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1. Introduction 

The stability problem of functional equations originated from the stability problem of group 

homomorphisms proposed by Ulam [18] in 1940. Under what conditions does there exist a group 

homomorphism near an approximate group homomorphism? If the answer is affirmative, we would 

say that the equation of homomorphism is stable. The concept of stability for a functional equation 

arises when we replace the functional equation by an inequality which acts as a perturbation of the 

equation. Thus, the stability question of functional equations is that how do the solutions of the 

inequality differ from those of the given functional equation? The first result about the stability 

problem of functional equations was shown by Hyers [7] in 1941. In 1950, Aoki [1], and in 1978, 

Rassias [17] proved a generalization of Hyers’ theorem for additive and linear mappings, respectively. 

The result of Rassias has influenced the development of what is now called Hyers-Ulam-Rassias 

stability theory for functional equations. Several stability results have been recently obtained for 
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various equations, also for mappings with more general domains and ranges (see e.g., [3,5,6,10,11,14,16]). 

Jun and Kim [8] firstly proved Hyers-Ulam-Rassias stability of the following functional equation 

in Banach space: 

( ) ( ) ( ) ( )2 2 2 2 ( ) 12f x y f x y f x y f x y f x+ + − = + + − + .   (1.1) 

It is called a cubic functional equation, since ( ) 3f x cx= (𝑐 ∈ ℝ) is its solution. Every solution of 

cubic functional equation is called cubic mapping. In 2008, Wiwatwanich and Nakmahachchalasint [19] 

studied Hyers-Ulam-Rassias stability of another cubic functional equation: 

( ) ( ) ( ) ( )3 3 3 ( 3 ) 48f x y f x y f x y f x y f y+ − + + − − − =
,  (1.2) 

in Banach space by the direct method. 

Kang and Chu [9] investigated the generalized Hyers-Ulam-Rassias stability of an n-dimensional 

cubic functional equation: 

( )
1 1 1

1 1 1

2 2 4
n n n

j n j n j

j j j

f x x f x x f x
− − −

= = =

   
+ + − +   

   
  

 

( ) ( )
1 1

1 1

16 2
n n

j j n j n

j j

f x f x x f x x
− −

= =

 
 = + + + −   

 
 

,     (1.3) 

in Banach spaces, and proved that Eq (1.1) is equivalent to Eq (1.3). 

In 2008, Mirmostafaee and Moslehian [16] introduced three different versions of fuzzy 

approximate additive function in fuzzy normed space and proved that an approximate additive function 

can be approximated by additive function under some appropriate conditions. Since then, the stability 

of functional equation in fuzzy normed space has attracted the attention of scholars. In 2017, Li [12] 

studied Hyers-Ulam-Rassias stability of the quartic functional equation: 

( ) ( )2 (2 ) 4 4 ( ) 24 ( ) 6 ( )f x y f x y f x y f x y f x f y+ + − = + + − + −
,  (1.4) 

in fuzzy normed spaces. In 2021, Wu and Lu [20] establish the stability results concerning the 

following functional equations: 

( ) ( ) ( )f ax by rf x sf y+ = +
,         (1.5) 

where constants , 0a b   and 𝑟, 𝑠 ∈ ℝ with 1a b r s+ = +  , and 

( ) 2 ( ) ( )
2

x y
f x y z f f z

+
+ + = +

,        (1.6) 

in fuzzy normed spaces. 

In this paper, we shall prove that Eq (1.1) is equivalent to Eq (1.2), and shall study Hyers-Ulam-

Rassias stability of Eq (1.2) in fuzzy normed spaces. For convenience, Hyers-Ulam-Rassias stability 

is referred to as stability in this paper. 
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2. Preliminaries 

In this section we shall recall some notations and basic results used in this paper. 

Definition 2.1 ([2]). Let X  be a linear space over a field ℝ. A fuzzy subset 𝑁: 𝑋 × ℝ → [0，1] is 

called a fuzzy norm on X  if for all 𝑥, 𝑦 ∈ 𝑋, and all 𝑡, 𝑠 ∈ ℝ: 

(N1) ∀𝑡 ≤ 0， ( ), 0N x t = ; 

(N2) ∀𝑡 > 0, ( ), 1N x t =  if and only if 0x = ; 

(N3) ∀𝑡 > 0, ( ), ,
t

N cx t N x
c

 
=   

 

 if 0c  ; 

(N4) ( ) ( ) ( ) , min , , ,N x y s t N x s N y t+ +  ; 

(N5) ( ),N x   is a non-decreasing function on ℝ and ( )lim , 1
t

N x t
→

= ; 

(N6) ∀𝑥 ≠ 0, ( ),N x   is (upper semi) continuous on ℝ. 

The pair ( ),X N  is called a fuzzy normed linear space. 

It is easy to see that (N5) can be implied by (N2) and (N4). 

Definition 2.2 ([2]). Let  nx  be a sequence in fuzzy normed linear space ( ),X N . Then  nx  is 

said to be convergent if there is x X  such that ( )lim , 1n
n

N x x t
→

− = , 0t  . In that case x  is 

called the limit of the sequence  nx  and is denoted by lim n
n

x x
→

= . 

Definition 2.3 ([2]). A sequence  nx   in ( ),X N   is said to be Cauchy sequence if

( )lim , 1n p n
n

N x x t+
→

− = , 0t   and 𝑝 ∈ ℕ. 

If every Cauchy sequence is convergent, then the fuzzy normed space is called a fuzzy Banach 

space. 

The following definition is slightly different from that in [15]. 

Definition 2.4. Let ( , )Y N  be a (quasi) fuzzy normed space. A function 𝑓: ℝ → 𝑌 is said to be fuzzy 

continuous at 𝑠0 ∈ ℝ , if for each 0t    and 0 1   , there is some 0    such that 

( ) ( )( )0 ,N f s f s t −   for each s  with 
0s s −  . f  is said to be fuzzy continuous on ℝ, if 

f  is fuzzy continuous at any point of ℝ. 

Definition 2.5 ([13]). Let X   be a nonempty set. Assume that on the Cartesian product 𝑋 × 𝑋 , a 

distance function 𝑑(𝑥, 𝑦) (0 ≤ 𝑑(𝑥, 𝑦) ≤ ∞) is defined, satisfying the following conditions: 

(D1) 𝑑(𝑥, 𝑦) = 0 if and only if x y= , 

(D2) 𝑑(𝑥, 𝑦) = 𝑑(𝑦, 𝑥) (symmetry), 

(D3) 𝑑(𝑥, 𝑦) ≤ 𝑑(𝑥, 𝑧) + 𝑑(𝑧, 𝑦) (triangle inequality), 

(D4) every Cauchy sequence in 𝑋 is convergent. 

Then, (𝑋, 𝑑) is called a generalized complete metric space. 

Theorem 2.6 ([4]). Let (𝑋, 𝑑) be a generalized complete metric space and T : X X→  be a strictly 

contractive mapping with Lipschitz constant L ( )1L  , that is, 

( ) ( ), ,d Tx Ty Ld x y , ,x y X  . 
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Then for each given x X , either 

( )1,n nd T x T x+ = 
, 0n  ; 

or there exists a natural number 0n  such that 

(1) ( )1,n nd T x T x+    for all 0n n ; 

(2)  nT x  is convergent to a fixed point y  of T ; 

(3) y  is the unique fixed point of T  in the set ( ) 0: ,
n

y X d T x y =    ; 

(4) ( ) ( )
1

, ,
1

d y y d y Ty
L

 
−

 for all y . 

3. Main results 

First, we prove that Eq (1.2) is equivalent to Eq (1.1). 

Lemma 3.1. Let X  and Y  be linear spaces and the mapping :f X Y→  satisfy (1.2), then 

(1) 0 =0f（ ） ; 

(2) f  is an odd mapping; 

(3) 3= ( )f ry r f y（ ） , y X  , ∀𝑟 ∈ ℚ. 

Proof. (1) Putting 0x y= =  in (1.2), we get 0 =0f（ ） . 

(2) Replacing y  by y−  in (1.2), we get 

( ) ( ) ( ) ( )3 3 3 ( 3 ) 48f x y f x y f x y f x y f y− − − + + − + = − .   (3.1) 

Then 𝑓(−𝑦) = −𝑓(𝑦), implying that f  is an odd mapping. 

(3) We first prove that 

3= ( )f ny n f y（ ） , ∀𝑦 ∈ 𝑋, ∀𝑛 ∈ ℕ.       (3.2) 

Setting 𝑥=0 in (1.2), we get 

𝑓(3𝑦) = 27𝑓(𝑦).           (3.3) 

Let 𝑥 = 𝑦 in (1.2), we get 

𝑓(4𝑦) = 2𝑓(2𝑦) + 48𝑓(𝑦).        (3.4) 

Let 𝑥 = 3𝑦 in (1.2), we get 

𝑓(6𝑦) − 3𝑓(4𝑦) + 3𝑓(2𝑦) = 48𝑓(𝑦).     (3.5) 

Substituting (3.3) and (3.4) into (3.5), we get 

𝑓(2𝑦) = 8𝑓(𝑦).           (3.6) 

Therefore, (3.2) holds for 2n =  and 3n = . 

Now, suppose (3.2) holds whenever n k  ( 3k  , 𝑛 ∈ ℕ). Next, we shall prove that (3.2) holds 

when 𝑛 = 𝑘+1. In fact, setting 𝑥 = (𝑘 − 2)𝑦 in (1.2), we get 
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( )( ) ( )( ) ( )( ) ( )( ) ( )1 5 3 1 3 3 48f k y f k y f k y f k y f y+ = − + − − − +  

( ) ( ) ( ) ( )
3 3 3

5 3 1 3 3 48k k k f y = − + − − − +
 

 

( ) ( )
3

1k f y= + . 

From the principle of induction, we get 3= ( )f ny n f y（ ） , ∀𝑦 ∈ 𝑋, ∀𝑛 ∈ ℕ. 

Last, we shall prove 𝑓(𝑟𝑦) = 𝑟3𝑓(𝑦), ∀𝑦 ∈ 𝑋, 𝑟 ∈ ℚ. Let 
m

r
n

= , 𝑚, 𝑛 ∈ ℕ, replacing y  by 

y

n
, we get 

( )3

1 y
f y f

n n

 
=  

 
,  y X , 𝑛 ∈ ℕ. 

Then, 

( )f ry =
m

f y
n

 
 
 

= 3 1
m f y

n

 
 
 

= ( )
3

m
f y

n

 
 
 

= ( )3r f y . 

The proof ends. 

Theorem 3.2. Let X ，Y  be linear spaces. Then the mapping :f X Y→  satisfies the functional Eq (1.2) if 

and only if f  satisfies the functional Eq (1.1). 

Proof. If :f X Y→  satisfies the functional Eq (1.2), from Lemma 3.1, f  is an odd mapping and 

𝑓(3𝑦) = 27𝑓(𝑦), 𝑓(2𝑦) = 8𝑓(𝑦). 

Replacing x  by x y−  in (1.2), we get 

( ) ( ) ( ) ( ) ( )2 4 3 3 2 48f x y f x y f x f x y f y+ − − − + − = .    (3.7) 

Replacing x  by y  and y  by x  in (3.7), we get 

( ) ( ) ( ) ( ) ( )2 4 3 3 2 48f y x f y x f y f y x f x+ − − − + − = .    (3.8) 

Setting y y= −  in (3.8), we get 

( ) ( ) ( ) ( ) ( )2 4 3 3 2 48f x y f x y f y f x y f x− + + + − + = .    (3.9) 

From (3.8) and (3.9), we get 

( ) ( ) ( ) ( ) ( )4 2 4 2 4 4 6 0f x y f x y f x y f x y f y+ − − + − − + − = .  (3.10) 

Replacing x  by / 2x  in (3.10), we get 

( ) ( ) ( ) ( ) ( )2 2 4 4 6f x y f x y f x y f x y f y+ − − = + − − − .    (3.11) 

Replacing y  by 2y  in (3.11), we get 
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( ) ( ) ( ) ( ) ( )2 2 2 2 12f x y f x y f x y f x y f y+ − − = + − − − .   (3.12) 

Exchanging x  and y  in (3.12), we get the functional Eq (1.1). 

Conversely, suppose f  satisfies the functional Eq (1.1), by setting 0x y= =  in (1.1), we get 

𝑓(0) = 0 . Letting 0x =   in (1.1), we have 𝑓(−𝑦) = −𝑓(𝑦) . Setting 0y =   and y x=   in (1.1), 

respectively, we obtain 𝑓(2𝑥) = 8𝑓(𝑥) and 𝑓(3𝑥) = 27𝑓(𝑥). Replacing y  by x y+  in (1.1), we 

get 

( ) ( ) ( ) ( )3 2 2 2 ( ) 12f x y f x y f x y f y f x+ + − = + − + .    (3.13) 

Replacing y  by y x−  in (1.1), we know 

( ) ( ) ( ) ( )3 2 2 (2 ) 12f x y f x y f y f x y f x+ + − = + − + .    (3.14) 

Adding (3.13) and (3.14), and using (1.1), we get the functional Eq (1.2). The proof ends. 

Lemma 3.3. Let X , ( ),Z N  , ( ),Y N  be a linear space, a fuzzy normed space and a fuzzy Banach 

space, respectively. And let h  : X Y→   and   : X Z→   be two functions. Set 

( ) : : , 0 0g g X Y g = → = . For any 0  ，define a mapping d :  0→ ，  as 

( ) ( ) ( ) ( )( ) ( )( ) , inf 0, : , , , , 0d g h N g y h y t N y t y X t   =   −     , 

then ( ),d  is a generalized complete metric space. 

Proof. (D1) It is obvious that ( ), 0d g g = . Conversely, suppose ( ), 0d g h = , from the definition of 

( ),d g h , we have 

( ) ( )
1

,N g y h y t
n

 
− 

 
( )( ),N y t  , 

i.e. 

( ) ( )( ),N g y h y t− ( )( ),N y n t  , 

for any 𝑛 ∈ ℕ, y X , 0t  , 0  . Let n → , we get ( ) ( )( ), 1N g y h y t− = , for any 0t  , thus 

g h= . 

(D2) It is obvious. 

(D3) If ( ) 1,d g h =  and ( ) 2,d h k = , , ,g h k  , then for any 1 2, 0   , we have 

( ) ( ) ( )( )1 1,N g y h y t − + ( )( ),N y t   

and 

( ) ( ) ( )( )2 2,N h y k y t − + ( )( ),N y t  , y X , 0t  , 0  . 

Thus 
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( ) ( ) ( )( )1 1 2 2,N g y k y t   − + + +  

 ( ) ( ) ( )( ) ( ) ( ) ( )( ) 1 1 2 2min , , ,N g y h y t N h y k y t    − + − +  

( )( ),N y t  . 

Hence, ( ) 1 2 1 2,d g k     + + + . By the arbitrariness of 1  and 2 , we have 

( ) ( ) ( ), , ,d g k d g h d h k + . 

(D4) Let  nh   be a Cauchy sequence in   . For the given 
0y X  , and any ( )0,1  , since 

( )( )lim , 1
t

N y t 
→

 =  , there exists 
0 0t   , such that ( )( )0 0, 1N y t    −  . For any 0   , let 

00 / t   , since  nh  is a Cauchy sequence, there exists 0n , ( ),m nd h h   whenever 
0,n m n . 

Then we have 

( ) ( )( )0 0 ,m nN h y h y − ( ) ( )( )0 0 0,m nN h y h y t − ( )( )0 0,N y t  1  − , 

thus ( ) nh y  is a Cauchy sequence. Since ( ),Y N  is complete, there exists  :h X Y→  such that 

( ) nh y  is convergent to ( )h y  in Y . 

For any 0  , since  nh  is a Cauchy sequence, there exists 0n  such that 

( ) ( ) ,
2

n n mN h y h y t


+

 
− 

 
( )( ),N y t   

for any y X , 0t  , 0n n  and 1m  . Therefore 

 ( ) ( )( ),nN h y h y t− ( ) ( ) ( ) ( )min , , ,
2 2

n n m n mN h y h y t N h y h y t
 

+ +

    
 − −    

    
 

( )( ) ( ) ( )min , , ,
2

n mN y t N h y h y t


  +

  
 −  

  
. 

Let m → , we get 

( ) ( )( ),nN h y h y t− ( )( ) min , ,1N y t  ( )( ),N y t = , , 0, 0y X t     . 

Thus ( )nd h h    whenever 0n n ，which implies that  nh   is convergent to h   in   . Thus, 

( ),d  is a generalized complete metric space. The proof ends. 

In the rest of this paper, we focus on the functional Eq (1.2). 

For a mapping :f X Y→ , for convenience, we define a difference operator Df : 2X Y→  as 

( ) ( ) ( ) ( ) ( )( , ) 3 3 3 3 48Df x y f x y f x y f x y f x y f y= + − + − − + − − , ,x y X  . 

Theorem 3.4. Let X , ( ),Z N  , ( ),Y N  be a linear space, a fuzzy normed space and a fuzzy Banach 

space, respectively, and let 0 27  . Suppose that the mapping : X X Z  →  satisfies 
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( )( ) ( )( )' '0,3 , 0, ,N y t N y t           (3.15) 

and 

( )( )'lim 3 ,3 ,27 1n n n

n
N x y t

→
= , ,x y X  , 0t  . 

If :f X Y→  is  -approximately cubic in the sense that 

( )( ) ( )( )', , , ,N Df x y t N x y t , ,x y X  , 0t  .     (3.16) 

Then 

(1) the limitation ( )
( )3

lim
27

n

nn

f y
c y

→
=   exists for each y X  , and the mapping :c X Y→   is the 

unique cubic mapping which satisfies 

( ) ( )( ) ( ) ( )( )', 0, , 2 27N f y c y t N y t −  − , y X  , 0t  ;  (3.17) 

(2) if the mappings ( )s f sy→  and 𝑠 ↦ 𝜑(0, 𝑠𝑦) are fuzzy continuous for each y X , then the 

mapping ( )s c sy→  is also fuzzy continuous, and ( ) ( )3c y c y =  holds for all 𝜆 ∈ ℝ. 

Proof. (1) Consider the set 

( ) : : , 0 0g g X Y g = → = , 

and the mapping, 

( ) ( ) ( ) ( )( ) ( )( ) , inf 0, : , 0, ,54 , , 0d g h N g y h y t N y t y X t  =   −     . 

Let ( )y  = ( )0, y   and 54 =   in Lemma 3.3, then we know that ( ),d   is a generalized complete 

metric space. Define the mapping :T → , ( )
( )3

27

g y
Tg y = , y X  . 

Now we prove T  is strictly contractive with Lipschitz constant 
27


. For the given ,g h , 

set ( ),d g h = . If  =  , it is obvious that 

( ) ( ), ,
27

d Tg Th d g h


 . 

If  )0,   , then for any 0t  , 0  , we have the following inequality by (N5): 

( ) ( ) ( )( ) ( )( ), 0, ,54N g y h y t N y t  − +  , y X  . 

Therefore, using (N3) and (3.15), we get 
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( ) ( )
( ) ( ) ( ) ( )3 3

, ,
27 27 27 27

t g y h y t
N Tg y Th y N

     + +   
− = −   

   
 

  ( ) ( ) ( )( )3 3 ,N g y h y t  = − + ( )( ) ( )( )0,3 ,54 0, ,54N y t N y t       

( )( )0, ,54N y t= , y X  , 0t  . 

Hence ( )
( )

,
27

d Tg Th
  +

 . Since   is arbitrary, then ( ) ( ), ,
27

d Tg Th d g h


 . 

Next, setting 0x =  in (3.16), we can obtain 

( )
( ) ( )( )

3
, 0, ,54

27

f y
N f y t N y t
 

−  
 

. 

Then we get that ( ), 1d Tf f    . From Theorem 2.6, we have the followings: 

(a)  nT f  is convergent to a fixed point c  of T , that is ( )lim , 0n

n
d T f c

→
= , 

(b) c  is the unique fixed point of T , that is, 𝑐(3𝑦) = 27𝑐(𝑦), y X  , 

(c) ( ) ( )
1 1 27

, ,
1 /27 1 /27 27

d f c d Tf f
  

  =
− − −

, 

which implies that 

( )
( )3

lim
27

n

nn

f y
c y

→
=  

and 

( ) ( )( ) ( ) ( )( ), 0, , 2 27N f y c y t N y t −  − , y X  , 0t  . 

Replacing 𝑥, y  by 3n x , 3n y , respectively in (3.16), we get 

( )
( )( ) ( )( )'

3 ,3
, 3 ,3 ,27 3 ,3 ,27

27

n n

n n n n n n

n

Df x y
N t N Df x y t N x y t
 
  = 
 
 

. 

Since 

( )( )'lim 3 ,3 ,27 1n n n

n
N x y t

→
=  

and 

( )
( )3

lim
27

n

nn

f y
c y

→
= , 

we have ( )( ( )), 1N D c y t = , 0t  , thus ( )( ) 0D c y = , y X  . That is, c  is the cubic mapping 

which satisfies the Eq (1.2). 

To prove the uniqueness of c , let us assume that there exists a cubic mapping :q X Y→  which 

satisfies (1.2) and (3.17). From Lemma 3.1 we have 
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( ) ( )3 27n nc y c y= , ( ) ( )3 27n nq y q y= , ∀𝑛 ∈ ℕ. 

Then 

( ) ( )( ),N c y q y t−
( ) ( )3 3

,
27 27

n n

n n

c y q y
N t
 
 = −
 
 

 

( ) ( ) ( ) ( )3 3 3 3
min , , ,

27 27 2 27 27 2

n n n n

n n n n

c y f y f y q yt t
N N

     
    − − 
        

 

( ) ( )( )' 0,3 ,27 27n nN y t  −  

( )
( )'

27 27
0, ,

n

n

t
N y






 −
  

 
, 0t  . 

Since 

( )27 27
lim

n

nn

t

→

−
=  , ( )

( )'
27 27

lim 0, , 1

n

nn

t
N y




→

 −
= 

 
, 0t  . 

Then ( ) ( )( ), 1N c y q y t− = , 0t  . Thus, ( ) ( )c y q y= . 

(2) For any 0t  , since 
( )2 27 27

lim
6

n

nn

t

→

 −
=  , we have 

( )
( )'

2 27 27
lim 0, , 1

6

n

nn

t
N y




→

  −
= 

 
.       (3.18) 

For the given y X  , 𝑠0 ∈ ℝ , 0t    and 0 1   , it follows from (3.18) that there exists 

sufficiently large 𝑛0 ∈ ℕ such that 

( )
( )0

0

'

0

2 27 27
0, ,

6

n

n

t
N s y


 



  −
  

 

.       (3.19) 

Using (3.17), we get 

( )
( )0

0

0

0

3
,

27 3

n

n

f s y t
N c s y
 
 −
 
 

=
( ) ( )0 0

0 0

0 03 3
,

27 27 3

n n

n n

c s y f s y t
N
 
 −
 
 

 

( )
( )0

0

'

0

2 27 27
0, ,

3

n

n

t
N s y






  −
   

 
( )

( )0

0

'

0

2 27 27
0, ,

6

n

n

t
N s y


 



  −
   

 

.  (3.20) 

Since mappings 𝑠 ↦ 𝑓(2𝑛0𝑠𝑦) and 𝑠 ↦ 𝜑(0, 𝑠𝑦) are fuzzy continuous at 0s , we know that there 

exists 0 1   such that 
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( ) ( )
0

0 0

0

27
3 3 ,

3

n
n n t

N f sy f s y 
 

−  
 

        (3.21) 

and 

( ) ( )
( )0

0

'

0

2 27 27
0, 0, ,

6

n

n

t
N sy s y


  



  −
−   

 

     (3.22) 

whenever 
00 s s  −  . Then, by (3.17), (3.19) and (3.22), we get 

( )
( )0

0

3
,

27 3

n

n

f sy t
N c sy
 
 −
 
 

=
( ) ( )0 0

0 0

3 3
,

27 27 3

n n

n n

c sy f sy t
N
 
 −
 
 

 

( )
( )0

0

'
2 27 27

0, ,
3

n

n

t
N sy






  −
   

 

 

( ) ( )
( )

( )
( )0 0

0 0

' '

0 0

2 27 27 2 27 27
min 0, 0, , , 0, ,

6 6

n n

n n

t t
N sy s y N s y

 
  

 

     −  − 
 −       

     
 

 .                  (3.23) 

Therefore, by (3.20), (3.21) and, (3.23), we have 

( ) ( )( )0 ,N c sy c s y t−  

( )
( ) ( ) ( )

( )
( )0 0 0 0

0 0 0 0

0 0

0

3 3 3 3
min , , , , ,

3 3 327 27 27 27

n n n n

n n n n

f sy f sy f s y f s xt t t
N c sy N N c s y

       
      − − − 
            

 

 . 

This means that ( )s c sy→  is fuzzy continuous. 

By Lemma 3.1, we have ( ) ( )3c ry r c y=  ,  y X  , 𝑟 ∈ ℚ . Then for any 𝜆 ∈ ℝ , there exists 

rational number sequence 
nr  such that 

nr → . Since ( )c sy  is fuzzy continuous with respect to s , 

we have 

( ) ( ) ( ) ( ) ( )3 3lim lim limn n n
n n n

c y c r y c r y r c y c y 
→ → →

= = = = . 

The proof ends. 

In the case 𝛼 > 27, corresponding to Theorem 3.4, we can get the following conclusion. 

Theorem 3.5. Let X , ( ),Z N  , ( ),Y N  be a linear space, a fuzzy normed space and a fuzzy Banach 

space, respectively, and let 27  , suppose that the mapping : X X Z  →  satisfies: 

( )( )' '0, , 0, ,
3

y
N t N y t  
  

  
  

       (3.24) 
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and 

'lim , , 1
3 3 27n n nn

x y t
N 

→

  
=  

  
, ,x y X  , 0t  . 

If :f X Y→  is  -approximately cubic in the sense that 

( )( ) ( )( )', , , ,N Df x y t N x y t , ,x y X  , 0t  .     (3.25) 

Then 

(1) the limitation ( ) lim 27
3

n

nn

y
c y f

→

 
=  

 
 exists for each y X , and the mapping :c X Y→  is the 

unique cubic mapping which satisfies 

( ) ( )( ) ( )
( )'

2 27
, 0, ,N f y c y t N y t






− 
−   

 

, y X  , 0t  ;  (3.26) 

(2) if the mappings ( )s f sy→  and 𝑠 ↦ 𝜑(0, 𝑠𝑦) are fuzzy continuous for each y X , then the 

mapping 𝑠 ↦ 𝑐(𝑠𝑦)is also fuzzy continuous, and ( ) ( )3c y c y =  holds for all 𝜆 ∈ ℝ. 

Proof. The proof is similar to Theorem 3.4, we only give a framework of the proof for the existence. 

Let 

( ) : : , 0 0g g X Y g = → = , 

and let 

( ) ( ) ( ) ( )( ) ( )( ) , inf 0, : , 0, , 2 , , 0d g h N g y h y t N y t y X t  =   −     . 

We can prove that ( ),d  is a generalized complete metric space. Define the mapping :T → , 

( ) 27
3

y
Tg y g

 
=  

 
 , y X   . Then, T   is strictly contractive with Lipschitz constant 27


 . From 

Theorem 2.6,  nT f   is convergent to a fixed point c   of T  , and :c X Y→   is the unique cubic 

mapping which satisfies (3.26). The proof ends. 

4. Conclusions 

In this paper, the equivalence of the two equations is proved and we establish Hyers-Ulam-Rassias 

stability of a cubic functional equation in fuzzy normed spaces by using fixed point alternative theorem. 
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