In this paper, two cubic functional equations are shown to be equivalent, Hyers-Ulam-Rassias stability of them is proved under some suitable conditions by the fixed point method in fuzzy normed spaces. Moreover, the fuzzy continuity of the solution of the functional equation is discussed.
Citation: Lingxiao Lu, Jianrong Wu. Hyers-Ulam-Rassias stability of cubic functional equations in fuzzy normed spaces[J]. AIMS Mathematics, 2022, 7(5): 8574-8587. doi: 10.3934/math.2022478
In this paper, two cubic functional equations are shown to be equivalent, Hyers-Ulam-Rassias stability of them is proved under some suitable conditions by the fixed point method in fuzzy normed spaces. Moreover, the fuzzy continuity of the solution of the functional equation is discussed.
[1] | T. Aoki, On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan, 2 (1950), 64–66. https://doi.org/10.2969/jmsj/00210064 doi: 10.2969/jmsj/00210064 |
[2] | T. Bag, S. K. Samanta, Finite dimensional fuzzy normed linear spaces, J. Fuzzy Math., 11 (2003), 687–705. |
[3] | K. Ciepliński, Ulam stability of functional equations in 2-Banach spaces via the fixed point method, J. Fixed Point Theory Appl., 23 (2021), 33. https://doi.org/10.1007/s11784-021-00869-x doi: 10.1007/s11784-021-00869-x |
[4] | J. B. Diaz, B. Margolis, A fixed point theorem of the alternative, for contractions on a generalized complete metric space, Bull. Amer. Math. Soc., 74 (1968), 305–309. |
[5] | V. Govindan, I. Hwang, C. Park, Hyers-Ulam stability of an n-variable quartic functional equation, AIMS Math., 6 (2021), 1452–1469. https://doi.org/10.3934/math.2021089 doi: 10.3934/math.2021089 |
[6] | V. Govindan, S. Murthy, Solution and Hyers-Ulam stability of n-dimensional non-quadratic functional equation in fuzzy normed space using direct method, Mater. Today: Proc., 16 (2019), 384–391. https://doi.org/10.1016/j.matpr.2019.05.105 doi: 10.1016/j.matpr.2019.05.105 |
[7] | D. H. Hyers, On the stability of the linear functional equation, Proc. Natl. Acad. Sci. USA, 27 (1941), 222–224. https://dx.doi.org/10.1073/pnas.27.4.222 doi: 10.1073/pnas.27.4.222 |
[8] | K. W. Jun, H. M. Kim, The generalized Hyers-Ulam-Rassias stability of a cubic functional equation, J. Math. Anal. Appl., 274 (2002), 867–878. https://doi.org/10.1016/S0022-247X(02)00415-8 doi: 10.1016/S0022-247X(02)00415-8 |
[9] | D. S. Kang, H. Y. Chu, Stability problem of Hyers-Ulam-Rassias for generalized forms of cubic functional equation, Acta Math. Sin.-English Ser., 24 (2008), 491–502. https://doi.org/10.1007/s10114-007-1026-5 doi: 10.1007/s10114-007-1026-5 |
[10] | H. A. Kenary, T. M. Rassias, On the HUR-stability of quadratic functional equations in fuzzy Banach spaces, Appl. Nonlinear Anal., 134 (2018), 507–522. https://doi.org/10.1007/978-3-319-89815-5-17 doi: 10.1007/978-3-319-89815-5-17 |
[11] | S. O. Kim, K. Tamilvanan, Fuzzy stability results of generalized quartic functional equations, Mathematics, 9 (2021), 120. https://doi.org/10.3390/math9020120 doi: 10.3390/math9020120 |
[12] | L. Zhu, Stability of quartic mapping in fuzzy Banach spaces, J. Math. Comput. Sci., 7 (2017), 775–785. |
[13] | A. J. W. Luxemburg, On the convergence of successive approximations in the theory of ordinary differential equations, Ⅱ, Indag. Math., 20 (1958), 540–546. |
[14] | D. Miheţ, V. Radu, On the stability of the additive Cauchy functional equation in random normed spaces, J. Math. Anal. Appl., 343 (2008), 567–572. https://doi.org/10.1016/j.jmaa.2008.01.100 doi: 10.1016/j.jmaa.2008.01.100 |
[15] | A. K. Mirmostafaee, A fixed point approach to almost quartic mappings in quasi fuzzy normed spaces, Fuzzy Sets Syst., 160 (2009), 1653–1662. https://doi.org/10.1016/j.fss.2009.01.011 doi: 10.1016/j.fss.2009.01.011 |
[16] | A. K. Mirmostafaee, M. S. Moslehian, Fuzzy versions of Hyers-Ulam-Rassias theorem, Fuzzy Sets Syst., 159 (2008), 720–729. https://doi.org/10.1016/j.fss.2007.09.016 doi: 10.1016/j.fss.2007.09.016 |
[17] | T. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc., 72 (1978), 297–300. https://doi.org/10.1090/s0002-9939-1978-0507327-1 doi: 10.1090/s0002-9939-1978-0507327-1 |
[18] | S. M. Ulam, Problems in modern mathematics, New York: John Wiley & Sons, 1964. |
[19] | A. Wiwatwanich, P. Nakmahachchalasint, On the stability of a cubic functional equation, Thai J. Math., 2008, 69–76. |
[20] | J. R. Wu, L. X. Lu, Hyers-Ulam-Rassias stability of additive mappings in fuzzy normed spaces, J. Math., 2021 (2021), 5930414. https://doi.org/10.1155/2021/5930414 doi: 10.1155/2021/5930414 |