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1. Introduction

The stability problem of functional equations originated from the stability problem of group
homomorphisms proposed by Ulam [18] in 1940. Under what conditions does there exist a group
homomorphism near an approximate group homomorphism? If the answer is affirmative, we would
say that the equation of homomorphism is stable. The concept of stability for a functional equation
arises when we replace the functional equation by an inequality which acts as a perturbation of the
equation. Thus, the stability question of functional equations is that how do the solutions of the
inequality differ from those of the given functional equation? The first result about the stability
problem of functional equations was shown by Hyers [7] in 1941. In 1950, Aoki [1], and in 1978,
Rassias [17] proved a generalization of Hyers’ theorem for additive and linear mappings, respectively.
The result of Rassias has influenced the development of what is now called Hyers-Ulam-Rassias
stability theory for functional equations. Several stability results have been recently obtained for
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various equations, also for mappings with more general domains and ranges (see e.g., [3,5,6,10,11,14,16]).
Jun and Kim [8] firstly proved Hyers-Ulam-Rassias stability of the following functional equation
in Banach space:

f(2x+y)+ f(2x—y)=2f (x+y)+2f(x—y)+12f (x). (1.1)

It is called a cubic functional equation, since f(x)=cx’(c € R) is its solution. Every solution of

cubic functional equation is called cubic mapping. In 2008, Wiwatwanich and Nakmahachchalasint [19]
studied Hyers-Ulam-Rassias stability of another cubic functional equation:

F(x+3y)=3f (x+y)+3f (x—y) = f(x=3y) =48 (y) (1.2)

in Banach space by the direct method.
Kang and Chu [9] investigated the generalized Hyers-Ulam-Rassias stability of an n-dimensional
cubic functional equation:

n—

f[ZEXj+XnJ+f(2 lxj—xnj+4nf,f(xj)
i1 j=1 j=1
n-1 n-1
:16f[ ij+2 [f(xj+xn)+f(xj—xn)]
1 1

i= i=

(1.3)

in Banach spaces, and proved that Eq (1.1) is equivalent to Eq (1.3).

In 2008, Mirmostaface and Moslehian [16] introduced three different versions of fuzzy
approximate additive function in fuzzy normed space and proved that an approximate additive function
can be approximated by additive function under some appropriate conditions. Since then, the stability
of functional equation in fuzzy normed space has attracted the attention of scholars. In 2017, L1 [12]
studied Hyers-Ulam-Rassias stability of the quartic functional equation:

f(2x+y)+ f@x—y)=4f (x+y)+4f(x—y)+24f(x)-6f(y) (14)

in fuzzy normed spaces. In 2021, Wu and Lu [20] establish the stability results concerning the
following functional equations:

f (ax+by)=rf (x)+sf(y). (1.5)

where constants a,b>0 and r,s € R with a+b=r+s=1, and

X+Y
f =2f(—)+f
(x+y+2) ( 5 )+ (z)’ 6

in fuzzy normed spaces.

In this paper, we shall prove that Eq (1.1) is equivalent to Eq (1.2), and shall study Hyers-Ulam-
Rassias stability of Eq (1.2) in fuzzy normed spaces. For convenience, Hyers-Ulam-Rassias stability
is referred to as stability in this paper.
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2. Preliminaries

In this section we shall recall some notations and basic results used in this paper.

Definition 2.1 ([2]). Let X be a linear space over a field R. A fuzzy subset N: X X R = [0, 1] is
called a fuzzy normon X ifforall x,y € X,and all t,s € R:
(NI) vt <0, N(xt)=0;

(N2) vt >0, N(x,t)=1 ifand only if x=0;
(N3) Vt >0, N(cxt)= N[x,|t—|] if c#0;
c

(N4) N(x+y,s+t)> min{N (x,5),N (y,t)};
(N5) N(x,) isanon-decreasing function on R and !im N (X,t) =1;
(N6) Vx # 0, N(x-) is (upper semi) continuous on R.

The pair (X,N) is called a fuzzy normed linear space.

It is easy to see that (N5) can be implied by (N2) and (N4).

Definition 2.2 ([2]). Let {x,} be a sequence in fuzzy normed linear space (X,N). Then {x } is

said to be convergent if there is x € X such that limN (Xn — X,t) =1, vt>0. In that case x is

n—oo

called the limit of the sequence {x,} and is denoted by limx, =x.

Nn—o0

Definition 2.3 ([2]). A sequence {x,} in (X,N) is said to be Cauchy sequence if
limN(x,,, = X,,t)=1, Vt>0 and p €.

n—o n+p

If every Cauchy sequence is convergent, then the fuzzy normed space is called a fuzzy Banach
space.
The following definition is slightly different from that in [15].

Definition 2.4. Let (Y,N) be a (quasi) fuzzy normed space. A function f:R — Y is said to be fuzzy
continuous at s, € R, if for each t>0 and O< <1, there is some S >0 such that
N ( f(s)-f (so),t) > B for each s with |S_So| <s. T issaid to be fuzzy continuous on R, if

f is fuzzy continuous at any point of R.

Definition 2.5 ([13]). Let X be a nonempty set. Assume that on the Cartesian product X X X, a

distance function d(x,y) (0 < d(x,y) < o) is defined, satisfying the following conditions:
(D1) d(x,y) =0 ifand only if X=Y,

(D2) d(x,y) =d(y,x) (symmetry),
(D3) d(x,y) <d(x,z) +d(z,y) (triangle inequality),
(D4) every Cauchy sequence in X is convergent.

Then, (X, d) is called a generalized complete metric space.

Theorem 2.6 ([4]). Let (X,d) be a generalized complete metric space and T : X — X be a strictly
contractive mapping with Lipschitz constant L (L <1), that is,

d(Tx,Ty)<Ld(x,y), Vx,yeX.
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Then for each given X e X, either

d(T"x,T"*lx):oo Vn>0.

or there exists a natural number n, such that
(1) d (T”X,T"”X) <oo forall n>ny;
(2) {T”X} is convergent to a fixed point y* of T;
(3) y* is the unique fixed point of T in the set A= {y e X :d(Thx,y)< oo};

1
4) d(y,y")<——d(y,Ty) forall A.
@) d(yy) < dyTy) ye

3. Main results

First, we prove that Eq (1.2) is equivalent to Eq (1.1).
Lemma 3.1. Let X and Y be linear spaces and the mapping f:X —Y satisfy (1.2), then
(1) f0)=0;
(2) f isan odd mapping;
(3) fy=r’f(y), vyeX, Vr € Q.

Proof. (1) Putting X=Y=0 in(1.2), we get f(0)=0.
(2) Replacing Y by —Y in(1.2), we get

f(x-3y)-3f (x—y)+3f (x+y)- f(x+3y)=48f (-y). (3.1)
Then f(—y) = —f(y), implying that f is an odd mapping.
(3) We first prove that

f(ny)=n®f(y), vy € X, vn € N. (3.2)
Setting x=0 in (1.2), we get

fBy) =27f(). (3.3)
Let x =y in (1.2), we get

f4y) = 2f(2y) + 48f (¥). (3.4
Let x = 3y in (1.2), we get

f(6y) = 3f(4y) + 3f (2y) = 48f (y). (3.5)
Substituting (3.3) and (3.4) into (3.5), we get

fQ2y) =8f(). (3.6)

Therefore, (3.2) holds for n=2 and n=3.
Now, suppose (3.2) holds whenever N <k (k >3, n € N). Next, we shall prove that (3.2) holds
when n = k+1. In fact, setting x = (k — 2)y in (1.2), we get
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f((k+1)y)=f((k=5)y)+3f((k-1)y)-3f((k—3)y)+48f(y)
=|(k=5)" +3(k 1)’ ~3(k—3)’ +48] f (y)
=(k+1)° f(y)-

From the principle of induction, we get f(ny)=n*f(y), Vy € X, vn € N.

Last, we shall prove f(ry) =r3f(y), Vy € X, r€ Q. Let r :m, m,n € N, replacing y by
n

X,weget
n

1 y

Ff(y)Zf(Hj’ VyeX, neN.
Then,

1 m
f(ry)Zf(—y)—msf(ﬁyJZKFj f(y)=r’f(y)

The proof ends.

Theorem3.2.Let X , Y belinear spaces. Then the mapping f:X —Y satisfies the functional Eq (1.2) if
and only if f satisfies the functional Eq (1.1).

Proof If T:X —>Y satisfies the functional Eq (1.2), from Lemma 3.1, f is an odd mapping and

fBy) =27f(), f2y) =8f(y).
Replacing X by X—=Y in(1.2), we get

f(x+2y)-f(x—4y)-3f (x)+3f (x—2y)=48f(y). (3.7)
Replacing X by Y and Y by x in(3.7), we get

f(y+2x)-f(y-4x)-3f (y)+3f (y—2x)=48f(x). (3.8)
Setting Y=-Y in (3.8), we get

f(2x—y)+f(4x+y)+3f (y)-3f (2x+y)=48f (). (3.9)
From (3.8) and (3.9), we get

Af (2x+y)-4f (2x-y)+ f (4x-y)-f (4x+y)-6f (y)=0. (3.10)
Replacing X by Xx/2 in(3.10), we get

f(2x+y)-f(2x—y)=4f (x+y)-4f (x-y)-6f(y). (3.11)
Replacing Y by 2y in (3.11), we get
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2f (x+y)-2f (x—y)=f(x+2y)- f (x-2y)-12f (y). (3.12)

Exchanging X and Y in (3.12), we get the functional Eq (1.1).

Conversely, suppose f satisfies the functional Eq (1.1), by setting X=Y=0 in (1.1), we get
£(0) = 0. Letting X=0 in (1.1), we have f(—y) = —f(y). Setting ¥Y=0 and Yy=X in (1.1),
respectively, we obtain f(2x) = 8f(x) and f(3x) = 27f(x). Replacing Y by X+Y in(1.1), we
get

f(3x+y)+f(x—y)=2f(2x+y)-2f(y)+12f (x). (3.13)

Replacing Y by Y—X in(1.1), we know
f(x+y)+f(3x—y)=2f(y)+2f(@2x-y)+12f (X). (3.14)

Adding (3.13) and (3.14), and using (1.1), we get the functional Eq (1.2). The proof ends.

Lemma 3.3. Let X, (Z, N') , (Y, N) be a linear space, a fuzzy normed space and a fuzzy Banach
space, respectively. And let h : X—>Y and w : X—>Z be two functions. Set
Qz{g:g X —>Y,g(0):0}. Forany 7>0, defineamapping d: QxQ—[0, ] as

d(g,h)=inf {ﬂe(o,oo): N(g(y)-h(y).pt)=N"(v(y).nt),vy e X,t >O},
then (Q, d) is a generalized complete metric space.

Proof. (D1) It is obvious that d(g,g)=0. Conversely, suppose d(g,h)=0, from the definition of
d (g, h) , we have

N (g(y)—h(y),%tj > N'(y(y).mt),
N (g(y)=h(y).t) = N'(w (). mt),

forany n €N, yeX, t>0, n>0.Let N>, we get N(g(y)—h(y),t)zl,forany t >0, thus
g=h.

(D2) It is obvious.

(D3)If d(g,h)=4, and d(hk)=4,, Vg,hkeQ, then forany &,¢&, >0, wehave

N(g(y)=h(y).(8+&)t) =N'(w(y).n)
and
N(h(y)-k(y).(B,+&)t) 2N (v (y).nt), yeX, t>0, n>0.

Thus
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N (g(Y)_k(Y)i(ﬁl""c’i"'ﬁz +‘92)t)
>min{N(g(y)=h(y).(A+&)t).N(h(y)-k(¥).(8; +&)t)]

>N'(w(y).nt).
Hence, d(g,k)<f,+f,+¢, +¢,. By the arbitrariness of & and ¢&,, we have
d(g.k)<d(g,h)+d(hk).

(D4) Let {hn} be a Cauchy sequence in Q. For the given y, e X, and any A4 e(O,l) , since
!im N’(y/(y),nt):l, there exists t, >0, such that N’(y/(yo),nto)>1—/1 . For any £>0, let
0<pB<elt,since {hn} is a Cauchy sequence, there exists ny, d(h,,h )<B whenever n,m=n,.
Then we have

N (hm (yo)_hn (yo),s) 2N (hm (yo)_hn (yo)fﬂto) 2 N'(l//(yo)'ﬂto) >1-4 >
thus {hn (y)} is a Cauchy sequence. Since (Y,N) is complete, there exists h:X —Y such that

{hn (y)} is convergent to h(y) in Y.
Forany />0, since {hn} is a Cauchy sequence, there exists n, such that

N (hn(y)—hmm(y)étj > N'(w(y).mt)

forany ye X, t>0, n>n, and m=1. Therefore

Let m— oo, we get
N (h,(y)=h(y).5t) 2min{N’(://(y),77t),1} =N'(w(y).nt), VyeX,t>0,7>0.

Thus d(hh)<p whenever n>n,, which implies that {h,} is convergent to h in Q. Thus,

(Q, d) is a generalized complete metric space. The proof ends.

In the rest of this paper, we focus on the functional Eq (1.2).
For a mapping f :X —Y , for convenience, we define a difference operator Df : X? =Y as

Df (x,y) = f (x+3y)—3f (x+y)—f (x—3y)+3f (x—y)—48f (y), VX,yeX.

Theorem 3.4.Let X, (Z,N’), (Y,N) bealinear space, a fuzzy normed space and a fuzzy Banach
space, respectively, and let 0 <a < 27. Suppose that the mapping ¢: X x X — Z satisfies
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N'(¢(0,3y),t)= N'(ap(0,y),t) (3.15)
and

lim N'(go(3”x,3” y),27”t) =1, Vx,ye X, t>0.
If f:X—>Y is ¢-approximately cubic in the sense that

N(Df (x,¥).t)=N'(p(x,y).t), ¥x,yeX, t>0. (3.16)

Then

f(3"
(1) the limitation c(y)=Ilim (27ny) exists for each YeX, and the mapping ¢:X —»VY is the

nN—o0

unique cubic mapping which satisfies
N(f(y)-c(y).t)=N'(¢(0,y),.2(27-a)t), WyeX, t>0; (3.17)

(2) if the mappings S — f (sy) and s~ ¢(0,sy) are fuzzy continuous for each ye X, then the
mapping s — c(sy) is also fuzzy continuous, and c(Ay)=A%(y) holds forall 1 € R.
Proof. (1) Consider the set
Q={g:g:X >Y,g(0)=0},
and the mapping,
d(g,h)=inf {,Be(o,oo): N(g(y)-h(y).At)=N'(p(0,y),54t),vye X t >O}.
Let y(y)=¢(0,y) and 17 =>54 in Lemma 33, then we know that (Q,d) is a generalized complete

metric space. Define the mapping T :Q—>Q, Tg(y) :@ , VyeX.

. . . S . a .
Now we prove T is strictly contractive with Lipschitz constant o7 For the given ¢g,heQ,

set d(g,h)=y.If y=o0, itis obvious that
a
d(Tg,Th)<—d(g,h).
(Tg.Th)<—-d(g.h)

If ye [O, oo) , then forany t>0, &>0, we have the following inequality by (N5):

N(g(y)—h(y),(;/+g)t)2 N’(go(O, y),54t), VyeX.

Therefore, using (N3) and (3.15), we get
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N(TQ(Y) y+g j [ (;y),a(yz;g)tj
=N(g(3y)-h(3y),a(y+e)t)2 N( (0,3y), 54at) N'(ago(O,y),54at)
=N'(¢(0,y),54t), vyeX, t>0.

Hence d(Tg,Th)< a( ?) .Since & is arbitrary, then d(Tg,Th)< > d(g h).

Next, setting X = 0 in (3.16), we can obtain

N(M— f (y),t]z N'(¢(0,y),54t).

27

Then we get that d (Tf  f ) <1< oo, From Theorem 2.6, we have the followings:
(a) {T“ f } is convergent to a fixed point ¢ of T,thatis limd (T“ f ,c) =0,

n—oo

(b) c is the unique fixed point of T, thatis, c(3y) = 27c(y), Vye X,

1 1 27
C) d(f,c)< d(Tf, f)< = s
© ( C) —al27 ( ) 1-a/27 27-«a

which implies that

and

N(f(y)-c(y).t)=N'(¢(0,y),2(27-a)t), VyeX, t>0.

Replacing x, y by 3"x, 3"y, respectively in (3.16), we get

N (Mt] = N(Df (3"%,3"y).27"t) 2 N (0(3"%.3"y). 27"t).

27"
Since
lim N'(p(3'x.3"y),27"t) =1
and
_f(3"y)
¢(y)=lim—==.

we have N(D(c(y)),t)=1, Vt>0,thus D(c(y))=0, Vye X.Thatis, C isthe cubic mapping

which satisfies the Eq (1.2).
To prove the uniqueness of C, let us assume that there exists a cubic mapping ¢:X =Y which

satisfies (1.2) and (3.17). From Lemma 3.1 we have
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c(3"y)=27"c(y), q(3"y)=27"q(y), vn € N.

Then

27" 27"

me{N{C(sny)_ ((#) l}N[f(B”y)_q(?y) 1}}

N (e(5)-a(%).0) =N [c(s”y)_q(3“y),tJ

27" 27" 2 27" 27" 2

>N (p(0,3"y),27" (27 -)t)

> N'[gp(o, y),wl, vt>0.

n

o

Since

" - : 27" (27 -
im 20Tt [MWMJZL "0,
n—o0 (04 nN—o0 a
Then N(c(y)—a(y).t)=1, Vt>0.Thus, c(y)=q(y)-

2-27" (27 -a)t

n

(2) For any t>0, since lim

=oo0, we have
nN—o0 6a

=1. (3.18)

2.27" (27 -a)t
a

lim N'[go(o, y), B

For the given ye X, s €R, t>0 and 0< <1, it follows from (3.18) that there exists
sufficiently large ny € N such that

N'((p(o,soy),z'ﬂ%(27‘“)tJ>ﬁ. (3.19)

6a™

Using (3.17), we get

N [C(soy)w,%JN {C(3n0 Soy) 3 f (3n050y) LJ

27" 27" 27 '3
. 2.27% (27 —a)t . 2.27% (27 — )t
2w [o(08) S o g0 G G

Since mappings s = f(2™sy) and s » ¢(0,sy) are fuzzy continuous at S,, we know that there
exists 0<& <1 such that
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N[f (3"osy)— f (3”osoy),27TnOt]>ﬂ (3.21)
and
N'(co(o, sy)—(0,5,Y), 2'27n;fnz_“)t}ﬁ (3.22)

whenever 0<|s—s;|<&. Then, by (3.17), (3.19) and (3.22), we get

N[ o(sy)- )ty o) FE) «
y 27" '3 27" 27 '3
, 2.27" (27 —a)t
>N'| ¢(0,sy), 3(““0 @) ]
. . 227" (27— )t : 2:27" (27— )t
>m|n{N [(p(o,sy)—go(o,soy), 6(05”0 ) J,N £§D(O,soy), 6(05”0 ) J}
S 5. (3.23)

Therefore, by (3.20), (3.21) and, (3.23), we have

N (c(sy)—c(s,y).t)

f (3" f (3" f (3% f(3m
Zmin{,\,[c(sy)_ (27nosy)%},\,[ (27nosy)_ (27nf°y)é}N[C(Soy)—%éj}

> [

This means that s —c(sy) is fuzzy continuous.

By Lemma 3.1, we have c(ry): r3c(y), V ye X, reQ. Then for any 2 € R, there exists
rational number sequence r, suchthat r, — A.Since ¢ (sy) is fuzzy continuous with respectto s,

we have
c(Ay) :c(lim rny) =limc(r,y)=limr’c(y)=2%(y).

The proof ends.
In the case a > 27, corresponding to Theorem 3.4, we can get the following conclusion.

Theorem 3.5. Let X, (Z,N’), (Y,N) bealinear space, a fuzzy normed space and a fuzzy Banach
space, respectively, and let o > 27, suppose that the mapping @: X x X — Z satisfies:

N(qp(o,%],t]z N'(¢(0,y),at) (3.24)
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and

o x y) t
limN —, =, =1, VX,ye X, t>0.
o ((0(3” 3“) 27“) y

If f:X—>Y is ¢-approximately cubic in the sense that
N(Df (x,¥).t)=N'(p(x,y).t), ¥x,yeX, t>0. (3.25)

Then
(1) the limitation c(y)=lim27"f (31”} exists for each ye X, and the mapping ¢:X —»Y is the

n—oo

unique cubic mapping which satisfies

N(f(y)-c(y).t)= N'(cu(o, Y),@t} veX, t>0; (3.26)

(2) if the mappings S — f (sy) and s ~ @(0,sy) are fuzzy continuous for each Y€ X, then the
mapping s ~ c(sy)is also fuzzy continuous, and c(1y)=4°c(y) holds forall 1 € R.

Proof. The proof is similar to Theorem 3.4, we only give a framework of the proof for the existence.
Let

Q={g:g:X >Y,g(0)=0},
and let
d(g,h)=inf {ﬂe(o,oo): N(g(y)-h(y).At)=N"(p(0,y),2t),VyeX,t >O}.

We can prove that (Q, d) is a generalized complete metric space. Define the mapping T :Q — Q,

Tg(y)=279(§j , VyeX . Then, T is strictly contractive with Lipschitz constant 20!_7. From

Theorem 2.6, {T” f} is convergent to a fixed point ¢ of T, and c:X =Y is the unique cubic

mapping which satisfies (3.26). The proof ends.
4. Conclusions

In this paper, the equivalence of the two equations is proved and we establish Hyers-Ulam-Rassias
stability of a cubic functional equation in fuzzy normed spaces by using fixed point alternative theorem.
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