Citation: Kandhasamy Tamilvanan, Jung Rye Lee, Choonkil Park. Ulam stability of a functional equation deriving from quadratic and additive mappings in random normed spaces[J]. AIMS Mathematics, 2021, 6(1): 908-924. doi: 10.3934/math.2021054
[1] | T. Aoki, On the stability of the linear transformation in Banach spaces, J. Math. Soc. Jpn., 2 (1950), 64-66. doi: 10.2969/jmsj/00210064 |
[2] | H. Azadi Kenary, On the stability of a cubic functional equation in random normed spaces, J. Math. Ext., 4 (2009), 105-113. |
[3] | H. Azadi Kenary, Stability of a Pexiderial functional equation in random normed spaces, Rend. Cire. Mat. Palermo, 60 (2011), 59-68. |
[4] | H. Azadi Kenary, RNS-Approximately nonlinear additive functional equations, J. Math. Ext., 6 (2012), 11-20. |
[5] | S. S. Chang, J. M. Rassias, R. Saadati, The stability of the cubic functional equation in intuitionistic random normed spaces, Appl. Math. Mech., 31 (2010), 21-26. doi: 10.1007/s10483-010-0103-6 |
[6] | S. Czerwik, Functional Equations and Inequalities in Several Variables, World Scientific, River Edge, NJ, 2002. |
[7] | M. E. Gordji, M. B. Savadkouhi, Stability of mixed type cubic and quartic functional equation in random normed spaces, J. Inequal. Appl., 2009 (2009), 1-9. |
[8] | M. E. Gordji, M. B. Savadkouhi, C. Park, Quadratic-quartic functional equations in RN-spaces, J. Inequal. Appl., 2009 (2009), 1-14. |
[9] | M. E. Gordji, J. M. Rassias, M. B. Savakohi, Approximation of the quadratic and cubic functional equations in RN-spaces, Eur. J. Pure Appl. Math., 2 (2009), 494-507. |
[10] | P. Gavruta, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl., 184 (1994), 431-436. doi: 10.1006/jmaa.1994.1211 |
[11] | V. Govindan, C. Park, S. Pinelas, S. Baskaran, Solution of a 3-D cubic functional equation and its stability, AIMS Math., 5 (2020), 1693-1705. doi: 10.3934/math.2020114 |
[12] | D. H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. USA, 27 (1941), 222-224. doi: 10.1073/pnas.27.4.222 |
[13] | D. H. Hyers, G. Isac, T. M. Rassias, Stability of Functional Equations in Several Varables, Birkhäuser, Basel, 1998. |
[14] | S. Jin, Y. Lee, On the stability of the functional equation deriving from quadratic and additive function in random normed spaces via fixed point method, J. Chungcheong Math. Soc., 25 (2012), 51-63. doi: 10.14403/jcms.2012.25.1.051 |
[15] | S. Jung, Hyers-Ulam-Rassias Stability of Functional Equations in Mathematical Analysis, Hadronic Press, Palm Harbor, 2001. |
[16] | S. Jung, D. Popa, T. M. Rassias, On the stability of the linear functional equation in a single variable on complete metric spaces, J. Global Optim., 59 (2014), 1-7. doi: 10.1007/s10898-013-0075-9 |
[17] | Y. Lee, S. Jung, Stability of an n-dimensional mixed type additive and quadratic functional equation in random normed spaces, J. Appl. Math., 2012 (2012), 1-15. |
[18] | Y. Lee, S. Jung, T. M. Rassias, Uniqueness theorems on functional inequalities concerning cubic-quadratic-additive equation, J. Math. Inequal., 12 (2018), 43-61. |
[19] | D. Mihet, V. Radu, On the stability of the additive Cauchy functional equation in random normed spaces, J. Math. Anal. Appl., 343 (2008), 567-572. doi: 10.1016/j.jmaa.2008.01.100 |
[20] | D. Mihet, R. Saadati, S. M. Vaezpour, The stability of the quartic functional equation in random normed spaces, Acta Appl. Math., 110 (2010), 797-803. doi: 10.1007/s10440-009-9476-7 |
[21] | M. Mohamadi, Y. Cho, C. Park, P. Vetro, R. Saadati, Random stability of an additive-quadratic functional equation, J. Inequal. Appl. , 2010 (2010), 1-18. |
[22] | A. Najati, M. Moghimi, Stability of a functional equation deriving from quadratic and additive functions in quasi-Banach spaces, J. Math. Anal. Appl., 337 (2008), 399-415. doi: 10.1016/j.jmaa.2007.03.104 |
[23] | C. Park, K. Tamilvanan, G. Balasubramanian, B. Noori, A. Najati, On a functional equation that has the quadratic-multiplicative property, Open Math., 18 (2020), 837-845. doi: 10.1515/math-2020-0032 |
[24] | J. M. Rassias, R. Saadati, G. Sadeghi, J. Vahidi, On nonlinear stability in various random normed spaces, J. Inequal. Appl., 2011 (2011), 1-17. doi: 10.1186/1029-242X-2011-1 |
[25] | T. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Am. Math. Soc., 72 (1978), 297-300. doi: 10.1090/S0002-9939-1978-0507327-1 |
[26] | T. M. Rassias, Functional Equations, Inequalities and Applications, Kluwer Academic Publishers, Dordrecht, 2003. |
[27] | R. Saadati, M. Vaezpour, Y. Cho, A note to paper "On the stability of cubic mappings and quartic mappings in random normed spaces", J. Inequal. Appl., 2009 (2009), 1-6. |
[28] | R. Saadati, M. M. Zohdi, S. M. Vaezpour, Nonlinear L-random stability of an ACQ functional equation, J. Inequal. Appl., 2011 (2011), 1-23. doi: 10.1186/1029-242X-2011-1 |
[29] | B. Schewizer, A. Sklar, Probabilistic Metric Spaces, North-Holland Series in Probability and Applied Mathematics, North-Holland, New York, 1983. |
[30] | A. N. Serstnev, On the motion of a random normed space, Dokl. Akad. Nauk SSSR, 149 (1963), 280-283. |
[31] | K. Tamilvanan, J. Lee, C. Park, Hyers-Ulam stability of a finite variable mixed type quadratic-additive functional equation in quasi-Banach spaces, AIMS Math., 5 (2020), 5993-6005. doi: 10.3934/math.2020383 |
[32] | S. M. Ulam, Problems in Modern Mathematics, Wiley, New York, 1964. |
[33] | J. Vanterler da C. Sousa, E. Capelas de Oliveira, F. G. Rodrigues, Ulam-Hyers stabilities of fractional functional differential equations, AIMS Math., 5 (2020), 1346-1358. doi: 10.3934/math.2020092 |