Research article

Acceleration of an adaptive generalized Arnoldi method for computing PageRank

  • Received: 01 September 2020 Accepted: 29 October 2020 Published: 04 November 2020
  • MSC : 65F15, 65F10

  • By considering a weighted inner product, an adaptive generalized Arnoldi (GArnoldi) method was constructed by [13] for computing PageRank. In order to accelerate the adaptive GArnoldi method, this paper proposes a new method by using the power method with extrapolation process based on Google matrix's trace (PET) as an accelerated technique of the adaptive GArnoldi method. The new method is called as GArnoldi-PET method, whose implementation and convergence analysis are discussed in detail. Numerical experiments are used to illustrate the effectiveness of our proposed method.

    Citation: Chun Wen, Qian-Ying Hu, Bing-Yuan Pu, Yu-Yun Huang. Acceleration of an adaptive generalized Arnoldi method for computing PageRank[J]. AIMS Mathematics, 2021, 6(1): 893-907. doi: 10.3934/math.2021053

    Related Papers:

  • By considering a weighted inner product, an adaptive generalized Arnoldi (GArnoldi) method was constructed by [13] for computing PageRank. In order to accelerate the adaptive GArnoldi method, this paper proposes a new method by using the power method with extrapolation process based on Google matrix's trace (PET) as an accelerated technique of the adaptive GArnoldi method. The new method is called as GArnoldi-PET method, whose implementation and convergence analysis are discussed in detail. Numerical experiments are used to illustrate the effectiveness of our proposed method.


    加载中


    [1] L. Page, S. Brin, R. Motwami, T. Winograd, The PageRank citation ranking: Bringing order to the web, Technical report, Computer Science Department, Stanford University, Stanford, CA, 1999.
    [2] S. Kamvar, T. Haveliwala, C. Manning, G. H. Golub, Exploiting the block structure of the web for computing PageRank, Technical Report, SCCM-03-02, Stanford University, 2003.
    [3] G. H. Golub, C. F. Van Loan, Matrix Computations, third ed., The Johns Hopkins University Press, Baltimore, London, 1996.
    [4] D. Gleich, A. Gray, C. Greif, T. Lau, An inner-outer iteration for computing PageRank, SIAM J. Sci. Comput., 32 (2010), 349-371. doi: 10.1137/080727397
    [5] Z. L. Tian, Y. Liu, Y. Zhang, Z. Y. Liu, M. Y. Tian, The general inner-outer iteration method based on regular splittings for the PageRank problem, Appl. Math. Comput., 356 (2019), 479-501.
    [6] X. Y. Tan, A new extrapolation method for pagerank computations, J. Comput. Appl. Math., 313 (2017), 383-392. doi: 10.1016/j.cam.2016.08.034
    [7] G. H. Golub, C. Greif, An Arnoldi-type algorithm for computing PageRank, BIT., 46 (2006), 759-771. doi: 10.1007/s10543-006-0091-y
    [8] G. Wu, Y. Wei, A Power-Arnoldi algorithm for computing pagerank, Numer. Linear Algebra Appl., 14 (2007), 521-546. doi: 10.1002/nla.531
    [9] R. Morgan, M. Zheng, A harmonic restarted Arnoldi algorithm for calculating eigenvalues and determining multiplicity, Linear Algebra Appl., 415 (2006), 96-113. doi: 10.1016/j.laa.2005.07.024
    [10] Q. Y. Hu, C. Wen, T. Z. Huang, Z. L. Shen, X. M. Gu, A variant of the Power-Arnoldi algorithm for computing PageRank, J. Comput. Appl. Math., 381 (2021), 113034. doi: 10.1016/j.cam.2020.113034
    [11] A. Essai, Weighted FOM and GMRES for solving nonsymmetric linear systems, Numer. Algorithms, 18 (1998), 277-292. doi: 10.1023/A:1019177600806
    [12] H. S. Najafi, H. Ghazvini, Weighted restarting method in the weighted Arnoldi algorithm for computing the eigenvalues of a nonsymmetric matrix, Appl. Math. Comput., 175 (2006), 1276-1287.
    [13] J. F. Yin, G. J. Yin, M. Ng, On adaptively accelerated Arnoldi method for computing PageRank, Numer. Linear Algebra Appl., 19 (2012), 73-85. doi: 10.1002/nla.789
    [14] C. Wen, Q. Y. Hu, G. J. Yin, X. M. Gu, Z. L. Shen, An adaptive Power-GArnoldi algorithm for computing PageRank, J. Comput. Appl. Math., 386 (2021), 113209. doi: 10.1016/j.cam.2020.113209
    [15] Z. X. Jia, Refined iterative algorithms based on Arnoldi's process for large unsymmetric eigenproblems, Linear Algebra Appl., 259 (1997), 1-23. doi: 10.1016/S0024-3795(96)00238-8
    [16] A. Langville, C. Meyer, Googles PageRank and Beyond: The Science of the Search Engine Rankings, Princeton University Press, 2006.
    [17] T. Haveliwala, S. Kamvar, The second eigenvalue of the google matrix, in: Proceedings of the Twelfth International World Wide Web of Conference, 2003.
    [18] F. Tudisco, C. Di Fiore, A preconditioning approach to the PageRank computation problem, Linear Algebra Appl., 435 (2011), 2222-2246.
    [19] S. Cipolla, C. Di Fiore, F. Tudisco, Euler-Richardson method preconditioned by weakly stochastic matrix algebras: A potential contribution to Pagerank computation, Electronic J. Linear Al., 32 (2017), 254-272. doi: 10.13001/1081-3810.3343
    [20] G. Wu, Y. C. Wang, X. Q. Jin, A preconditioned and shifted GMRES algorithm for the PageRank problem with multiple damping factors, SIAM J. Sci. Comput., 34 (2012), 2558-2575. doi: 10.1137/110834585
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3389) PDF downloads(106) Cited by(4)

Article outline

Figures and Tables

Figures(3)  /  Tables(4)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog