Research article

Hyers-Ulam stability of a finite variable mixed type quadratic-additive functional equation in quasi-Banach spaces

  • Received: 14 April 2020 Accepted: 10 July 2020 Published: 22 July 2020
  • MSC : 39B52, 39B72, 39B82

  • In this paper, we introduce a mixed type finite variable functional equation deriving from quadratic and additive functions and obtain the general solution of the functional equation and investigate the Hyers-Ulam stability for the functional equation in quasi-Banach spaces.

    Citation: K. Tamilvanan, Jung Rye Lee, Choonkil Park. Hyers-Ulam stability of a finite variable mixed type quadratic-additive functional equation in quasi-Banach spaces[J]. AIMS Mathematics, 2020, 5(6): 5993-6005. doi: 10.3934/math.2020383

    Related Papers:

  • In this paper, we introduce a mixed type finite variable functional equation deriving from quadratic and additive functions and obtain the general solution of the functional equation and investigate the Hyers-Ulam stability for the functional equation in quasi-Banach spaces.


    加载中


    [1] J. Aczél, J. Dhombres, Functional Equations in Several Variables, Cambridge University Press, 1989.
    [2] D. Amir, Characterizations of Inner Product Spaces, Birkhäuser, Basel, 1986.
    [3] Y. Benyamini, J. Lindenstrauss, Geometric Nonlinear Functional Analysis, American Mathematical Society, 2000.
    [4] P. W. Cholewa, Remarks on the stability of functional equations, Aequations Math., 27 (1984), 76-86. doi: 10.1007/BF02192660
    [5] S. Czerwik, On the stability of the quadratic mapping in normed spaces, Abh. Math. Sem. Hamburg, 62 (1992), 59-64. doi: 10.1007/BF02941618
    [6] E. Elqorachi, M. Th. Rassias, Generalized Hyers-Ulam stability of trigonometric functional equations, Mathematics, 6 (2018), 1-11.
    [7] M. E. Gordji, H. Khodaei, Solution and stability of generalized mixed type cubic, quadratic and additive functional equation in quasi-Banach spaces, Nonlinear Anal-Theor., 71 (2009), 5629-5643. doi: 10.1016/j.na.2009.04.052
    [8] Z. Gajda, On stability of additive mappings, Internat. J. Math. Math. Sci., 14 (1991), 431-434. doi: 10.1155/S016117129100056X
    [9] P. Gǎvruta, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl., 184 (1994), 431-436. doi: 10.1006/jmaa.1994.1211
    [10] V. Govindan, C. Park, S. Pinelas, et al. Solution of a 3-D cubic functional equation and its stability, AIMS Mathematics, 5 (2020), 1693-1705. doi: 10.3934/math.2020114
    [11] A. Grabiec, The generalized Hyers-Ulam stability of a class of functional equations, Publ. Math. Debrecen, 48 (1996), 217-235.
    [12] D. H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. U. S. A., 27 (1941), 222-224. doi: 10.1073/pnas.27.4.222
    [13] P. Jordan, J. Neumann, On inner products in linear metric spaces, Ann. Math., 36 (1935), 719-723. doi: 10.2307/1968653
    [14] K. Jun, H. Kim, Ulam stability problem for a mixed type of cubic and additive functional equation, B. Belg. Math. Soc-Sim., 13 (2006), 271-285.
    [15] S. M. Jung, D. Popa, M. T. Rassias, On the stability of the linear functional equation in a single variable on complete metric groups, J. Global Optim., 59 (2014), 165-171. doi: 10.1007/s10898-013-0083-9
    [16] P. Kannappan, Quadratic functional equation and inner product spaces, Results Math., 27 (1995), 368-372. doi: 10.1007/BF03322841
    [17] T. M. Kim, C. Park, S. H. Park, An AQ-functional equation in paranormed spaces, J. Comput. Anal. Appl., 15 (2013), 1467-1475.
    [18] Y. Lee, On the Hyers-Ulam-Rassias stability of a general quintic functional equation and a general sextic functional equation, Mathematics, 7 (2019), 1-15.
    [19] Y. H. Lee, S. M. Jung, A general theorem on the stability of a class of functional equations including quartic-cubic-quadratic-additive equations, Mathematics, 6 (2018), 1-24.
    [20] Y. Lee, S. Jung, M. T. Rassias, Uniqueness theorems on functional inequalities concerning cubicquadratic-additive equation, J. Math. Inequal., 12 (2018), 43-61.
    [21] A. Najati, M. B. Moghimi, Stability of a functional equation deriving from quadratic and additive function in quasi-Banach spaces, J. Math. Anal. Appl., 337 (2008), 399-415. doi: 10.1016/j.jmaa.2007.03.104
    [22] A. Najati, G. Z. Eskandani, Stability of a mixed additive and cubic functional equation in quasiBanach spaces, J. Math. Anal. Appl., 342 (2008), 1318-1331. doi: 10.1016/j.jmaa.2007.12.039
    [23] T. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Am. Math. Soc., 72 (1978), 297-300. doi: 10.1090/S0002-9939-1978-0507327-1
    [24] P. Saha, T. K. Samanta, N. C. Kayal, et al. Hyers-Ulam-Rassias stability of set valued additive and cubic functional equations in several variables, Mathematics, 7 (2019), 1-11.
    [25] F. Skof, Proprieta' locali e approssimaziones di operatori, Seminario Mat. e. Fis. di Milano, 53 (1983), 113-129. doi: 10.1007/BF02924890
    [26] J. Tabor, Stability of the Cauchy functional equation in quasi-Banach spaces, Ann. Pol. Math., 83 (2004), 243-255. doi: 10.4064/ap83-3-6
    [27] S. M. Ulam, Problems in Modern Mathematics, John Wiley & Sons, Inc., 1964.
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3642) PDF downloads(302) Cited by(6)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog