Research article

Certain generalized fractional integral inequalities

  • Received: 09 October 2019 Accepted: 15 January 2020 Published: 05 February 2020
  • MSC : 6D10, 26A33, 26D53

  • The principal aim of this article is to establish certain generalized fractional integral inequalities by utilizing the Marichev-Saigo-Maeda (MSM) fractional integral operator. Some new classes of generalized fractional integral inequalities for a class of n (n ∈ $\mathbb{N}$) positive continuous and decreasing functions on [a, b] by using the MSM fractional integral operator also derived.

    Citation: Kottakkaran Sooppy Nisar, Gauhar Rahman, Aftab Khan, Asifa Tassaddiq, Moheb Saad Abouzaid. Certain generalized fractional integral inequalities[J]. AIMS Mathematics, 2020, 5(2): 1588-1602. doi: 10.3934/math.2020108

    Related Papers:

  • The principal aim of this article is to establish certain generalized fractional integral inequalities by utilizing the Marichev-Saigo-Maeda (MSM) fractional integral operator. Some new classes of generalized fractional integral inequalities for a class of n (n ∈ $\mathbb{N}$) positive continuous and decreasing functions on [a, b] by using the MSM fractional integral operator also derived.


    加载中


    [1] M. Aldhaifallah, M. Tomar, K. S. Nisar, Some new inequalities for (k, s)-fractional integrals, J. Nonlinear Sci. Appl., 9 (2016), 5374-381.
    [2] P. Agarwal, M. Jleli, M. Tomar, Certain Hermite-Hadamard type inequalities via generalized k-fractional integrals, J. Inequal. Appl., 2017 (2017), 55.
    [3] D. Baleanu, O. G. Mustafa, On the Global Existence of Solutions to a Class of Fractional Differential Equations, Com. Math. Appl., 59 (2010), 1835-1841. doi: 10.1016/j.camwa.2009.08.028
    [4] C. J. Huang, G. Rahman, K. S. Nisar, Some Inequalities of Hermite-Hadamard type for k-fractional conformable integrals, Aust, J. Math. Anal. Appl., 16 (2019), 1-9.
    [5] Z. Dahmani, L. Tabharit, On weighted Gruss type inequalities via fractional integration, J. Adv. Res. Pure Math., 2 (2010), 31-38.
    [6] Z. Dahmani, New inequalities in fractional integrals, Int. J. Nonlinear Sci., 9 (2010), 493-497.
    [7] M. Houas, Some integral inequalities involving Saigo fractional integral operators, Journal of Interdisciplinary Mathematics, 21 (2018), 681-694. doi: 10.1080/09720502.2016.1160573
    [8] H. M. Srivastava, P. W. Karlson, Multiple gaussion hypergeometric series, Ellis Horwood, New York, 1985.
    [9] A. A. Kilbas, Hadamard-type fractional calculus, J. Korean Math. Soc., 38 (2001), 1191-1204.
    [10] V. Kiryakova, Generalized Fractional Calculus and Applications, CRC press, 1993.
    [11] V. Kiryakova, On two Saigo Fractional Integral Operators in the Class of Univalent Functions, Fract. Calc. Appl. Anal., 9 (2006), 159-176.
    [12] V. Kiryakova, A Brief Story About the Operators of the Generalized Fractional Calculus, Fract. Calc. Appl. Anal., 11 (2008), 203-220.
    [13] O. I. Marichev, Volterra equation of Mellin Convolution Type With a Horn Function in the Kernel, Izv. AN BSSR, Ser. Fiz.-Mat. Nauk, 1 (1974), 128-129.
    [14] S. K. Ntouyas, S. D. Purohit, J. Tariboon, Certain Chebyshev type integral inequalities involving Hadamard's fractional operators, Abstr. Appl. Anal., 2014 (2014).
    [15] K. S. Nisar, F. Qi, G. Rahman, Some inequalities involving the extended gamma function and the Kummer confluent hypergeometric k-function, J. Inequal. Appl., 2018 (2018), 135.
    [16] K. S. Nisar, G. Rahman, J. Choi, Certain Gronwall type inequalities associated with Riemann-Liouville k- and Hadamard k-fractional derivatives and their applications, East Asian Math. J. 34, (2018), 249-263.
    [17] K. S. Nisar, G. Rahman, K. Mehrez, Chebyshev type inequalities via generalized fractional conformable integrals, J. Inequal. Appl., 2019 (2019), 245.
    [18] K. S. Nisar, A. Tassadiq, G. Rahman, Some inequalities via fractional conformable integral operators, J. Inequal. Appl., 2019 (2019), 217.
    [19] F. Qi, G. Rahman, S. M. Hussain, Some inequalities of Čebyšev type for conformable k-fractional integral operators, Symmetry, 10 (2018), 614.
    [20] G. Rahman, K. S. Nisar, F. Qi, Some new inequalities of the Gruss type for conformable fractional integrals, AIMS Mathematics, 3 (2018), 575-583. doi: 10.3934/Math.2018.4.575
    [21] G. Rahman, K. S. Nisar, S. Mubeen, Certain Inequalities involving the (k, ρ)-fractional integral operator, F. J. M. S., 103 (2018), 1879-1888.
    [22] G. Rahman, K.S. Nisar, A. Ghaffar, Some inequalities of the Grüss type for conformable k-fractional integral operators, RACSAM. Rev. R. ACAD. A., 114 (2020), 9.
    [23] G. Rahman, T. Abdeljawad, F. Jarad, Certain Inequalities via Generalized Proportional Hadamard Fractional Integral Operators, Adv. Diffe. Equ-NY., 2019 (2019), 454.
    [24] G. Rahman, T. Abdeljawad, A. Khan, Some fractional proportional integral inequalities, J. Inequal. Appl., 2019 (2019), 244.
    [25] G. Rahman, A. Khan, T. Abdeljawad, The Minkowski inequalities via generalized proportional fractional integral operators, Adv. Diffe. Equ-NY., 2019 (2019), 287.
    [26] G. Rahman, Z. Ullah, A. Khan, Certain Chebyshev type inequalities involving fractional conformable integral operators, Mathematics, 7 (2019), 364.
    [27] R. K. Raina, Solution of Abel-type integral equation involving the Appell hypergeometric function, Integral Transforms Spec. Funct., 21 (2010), 515-522. doi: 10.1080/10652460903403547
    [28] S. Joshi, E. Mittal, R. M. Panddey, Some Grüss type inequalities involving generalized fractional integral operator, Bulletin of the Transilvania University of Braşov, 12 (2019), 41-52.
    [29] M. Z. Sarikaya, H. Budak, Generalized Ostrowski type inequalities for local fractional integrals, Proc. Am. Math. Soc., 145 (2017), 1527-1538.
    [30] M. Z. Sarikaya, Z. Dahmani, M. E. Kiris, (k, s)-Riemann-Liouville fractional integral and applications, Hacet. J. Math. Stat., 45 (2016), 77-89.
    [31] M. Saigo, A remark on integral operators involving the Gauss hypergeometric functions, Math. Rep. Kyushu Univ., 11 (1978), 135-143.
    [32] M. Saigo, N. Maeda, More generalization of fractional calculus, In: Rusev, P, Dimovski, I, Kiryakova, V (eds.) Transform Methods and Special Functions, Varna, 1996, 386-400.
    [33] S. G. Samko, A. A. Kilbas, O. I. Marichev, Fractional Integrals and Derivatives: Theory and Applications, Gordon and Breach Science Publishers, Reading, Tokyo, Paris, Berlin and Langhorne (Pennsylvania), 1993.
    [34] E. Set, M. Tomar, M. Z. Sarikaya, On generalized Grüss type inequalities for k-fractional integrals, Appl. Math. Comput., 269 (2015), 29-34.
    [35] E. Set, M. A. Noor, M. U. Awan, özpinar, Generalized Hermite-Hadamard type inequalities involving fractional integral operators, J. Inequal. Appl., 169 (2017), 10.
    [36] A. Tassaddiq, MHD flow of a fractional second grade fluid over an inclined heated plate, Chaos Soliton. Fract., 123 (2019), 341-346. doi: 10.1016/j.chaos.2019.04.029
    [37] A. Tassaddiq, A new representation of k-gamma functions, Mathematics, 7 (2019), 133.
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3767) PDF downloads(461) Cited by(10)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog