simpson formula. To do this, we start by introducing a new parameterized identity involving the right and left Riemann-Liouville integral operators. On the basis of this identity, we establish some fractional Simpson-type inequalities for functions whose absolute value of the first derivatives are s-convex in the second sense. Also, we examine the special cases $ m = 1/2 $ and $ m = 3/8 $, as well as the two cases $ s = 1 $ and $ \alpha = 1 $, which respectively represent the classical convexity and the classical integration. By applying the definition of convexity, we derive larger estimates that only used the extreme points. Finally, we provide applications to quadrature formulas, special means, and random variables.
Citation: Nassima Nasri, Badreddine Meftah, Abdelkader Moumen, Hicham Saber. Fractional $ 3/8 $-Simpson type inequalities for differentiable convex functions[J]. AIMS Mathematics, 2024, 9(3): 5349-5375. doi: 10.3934/math.2024258
The main objective of this study is to establish error estimates of the new parameterized quadrature rule similar to and covering the second Simpson formula. To do this, we start by introducing a new parameterized identity involving the right and left Riemann-Liouville integral operators. On the basis of this identity, we establish some fractional Simpson-type inequalities for functions whose absolute value of the first derivatives are s-convex in the second sense. Also, we examine the special cases $ m = 1/2 $ and $ m = 3/8 $, as well as the two cases $ s = 1 $ and $ \alpha = 1 $, which respectively represent the classical convexity and the classical integration. By applying the definition of convexity, we derive larger estimates that only used the extreme points. Finally, we provide applications to quadrature formulas, special means, and random variables.
[1] | M. Alomari, M. Darus, On some inequalities of Simpson-type via quasi-convex functions and applications, Transylv. J. Math. Mech., 2 (2010), 15–24. |
[2] | A. Kashuri, B. Meftah, P. O. Mohammed, Some weighted Simpson type inequalities for differentiable $s$-convex functions and their applications, J. Fractional Calculus Nonlinear Syst., 1 (2021), 75–94. https://doi.org/10.48185/jfcns.v1i1.150 doi: 10.48185/jfcns.v1i1.150 |
[3] | M. Z. Sarikaya, E. Set, M. E. Özdemir, On new inequalities of Simpson's type for functions whose second derivatives absolute values are convex, J. Appl. Math. Stat. Inf., 9 (2013), 37–45. https://doi.org/10.2478/jamsi-2013-0004 doi: 10.2478/jamsi-2013-0004 |
[4] | E. Set, M. E. Özdemir, M. Z. Sarıkaya, On new inequalities of Simpson's type for quasi-convex functions with applications, Tamkang J. Math., 43 (2012), 357–364. |
[5] | J. E. N. Valdés, B. Bayraktar, S. I. Butt, New integral inequalities of Hermite-Hadamard type in a generalized context, Punjab Univ. J. Math., 53 (2021), 765–777. https://doi.org/10.52280/pujm.2021.531101 doi: 10.52280/pujm.2021.531101 |
[6] | J. E. Pečarić, F. Proschan, Y. L. Tong, Convex functions, partial orderings, and statistical applications, Academic Press, 1992. |
[7] | M. A. Ali, C. S. Goodrich, H. Budak, Some new parameterized Newton-type inequalities for differentiable functions via fractional integrals, J. Inequal. Appl., 2023 (2023), 49. https://doi.org/10.1186/s13660-023-02953-x doi: 10.1186/s13660-023-02953-x |
[8] | T. Chiheb, N. Boumaza, B. Meftah, Some new Simpson-like type inequalities via preqausiinvexity, Transylv. J. Math. Mech., 12 (2020), 1–10. |
[9] | B. Meftah, Fractional Hermite-Hadamard type integral inequalities for functions whose modulus of derivatives are co-ordinated $\log $ -preinvex, Punjab Univ. J. Math., 51 (2019), 21–37. |
[10] | B. Meftah, A. Souahi, M. Merad, Some local fractional Maclaurin type inequalities for generalized convex functions and their applications, Chaos Solitons Fractals, 162 (2022), 112504. https://doi.org/10.1016/j.chaos.2022.112504 doi: 10.1016/j.chaos.2022.112504 |
[11] | M. Rostamian Delavar, A. Kashuri, M. De La Sen, On weighted Simpson's $\frac{3}{8}$ rule, Symmetry, 13 (2021), 1933. https://doi.org/10.3390/sym13101933 doi: 10.3390/sym13101933 |
[12] | M. A. Noor, K. I. Noor, S. Iftikhar, Newton inequalities for $p $-harmonic convex functions, Honam Math. J., 40 (2018), 239–250. https://doi.org/10.5831/HMJ.2018.40.2.239 doi: 10.5831/HMJ.2018.40.2.239 |
[13] | N. Laribi, B. Meftah, $3/8$-Simpson type inequalities for functions whose modulus of first derivatives and its $q$-th powers are $s$ -convex in the second sense, Jordan J. Math. Stat., 16 (2023), 79–98. |
[14] | S. Erden, S. Iftikhar, M. R. Delavar, P. Kumam, P. Thounthong, W. Kumam, On generalizations of some inequalities for convex functions via quantum integrals, RACSAM, 114 (2020), 110. https://doi.org/10.1007/s13398-020-00841-3 doi: 10.1007/s13398-020-00841-3 |
[15] | L. Mahmoudi, B. Meftah, Parameterized Simpson-like inequalities for differential $s$-convex functions, Analysis, 43 (2023), 59–70. https://doi.org/10.1515/anly-2022-1068 doi: 10.1515/anly-2022-1068 |
[16] | A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, New York: Elsevier, 2006. |
[17] | T. A. Aljaaidi, D. B. Pachpatte, T. Abdeljawad, M. S. Abdo, M. A. Almalahi, S. S. Redhwan, Generalized proportional fractional integral Hermite-Hadamard's inequalities, Adv. Differ. Equ., 2021 (2021), 493. https://doi.org/10.1186/s13662-021-03651-y doi: 10.1186/s13662-021-03651-y |
[18] | Z. Dahmani, On Minkowski and Hermite-Hadamard integral inequalities via fractional integration, Ann. Funct. Anal., 1 (2010), 51–58. https://doi.org/10.15352/afa/1399900993 doi: 10.15352/afa/1399900993 |
[19] | T. Du, J. Liao, L. Chen, M. U. Awan, Properties and Riemann-Liouville fractional Hermite-Hadamard inequalities for the generalized $\left(\alpha, m\right) $-preinvex functions, J. Inequal. Appl., 2016 (2016), 306. https://doi.org/10.1186/s13660-016-1251-5 doi: 10.1186/s13660-016-1251-5 |
[20] | T. Du, M. U. Awan, A. Kashuri, S. Zhao, Some $k$-fractional extensions of the trapezium inequalities through generalized relative semi-$ (m, h)$-preinvexity, Appl. Anal., 100 (2021), 642–662. https://doi.org/10.1080/00036811.2019.1616083 doi: 10.1080/00036811.2019.1616083 |
[21] | A. Kashuri, B. Meftah, P. O. Mohammed, A. A. Lupaş, B. Abdalla, Y. S. Hamed, et al., Fractional weighted Ostrowski-type inequalities and their applications, Symmetry, 13 (2021), 968. https://doi.org/10.3390/sym13060968 doi: 10.3390/sym13060968 |
[22] | P. O. Mohammed, I. Brevik, A new version of the Hermite-Hadamard inequality for Riemann-Liouville fractional integrals, Symmetry, 12 (2020), 610. https://doi.org/10.3390/sym12040610 doi: 10.3390/sym12040610 |
[23] | M. A. Noor, K. I. Noor, M. U. Awan, Fractional Ostrowski inequalities for $s$-Godunova-Levin functions, Int. J. Anal. Appl., 5 (2014), 167–173. |
[24] | S. Rashid, A. O. Akdemir, F. Jarad, M. A. Noor, K. I. Noor, Simpson's type integral inequalities for $k$-fractional integrals and their applications, AIMS Mathematics, 4 (2019), 1087–1100. https://doi.org/10.3934/math.2019.4.1087 doi: 10.3934/math.2019.4.1087 |
[25] | S. S. Zhou, S. Rashid, F. Jarad, H. Kalsoom, Y. M. Chu, New estimates considering the generalized proportional Hadamard fractional integral operators, Adv. Differ. Equ., 2020 (2020), 275. https://doi.org/10.1186/s13662-020-02730-w doi: 10.1186/s13662-020-02730-w |