Research article

$k$-fractional integral inequalities of Hadamard type for exponentially $(s, m)$-convex functions

  • Received: 29 July 2020 Accepted: 08 October 2020 Published: 03 November 2020
  • MSC : 26A51, 26D15, 35B05

  • The aim of this article is to present fractional versions of the Hadamard type inequalities for exponentially $(s, m)$-convex functions via $k$-analogue of Riemann-Liouville fractional integrals. The results provide generalizations of various known fractional integral inequalities. Some special cases are analyzed in the form of corollaries and remarks.

    Citation: Atiq Ur Rehman, Ghulam Farid, Sidra Bibi, Chahn Yong Jung, Shin Min Kang. $k$-fractional integral inequalities of Hadamard type for exponentially $(s, m)$-convex functions[J]. AIMS Mathematics, 2021, 6(1): 882-892. doi: 10.3934/math.2021052

    Related Papers:

  • The aim of this article is to present fractional versions of the Hadamard type inequalities for exponentially $(s, m)$-convex functions via $k$-analogue of Riemann-Liouville fractional integrals. The results provide generalizations of various known fractional integral inequalities. Some special cases are analyzed in the form of corollaries and remarks.


    加载中


    [1] F. Chen, On Hermite-Hadamard type inequalities for Riemann Liouville fractional integrals via two kinds of convexity, Chin. J. Math., 2014 (2014), 1-7, Article ID 173293.
    [2] Y. M. Chu, M. A. Khan, T. U. Khan, T. Ali, Generalizations of Hermite-Hadamard type inequalities for MT-convex functions, J. Nonlinear Sci. Appl., 9 (2016), 4305-4316. doi: 10.22436/jnsa.009.06.72
    [3] G. Farid, A. U. Rehman, M. Zahra, On Hadamard inequalities for k-fractional integrals, Nonlinear Funct. Anal. Appl., 21 (2016), 463-478.
    [4] A. Iqbal, M. A. Khan, S. Ullah, Y. M. Chu, A. Kashuri, Hermite Hadamard type inequalities pertaining conformable fractional integrals and their applications, AIP Advances., 8 (2018), 1-18.
    [5] M. A. Khan, T. Ali, S. S. Dragomir, M. Z. Sarikaya, Hermite Hadamard type inequalities for conformable fractional integrals, Rev. R. Acad. Cienc. Exactas Fs. Nat, Ser. A Mat, RACSAM., 112 (2018), 1033-1048. doi: 10.1007/s13398-017-0408-5
    [6] M. A. Khan, T. Ali, T. U. Khan, Hermite Hadamard type inequalities with applications, Fasciculi Mathematici., 59 (2017), 57-74. doi: 10.1515/fascmath-2017-0017
    [7] M. A. Khan, Y. M. Chu, A. Kashuri, R. Liko, G. Ali, Conformable fractional integrals versions of Hermite-Hadamard inequalities and their generalizations, J. Func. Spaces., 2018 (2018), 1-9, Article ID 6928130.
    [8] M. A. Khan, M. Iqbal, M. Suleman, Y. M. Chu, Hermite-Hadamard type inequalities for fractional integrals via green function, J. Inequal. Appl., 2018 (2018), 161. doi: 10.1186/s13660-018-1751-6
    [9] M. Z. Sarikaya, E. Set, H. Yaldiz, N. Basak, Hermite-Hadamard's inequalities for fractional integrals and related fractional inequalities, Math. Comput. Model., 57 (2013), 2403-2407. doi: 10.1016/j.mcm.2011.12.048
    [10] I. Ahmad, Integral inequalities under beta function and preinvex type functions, Springer Plus., 5 (2016), 521. doi: 10.1186/s40064-016-2165-x
    [11] M. Andric, A. Barbir, G. Farid, J. Pečarić, Opial-type inequality due to AgarwalPang and fractional differential inequalities, Integral Transforms Spec. Funct., 25 (2014), 324-335. doi: 10.1080/10652469.2013.851079
    [12] Y. M. Chu, M. A. Khan, T. Ali, S. S. Dragomir, Inequalities for α-fractional differentiable functions, J. Inequal. Appl., 2017 (2017), 93. doi: 10.1186/s13660-017-1371-6
    [13] G. Farid, J. Pečarić, Opial type integral inequalities for fractional derivatives, Fractional Diff. Calc., 2 (2012), 31-54.
    [14] G. Farid, J. Pečarić, Opial type integral inequalities for Widder derivatives and linear differential operators, Int. J. Anal. Appl., 7 (2015), 38-49.
    [15] M. A. Khan, S. Begum, Y. Khurshid, Y. M. Chu, Ostrowski type inequalities involving conformable fractional integrals, J. Inequal. Appl., 2018 (2018), 70. doi: 10.1186/s13660-018-1664-4
    [16] X. Qiang, G. Farid, J. Pečarić, S. B. Akbar, Generalized fractional integral inequalities for exponentially (s, m)-convex functions, J. Inequal. Appl., 2020 (2020), 70.
    [17] G. A. Anastassiou, Generalized fractional Hermite Hadamard inequalities involving m-convexity and (s, m)-convexity, Ser. Math. Inform., 28 (2013), 107-126.
    [18] G. H. Toader, Some generalisations of the convexity, Proc. Colloq. Approx. Optim, Cluj-Napoca (Romania), 1984,329-338.
    [19] N. Mehreen, M. Anwar, Hermite Hadamard type inequalities for exponentially p-convex functions and exponentially s-convex functions in the second sense with applications, J. Inequal. Appl., 2019 (2019), 92. doi: 10.1186/s13660-019-2047-1
    [20] A. W. Roberts, D. E. Varberg, Convex functions, New York and London: Academic Press, 1973.
    [21] S. Rashid, M. A. Noor, K. I. Noor, Fractional exponentially m-convex functions and inequalities, Int. J. Anal. Appl., 17 (2019), 464-478.
    [22] M. U. Awan, M. A. Noor, K. I. Noor, Hermite-Hadamard inequalities for exponentially convex functions, Appl. Math. Inf. Sci., 12 (2018), 405-409. doi: 10.18576/amis/120215
    [23] M. A. Chaudhry, A. Qadir, M. Rafique, S. M. Zubair, Extension of Euler's beta function, J. Comput. Applied Math., 78 (1997), 19-32. doi: 10.1016/S0377-0427(96)00102-1
    [24] S. Mubeen, G. M. Habibullah, k-Fractional integrals and applications, Int. J. Contemp. Math. Sci., 7 (2012), 89-94.
    [25] Z. Al-Zhour, New Holder-Type inequalities for the Tracy Singh and Khatri-Ro products of positive matrices, Int. J. Comput. Eng. Res., 3 (2012), 50-54.
    [26] Z. Al-Zhour, Several new inequalities on operator means of non-negative maps and Khatri-Rao products of positive definite matrices, J. King Saud Univ-Sci., 26 (2014), 21-27.
    [27] Z. Al-Zhour, A. Kilicman, Extensions and generalization inequalities involving the Khatri-Rao product of several positive metrices, J. Ineq. Appl., 2006 (2006), 21, Article ID 80878.
    [28] Z. Al-Zhour, A. Kilicman, Matrix equalities and inequalities involving Khatri-Rao and Tracy-Singh Sums, J. Ineq. Pure Appl. Math., 7 (2006), 496-513.
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3415) PDF downloads(156) Cited by(4)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog