Research article

Convexity with respect to strictly monotone function and Riemann-Liouville fractional Fejér-Hadamard inequalities

  • Received: 10 March 2021 Accepted: 09 April 2021 Published: 25 April 2021
  • MSC : 26D15, 26A33, 33E12, 26A51

  • In this paper we study the Fejér-Hadamard inequalities for convex function with respect to a strictly monotone function. We establish two inequalities for convex function with respect to a strictly monotone function via Riemann-Liouville fractional integrals. From inequalities found here many new results can be derived by selecting specific strictly monotone and weight functions. Also a variety of existing Fejér-Hadamard and Hadamard inequalities can be reproduced.

    Citation: Shuang-Shuang Zhou, Ghulam Farid, Chahn Yong Jung. Convexity with respect to strictly monotone function and Riemann-Liouville fractional Fejér-Hadamard inequalities[J]. AIMS Mathematics, 2021, 6(7): 6975-6985. doi: 10.3934/math.2021409

    Related Papers:

  • In this paper we study the Fejér-Hadamard inequalities for convex function with respect to a strictly monotone function. We establish two inequalities for convex function with respect to a strictly monotone function via Riemann-Liouville fractional integrals. From inequalities found here many new results can be derived by selecting specific strictly monotone and weight functions. Also a variety of existing Fejér-Hadamard and Hadamard inequalities can be reproduced.



    加载中


    [1] L. Fejér, Überdie Fourierreihen II, Math. Naturwiss. Anz. Ungar. Akad. Wiss., 24 (1906), 369–390.
    [2] J. E. Pečarić, F. Proschan, Y. L. Tong, Convex Functions, Partial Orderings, and Statistical Applications, New York: Academic Press, 1992.
    [3] S. S. Dragomir, Inequalities of Hermite-Hadamard type for composite convex functions, In: G. Anastassiou, J. Rassias, Frontiers in Functional Equations and Analytic Inequalities, Cham: Springer, 2019.
    [4] C. P. Niculescu, Convexity according to the geometric means, Math. Inequal. Appl., 3 (2000), 155–167.
    [5] I. Iscan, Hermite-Hadamard type inequalities for harmonically convex functions, Hacettepe J. Math. Stat., 43 (2014), 935–942.
    [6] K. S. Zhang, J. P. Wan, $p$-convex functions and their properties, Pure Appl. Math., 23 (2007), 130–133.
    [7] G. Farid, Convexity with respect to a strictly monotone function and Hadamard inequalities, unpublished work.
    [8] F. Chen, S. Wu, Fejér and Hermite-Hadamard type inequalities for harmonically convex functions, J. Appl. Math., 2014 (2014), 386806.
    [9] M. Kunt, I. Iscan, Hermite-Hadamard-Fejér type inequalities for $p$-convex functions, Arab J. Math. Sci., 23 (2017), 215–230.
    [10] M. A. Latif, S. S. Dragomir, E. Momoniat, Some Fejér type integral inequalities for geometrically-arithmetically-convex functions with applications, Filomat, 32 (2018), 2193–2206. doi: 10.2298/FIL1806193L
    [11] I. Iscan, Hermite-Hadamard type inequalities for $p$-convex functions, Int. J. Anal. Appl., 11 (2016), 137–145.
    [12] I. Iscan, S. Wu, Hermite-Hadamard type inequalities for harmonically convex functions via fractional integrals, Appl. Math. Comput., 238 (2014), 237–244.
    [13] M. Kunt, I. Iscan, Hermite-Hadamard type inequalities for $p$-convex functions via fractional integrals, Moroccan J. Pure Appl. Anal., 3 (2017), 22–35. doi: 10.1515/mjpaa-2017-0003
    [14] M. Kunt, I. Iscan, N. Yazici, U. Gozutok, On new inequalities of Hermite-Hadamard-Fejér type for harmonically convex functions via fractional integrals, SpringerPlus, 5 (2016), 653. doi: 10.1186/s40064-016-2280-8
    [15] M. Z. Sarikaya, E. Set, H. Yaldiz, N. Basak, Hermite-Hadamard's inequalities for fractional integrals and related fractional inequalities, Math. Comput. Model., 57 (2013), 2403–2407. doi: 10.1016/j.mcm.2011.12.048
    [16] M. Z. Sarikaya, H. Yildirim, On Hermite-Hadamard type inequalities for Riemann-Liouville fractional integrals, Miskolc Math. Notes, 17 (2016), 1049–1059.
    [17] A. A. Kilbas, H. M. Srivastava, J. J Trujillo, Theory and Applications of Fractional Differential Equations, Netherlands: Elsevier, 2006.
    [18] G. Farid, A. U. Rehman, S. Bibi, Y. M. Chu, Refinements of two fractional versions of Hadamard inequalities for Caputo fractional derivatives and related results, Open J. Math. Sci., 5 (2021), 1–10. doi: 10.30538/oms2021.0139
    [19] G. Farid, K. Mahreen, Y. M. Chu, Study of inequalities for unified integral operators of generalized convex functions, Open J. Math. Sci., 5 (2021), 80–93. doi: 10.30538/oms2021.0147
    [20] I. Iscan, M. Kunt, N. Yazici, Hermite-Hadamard-Fejér type inequalities for harmonically convex functions via fractional integrals, New Trends Math Sci., 4 (2016), 239–253.
    [21] M. Kunt, I. Iscan, Hermite-Hadamard-Fejér type inequalities for $p$-convex functions via fractional integrals, Iran. J. Sci. Technol. Trans. A, 42 (2018), 2079–2089. doi: 10.1007/s40995-017-0352-4
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2366) PDF downloads(133) Cited by(4)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog