Research article Special Issues

On the r-dynamic coloring of the direct product of a path with either a path or a cycle

  • Received: 16 July 2020 Accepted: 12 August 2020 Published: 20 August 2020
  • MSC : 05C15

  • In this paper, we determine explicitly the r-dynamic chromatic number of the direct product of any given path with either a path or a cycle. Illustrative examples are shown for each one of the cases that are studied throughout the paper.

    Citation: T. Deepa, M. Venkatachalam, Raúl M. Falcón. On the r-dynamic coloring of the direct product of a path with either a path or a cycle[J]. AIMS Mathematics, 2020, 5(6): 6496-6520. doi: 10.3934/math.2020419

    Related Papers:

  • In this paper, we determine explicitly the r-dynamic chromatic number of the direct product of any given path with either a path or a cycle. Illustrative examples are shown for each one of the cases that are studied throughout the paper.


    加载中


    [1] B. Montgomery, Dynamic coloring of graphs, ProQuest LLC, Ann Arbor, MI: Ph.D Thesis, West Virginia University, 2001.
    [2] H.-J. Lai, B. Montgomery, H. Poon, Upper bounds of dynamic chromatic number, Ars Combin., 68 (2003), 193-201.
    [3] M. Alishahi, On the dynamic coloring of graphs, Discrete Appl. Math., 159 (2011), 152-156. doi: 10.1016/j.dam.2010.10.012
    [4] D. Dafik, D. E. W. Meganingtyas, K. D. Purnomo et al., Several classes of graphs and their rdynamic chromatic numbers, J. Phys.: Conf. Ser., 855 (2017), 012011.
    [5] S. Jahanbekama, J. Kim, O. Suil, et al., On r-dynamic coloring of graphs, Discrete Appl. Math., 206 (2016), 65-72. doi: 10.1016/j.dam.2016.01.016
    [6] R. Kang, T. Müller, D. B. West, On r-dynamic coloring of grids, Discrete Appl. Math., 186 (2015), 286-290. doi: 10.1016/j.dam.2015.01.020
    [7] H.-J. Lai, J. Lin, B. Montgomery, et al., Conditional colorings of graphs, Discrete Math., 306 (2006), 1997-2004. doi: 10.1016/j.disc.2006.03.052
    [8] S. Loeb, T. Mahoney, B. Reiniger, et al., Dynamic coloring parameters for graphs with given genus, Discrete Appl. Math., 235 (2018), 129-141. doi: 10.1016/j.dam.2017.09.013
    [9] N. Mohanapriya, J. Vernold Vivin, M. Venkatachalam, δ-dynamic chromatic number of helm graph families, Cogent Mathematics & Statistics, 3 (2016), 1178411.
    [10] N. Mohanapriya, J. Vernold Vivin, J. Kok, et al., On dynamic coloring of certain cycle-related graphs, Arabian J. Math., 9 (2020), 213-221. doi: 10.1007/s40065-018-0219-3
    [11] G. Nandini, M. Venkatachalam, R. M. Falcón, On the r-dynamic coloring of subdivision-edge coronas of a path, AIMS Math., 5 (2020), 4546-4562. doi: 10.3934/math.2020292
    [12] B. J. Septory, A. I. Kristiana, I. H. Agustin, et al., On r-dynamic chromatic number of coronation of order two of any graphs with path graph, IOP Conf. Series: Earth and Environmental Science, 243 (2019), 012113.
    [13] A. Taherkhani, On r-dynamic chromatic number of graphs, Discrete Appl. Math., 201 (2016), 222-227. doi: 10.1016/j.dam.2015.07.019
    [14] I. H. Agustin, D. Dafik, A. Y. Harsya, On r-dynamic coloring of some graph operation, Indonesian Journal of Combinatorics, 1 (2016), 22-30. doi: 10.19184/ijc.2016.1.1.3
    [15] S. Akbari, M. Ghanbari, S. Jahanbekam, On the dynamic chromatic number of Cartesian product graphs, Ars Combin., 114 (2014), 161-167.
    [16] I. H. Agustin, D. A. R. Wardani, B. J. Septory, et al., The r-dynamic chromatic number of corona of order two of any graphs with complete graph, Journal of Physics: Conference Series, 1306 (2019), 012046.
    [17] A. I. Kristiana, D. Dafik, M. I. Utoyo, et al., On r-dynamic chromatic number of the corronation of path and several graphs, Int. J. Adv. Eng. Res. Sci., 4 (2017), 237123.
    [18] A. I. Kristiana, M. I. Utoyo, Dafik, The lower bound of the r-dynamic chromatic number of corona product by wheel graphs, AIP Conference Proceedings, 2014 (2018), 020054.
    [19] A. I. Kristiana, M. I. Utoyo, Dafik, On the r-dynamic chromatic number of the corronation by complete graph, J. Phys. Conf. Ser., 1008 (2018), 012033.
    [20] A. I. Kristiana, M. I. Utoyo, R. Alfarisi, et al., r-dynamic coloring of the corona product of graphs, Discrete Mathematics, Algorithms and Applications, 12 (2020), 2050019.
    [21] J. A. Bondy, U. S. R. Murty, Graph theory with applications, New York: Macmillan Ltd. Press, 1976.
    [22] F. Harary, Graph Theory, Reading, Massachusetts: Addison Wesley, 1969.
    [23] S. Hedetniemi, Homomorphisms of graphs and automata, Univ. Michigan, Technical Report 03 I05-44-T, 1966.
    [24] Y. Shitov, Counterexamples to Hedetniemi's conjecture, Ann. Math., 190 (2019), 663-667. doi: 10.4007/annals.2019.190.2.6
    [25] S. A. Burr, P. Erdös, L. Lovász, On graphs of Ramsey type, Ars Combin., 1 (1976), 167-190.
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3128) PDF downloads(181) Cited by(4)

Article outline

Figures and Tables

Figures(28)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog