Research article

Sharper bounds and new proofs of the exponential function with cotangent

  • Received: 28 May 2020 Accepted: 06 September 2020 Published: 09 September 2020
  • MSC : 33B10, 26D05

  • This paper provides a Páde interpolation based method for finding improved bounds for the exponential function with cotangent. In principle, it can recover many results in prevailing methods. A new method for proving the corresponding bounds is also proposed, which can also be applied for proving more other bounding functions. Numerical experiments show that the new bounds are better than those of prevailing methods.

    Citation: Xiangyang Wu, Kang Yang, Nichang Jiang, Xiao-Diao Chen. Sharper bounds and new proofs of the exponential function with cotangent[J]. AIMS Mathematics, 2020, 5(6): 7014-7040. doi: 10.3934/math.2020450

    Related Papers:

  • This paper provides a Páde interpolation based method for finding improved bounds for the exponential function with cotangent. In principle, it can recover many results in prevailing methods. A new method for proving the corresponding bounds is also proposed, which can also be applied for proving more other bounding functions. Numerical experiments show that the new bounds are better than those of prevailing methods.


    加载中


    [1] M. Becker, E. L. Stark, On a hierarchy of quolynomial inequalities for tan(x), Publ. Elektroteh. Fak. Univ. Beogr., Ser. Mat. Fiz., 602/633 (1978), 133-138.
    [2] F. Qi, Derivatives of tangent function and tangent numbers, Appl. Math. Comput., 268 (2015), 844-858 .
    [3] L. Zhu, J. J. Sun, Six new Redheffer-type inequalities for circular and hyperbolic functions, Comput. Math. Appl., 56 (2008), 522-529. doi: 10.1016/j.camwa.2008.01.012
    [4] L. Zhu, J. K. Hua, Sharpening the Becker-Stark inequalities, J. Inequal. Appl., 2010 (2010), 931275.
    [5] Z. J. Sun, L. Zhu, Simple proofs of the Cusa-Huygens-type and Becker-Stark-type inequalities, J. Math. Inequal., 7 (2013), 563-567.
    [6] L. Debnath, C. Mortici, L. Zhu, Refinements of Jordan-Steckin and Becker-Stark inequalities, Results Math., 67 (2015), 207-215. doi: 10.1007/s00025-014-0405-3
    [7] H. L. Lv, Z. H. Yang, T. Q. Luo, et al. Sharp inequalities for tangent function with applications, J. Inequal. Appl., 2017 (2017), 1-17. doi: 10.1186/s13660-016-1272-0
    [8] L. Zhu, Sharpening Redheffer-type inequalities for circular functions, Appl. Math. Lett., 22 (2009), 743-748. doi: 10.1016/j.aml.2008.08.012
    [9] B. Malesevic, T. Lutovac, M. Rasajski, et al. Extensions of the natural approach to refinements and generalizations of some trigonometric inequalities, Adv. Differ. Equ., 2018 (2018), 1-15. doi: 10.1186/s13662-017-1452-3
    [10] B. Malesevic, T. Lutovac, B. Banjac, A proof of an open problem of Yusuke Nishizawa for a powerexponential function, J. Math. Inequal., 12 (2018), 473-485.
    [11] B. Malesevic, T. Lutovac, B. Banjac, One method for proving some classes of exponential analytical inequalities, Filomat, 32 (2018), 6921-6925. doi: 10.2298/FIL1820921M
    [12] S. Wu, L. Debnath, A generalization of L'Hospital-type rules for monotonicity and its application, Appl. Math. Lett., 22 (2009), 284-290. doi: 10.1016/j.aml.2008.06.001
    [13] Z. H. Yang, Y. M. Chu, M. K. Wang, Monotonicity criterion for the quotient of power series with applications, J. Math. Anal. Appl., 428 (2015), 587-604. doi: 10.1016/j.jmaa.2015.03.043
    [14] L. Zhu, New inequalities for means in two variables, Math. Inequal. Appl., 11 (2008), 229-235.
    [15] L. Zhu, Some new inequalities for means in two variables, Math. Inequal. Appl., 11 (2008), 443- 448.
    [16] L. Zhu, New inequalities for hyperbolic functions and their applications, J. Inequal. Appl., 2012 (2012), 303.
    [17] L. Zhu, New bounds for the exponential function with cotangent, J. Inequal. Appl., 2018 (2018), 1-13. doi: 10.1186/s13660-017-1594-6
    [18] L. Zhu, Sharp inequalities for hyperbolic functions and circular functions, J. Inequal. Appl., 2019 (2019), 221.
    [19] P. Davis, Interpolation and Approximation, Dover Publications, New York, 1975.
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3028) PDF downloads(92) Cited by(0)

Article outline

Figures and Tables

Figures(1)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog