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1. Introduction

Fractional integral inequalities (FII in short) have made a great impact on scientists and
mathematicians because of its potential applications in various fields. This subject plays a vital role in
the development of differential equations and related problems in applied mathematics. In recent few
decades, a variety of various integral inequalities and their generalizations have been established by
utilizing fractional integral, fractional derivative operators and their generalizations are found
in [4-6, 10, 14-16, 19-21, 29, 35]. Also, the applications of (k, s)-Riemann-Liouville (R-L) fractional
integral is found in [30]. In the past few years, various researchers have established the generalization
of some classical inequalities by using different mathematical techniques. The generalized
Hermite-Hadamard type inequalities with fractional integral operators and Hermite-Hadamard type
inequalities by using the generalized k-fractional integrals are given in [34] and [2] respectively.
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In [1], the authors established FII for a class of n decreasing positive functions where n € N by using
(k, s)-fractional integral operator. Recently, the researchers [17, 18, 22-26] have established certain
inequalities by employing some recent type(proportional and conformable) of fractional integrals.
Without any doubt one can state that fractional and k-fractional calculus have become a very powerful
tool for the modern studies, see for example [36,37].

To move towards our main results, we recall the following definitions [9,27,31].

Definition 1.1. Let f(7), 7 > 0, real valued function, is said to be in the space C,([a, b]), u € R if there
exist p € R such that p > u and f(t) = 17 f1(1) where fi(1) € C([a, b]).

Definition 1.2. Let v, v, f,é € C such that R(¥) > 0and x € R. Then MSM fractional integral is
defined by

(cwv £E, ”f)( )_ f(x s F;(VV & m 1 —— 1——)f(z‘)dt (1.1)

)

where F5(.) represents the Appell function (or Horn function) which is given in [8] as

DV )n(E)m(E)n x™y"
(Pimn m!in!’

Fs(WV, & &9, x;y) =

m,n=0

»max{|xl, [y} <

and V), =v(v+1)---(v+m—1) is the Pochhammer symbol.

The operator (1.1) is introduced in [13] and extended in [31,32]. The use of this function in
connection with special functions is appeared in many recent papers [3,11,12].

2. Main results

In this section, we employ the MSM fractional integral operator to establish the generalization of
some classical inequalities. Recalling the following Theorem which will be used to establish our main
result.

Theorem 1. (see [28], Theorem 1) If v,v',&,&,n € R such that n > max{v,V',&,&} > 0, then the
following inequality holds

t
F (v,v',f,f’;n;l——,l—);c)>0, @.1)
X

provided —1 < (1 — f{) <0and0<(1-3)< % Also, if f(x) > 0, then

(Sg,;’,f,f’,n f) (x) > 0.

Theorem 2. Let g be a positive continuous and decreasing function on the interval [a,b]. Let
v,V , &, & ,n € R such that n > max{v,V',£,&'} >0,a<x<b, 9 >0and o >y > 0. Then for MSM
fractional integral operator (1.1), we have

va £ TI[ o—(x)] C”VV &8 U[(x_a)ﬂg(r(x)]

2 y R 2.2
I [gv(x)] Sz,;“’" [(x — a)’g7(%)] 22

provided -1 < (1 -%)<0and0 < (1-7%)< %
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Proof. Since g be a positive continuous and decreasing functions on the interval [a, b]. Therefore, we
have

((0-a"--a)) (") -g""(p) 20, (2.3)

wherea <t,p<b,9>0,0>vy>0.
By (2.3), we have

-’87+ -a)'g ()~ (p-a)’g"(p) ~ (t = a)’g" (1) 2 0. 2.4)

Define a function

, t
F,H) = (x =)'t F; (v, vV, EE 1 ——1- f)
X

!
@ | _x,, 0E
() t ()
In view of Theorem 1, we observe that the function $(x, ) remain positive for all r € (a,x), x > a,
since each term of the above function is positive in view of conditions stated in Theorem 2. Therefore

multiplying (2.4) by

=(x ="'t [1 + (1- )fc) + - ] (2.5)

¥, DG (0) = (x - "1 Fs (v VoEE ] - )56,1 - ;)gm), re(ax),a<x<b,
we get
B 0|0 - @)™ () + (1= a)"g" ¥ (p) = (0 — )" () - (t = @) 8" (1) (1)
~(p-a' (=0 Fs (v g gm 1 - 1= ) 9 0gm

Hi= 0 (=0 F (w6 €5 T - 2= ) g (087 (o)

~p-a)' =0 Fs (v 81 - 2 1——) g (0" (p)
(- (x— 1y (vv .81 —i,l—;)g%r)g“ﬂ(z)zo. (2.6)

Integrating (2.6) with respect to f over (a, x), we have
9 * -1 -V ’ Y ! X\ &
-a) (x—=0)""t F3(v,v,§,§;77;1——,1—;)g (Hdt
a X
* , t
+87 77 (p) f (x =)' Fs (v, VLEE - =1~ );C)(t - a)’g’ (t)dt
a X
x , t
—(o - a)ﬂg”‘y(p)f (x =)' Fs (v, VL EE 1 ——1- );C)gy(t)dt
a X
x , t
_ f (x= 0" F, (v, Vel = L= ;)(r —a)’g7(t)dt > 0. 2.7
a X
Multiplying (2.7) by £, we get
(0= @)’ I [87(0)] + g7 ()L [(x - @)g7 ()
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~(p = a)"g" 7 (p) [ ST EE T ()] = I [(x - @)g ()] (2.8)
Multiplying (2.8) by

Y
1“() )= 1“()

where &(x, p) is defined by (2.5) and integrating the resultant identity with respect to p over (a, x), we
get

P F3(VV &&m 1 -~ 1——) g’ (p)

AN [@7 (] I (x - @) g ()]
A (O o'y <x>] I8 (0] 2 0.
It follows that
AN [@7 (] I (x - @) ()]

>\va £ ”[(x a)ﬂ a'(x)] vV &L g7 (x)].
Dividing the above equation by I ¢4 [(x a)ﬁgy(x)] L EE 67 (x)], we get the desired inequality
(2.2). |

Remark 2.1. The inequality in Theorem 2 will reverse if g is an increasing function on the interval

[a, b].

Theorem 3. Let g be a positive continuous and decreasing function on the interval [a,b]. Let a < x <
b, # >0, o >y > 0. Then for the MSM fractional integral (1.1), we have

g1 [ - @) ] + T [T | (- a) g ()]

(- a)?gm (] ! [ ] + e (- )’ U(x)] San " g7 ()]
where a,B,C,{', A, v, v, £,&, n € R such that n > max{v,V',£,&'} >0 and/l > max{v,v,&,&'} >0
Proof. By multiplying both sides of (2.8) by

> 1, (2.9)

Iy

r( D x,0)8"(p) = r( D

where &(x, p) is defined by (2.5) and integrating the resultant identity with respect to p over (a, x), we
have

! ﬁFg(a,Béé o 1——) g’ (p)

8@ g - @) ()]

(g
SH R PO KA [CRIORHE]
“3E (- )87 ()] g g ()]
‘”‘*ﬁ“ = a)’g7 ()| 30 g7 ()] 2 0. (2.10)
Hence, dividing (2.10) by
Sv,V’,f»f’,n [(x—a) g (x)] f”“ﬁ(( ﬂ[ ()]
+Jaﬁ§£ 1 [(x—a) g (x)] SV EE g7 (x)],

we get the required results. O
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Remark 2.2. Applying Theorem 3 fora =v, =V, {=§& { =&, A =n, we get Theorem 2.

Theorem 4. Let g and h be positive continuous functions on the interval [a, b] such that h is increasing
and g be decreasing functions on the interval [a,b]. Leta < x < b, ¥ > 0, o >y > 0. Then for the

MSM fractional integral (1.1), we have

S [T (] e [hﬂ<x>g7<x>]
>1

SZ‘; "EE D [hﬂ(x)gf’(x)] cwvv &E7m [gy(x)] =

where v, v, £,&, n € R such that n > max{v,v',£,&} >0

Proof. Under the conditions stated in Theorem 4, we can write
(h"(0) = H'(®)) (877 (1) = 877 (p)) 2 0

wherea <x < b,9>0,0>vy>0.
From (2.12), we have

R (p)g” (1) + K (g7 (p) — h(p)g” " (p) — ()" 7 (t) > 0.

Multiplying both sides of (2.13)

: t
¥ D (1) = (x — "' F (v, Vel -L 1= ;)gm), te(ax).a<x<b,
X

where (x, 1) is defined by (2.5), we get

B 08 () [W ()87 (1) + K (g (p) — h'(p)g” 7 (p) — W' (1)g” (1)

=)= 0 B (v 85T = 21 = 2 )87
O = 0 Fs (1 851 = 51 = 2) 7037 ()
K= 7 s (w8 = 2= ) g7 ) ()
N I ars F3(vv £.&m: —)fc 1——) (1) = 0.

Integrating (2.14) with respect to ¢ over (a, x), we have

1 (o) f (x =" (v, Vel =L1- ;) &7 (1)dt
a X

T=7p * -1 .- ’ ’ ! X\ 4
+g, (p)f (x =)'t Fs (v,v JEE 1 — )—C,l — ;)h9(t)gy(t)dt
X , p
~h"(p)g” ™ (p) f (x— 1)1 Fy (v, VL EE -1 f)gm)dt
a X

Y , t
- f (x— 0 Fy (v, V£ 1 - f)h%)g"(t)dt > 0.

2.11)

(2.12)

(2.13)

(2.14)

(2.15)
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Multiplying (2.15) by %, we get
R )IEEE [g7 (0] + g7 () | () ()|
~h"(p)g” () [ 54 ()| = 3 W (g ()] 2 0. (2.16)

Again, multiplying (2.16) by

—V

Y
1“() )= ()

and integrating the resultant identity with respect to p over (a, x), we get

/7 74 X
(x—p)"'p VFa(v,v,§,§;n;1—§,1—;)gy(p)

JYEE N [ g (x| JEE [hﬂ(x)gy(x)]
_SZ:;,f,f n [hﬁ(x)g (X)] <V EE 77[ V(X)] >0

which completes the desired inequality (2.11) of Theorem 4. O

Theorem S. Let g and h be positive continuous functions on the interval [a, b] such that h is increasing
and g be decreasing functions on the interval [a,b]. Leta < x < b, ¥ > 0, o >y > 0. Then for the
MSM fractional integral (1.1), we have

ST [ (0] B [ (g ()] + JBEE [g7 ] Jer T [ ()7 ()|
mVV £ [hﬂ(x)g"(x)] ng{( A [g)’(x)] + @a,@({ A [hﬂ(x)ga(x)] SZ‘; £ [gy(x)]

> 1, 2.17)

where a,B,,, ', A, v, v, £,&, n € R such that n > max{v,V',&,&} > 0 and A > max{v,V',&,&} >0
Proof. Multiplying (2.16) by

0

x,p)g"(p) =

ﬂ
r(ﬂ) r(ﬂ) " (“ﬁ G AL

f1- f)g%p)
Jo,

(where ¥(x, p) is defined by (2.5)) and integrating the resultant identity with respect to p over (a, x),
we get

A 7@ W (g ()]
g @] [ (g ()]
—3EE 1 (0g” (x)] AR U
[’ ]

=~ 1 ()87 ()| 3 A4 @ ()] 2 0.

It follows that

I g7 @] 3 W (g ()]
+~s“ﬁ“ g @] W (g ()]
S [h’?<x>g"(x>] SR g )]
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SR W g (] 30 g7 ()]

Dividing both sides by
I [ (x)g” (60| 334 [g7 ()]
+SZ:§’“ AR (087 ()| 3 [@ ()]
which gives the desired inequality (2.32). O

Remark 2.3. Applying Theorem 5 fora =v, =V, (=& ' =&, A =n, we get Theorem 4.

Now, we use the MSM fractional integral fractional integral operator to present some inequalities
for a class of n-decreasing positive functions.

Theorem 6. Let (g,)i=123..» be n positive continuous and decreasing functions on the interval [a, b].
Leta<x<b 9>0,02>vy,>0forany fixed p € {1,2,3,--- ,n}. Then for MSM fractional integral
operator (1.1), we have

32;‘?“[ 8850 . SZ’;”%"{’" |[(x = @)’ T}, 8785 ()| 2.18)
SEN L @] N - T g )]

where v, v, &£,&, n € R such that n > max{v,v',&,&} >0

Proof. Since (g;)i=123..,» be n positive continuous and decreasing functions on the interval [a, b].
Therefore, we have

((0-a) - =) (g ") g, "(p) 20 (2.19)

where a < x < b, ¥ >0, 0 >y, > 0 and for any fixed p € {1,2,3,--- ,n}.
By (2.19), we have

(p-a)g, "+ —a)g, ()~ (p-a)g, ()~ (t—a)’g, () 2 0. (2:20)
Therefore multiplying both sides of (2.20)

| [&'@ = -0 F (v, V.EE ] - )fc 1 - f) [ ]er®. re@x,a<x<b,
i=1 i=1
where §(x, 1) is defined by (2.5), we have
300 =@’ + (- '8 ) - (o - )" (@) - (- @' O] [ | 80
i=1
=(p ~ @)’ (x = )" "1 F; (V Vi Eml - 1= _)Hg,’(t)ga (1)
+(r =)’ (x =" F (v, V. EE ] - ;, 1- ;) E[ /(g " (p)
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t N\NTT 4 o
(- = 0 Fs (v gim - 1= ) [ g )
X t i
, t -
~(t—a)’(x— 0" Fy (v, vV EE - =1~ f) [ |&rwe; @ =0. (2.21)
X .
Integrating (2.21) with respect to ¢ over (a, x), we have

- [ Ry g - L 1—§)Hg/(t>g" " (1)
gl y”(p)fu 0 Es (v £ 81 - 1—§)<t—a>ﬂ]_[g”<r>dt
—a) g‘; Yp (p)f (x—0)""t 1y (v, VEE ] - ;, 1- ;)ng?z‘(:)dt
i=1
- f om0 Fy (v, Ve E ] — é - );‘)(r o) [ {7y "t > . (2.22)
a i=1

Multiplying (2.22) by %, we get

[ n
PV EE i
(0 - a3 [ | elgg )

i#p

i=1

o=y ) | 1_[ 8/

—_x ff Vi [(X — a)ﬂ 1—[ g?_/"gg(x)] > 0. (2.23)

i#p

Multiplying (2.23) by

/' (p) = VF3(vv £¢; n,l——l——)ﬁg,’(p)

( )

(where &(x, p) is defined by (2.5)) and integrating the resultant identity with respect to p over (a, x),
we get

[ n n ]
S B HEIR el (CRl B PG
Lizp i=1 |
. .
- [1es <x>} At []_[ g2 0
i#p i=1 J
which completes the desired inequality (2.18). O

Remark 2.4. The inequality in Theorem 6 will reverse if (8:)i=1.23... » are increasing functions on the
interval |a, b].
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Theorem 7. Let (g,)i=123...» be n positive continuous and decreasing functions on the interval [a, b].
Leta<x<b 9>0,02>vy,>0forany fixed p € {1,2,3,--- ,n}. Then for MSM fractional integral
(1.1), we have

wvv &€ #pg gp(x)] ”Qﬁ{é A[(X a)ﬂ [T 1g%(x)]

[
I (x = @) 17, 885 (0| 3a24 [T, 8 (0] +
SHaR ) | S C RS "[(x a)’ [T 1g”(X)]

T o= @ T, 8] g (0| S T ﬂm]
where a,B,(, ', A, v, v, £,&, n € R such that n > max{v,V',&,&} > 0and A > max{v,v',&,&} >0
Proof. By multiplying both sides of (2.23) by

(2.24)

71

—B F _f s Yi
F(ﬂ) F(ﬂ) F3(a,8{§/11 1 p)];[g,.(p)

(where F(x, p) is defined by (2.5)) and integrating the resultant identity with respect to p over (a, x),
we have

YV, ’, 5 4 ~xa,p,C, ',/l Vs [ ] i
SHG ﬂ&&m el (e a)’ [ ] g7 ()
l:#[J i L i=1 |

2 ~VV ELE 9T | i
+gHLL [_]glgp<x>ro;;ff" @-a)'[ [gr

l¢[7 L i=1

_ T

~V, /, R 4 9 i ~ B, /’/l i
—%ﬁf@cﬁﬁf(@ﬁW’ gl'(x)
i#p J L i=1 ]
L

~aB,0.0 A ) vV EE i

—oifff (x - ay [_[g,gpcw e | erw| = o. (2.25)

i#p L i=1 |

Hence, dividing (2.25) by

_ -

(\’,/,,/ 9 i ~xa, ,,,,/l i

e @afﬁ&&w sebee [ ] el
| L i=1 |

i#p

-

R

) i (\',,,,,, i
hW“*uayH&&mogﬁ"H&m
L i=1 |

i#p

which completes the desired proof. O

Remark 2.5. Applying Theorem 7 fora =v, B =V, =& { =&, 1 =n, we get Theorem 6.

Theorem 8. Let (g;)i=123... » and h be positive continuous functions on the interval [a, b] such that h
is increasing and (g;)i=123... » be decreasing functions on the interval [a,b]. Leta < x < b, ¥ > 0,
o >y, > 0forany fixed p € {1,2,3,--- ,n}. Then for the MSM fractional integral (1.1), we have

”““mw&mﬂ”““Wmnmmﬂ>l
IS 1o T &) 85 (0| S e | Ty &) ()]

(2.26)
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where v, v, &,&, n € R such that n > max{v,v',£,&'} > 0

Proof. Under the conditions stated in Theorem 8, we can write

(") = W) (877"~ g7 " (0)) 2 0

wherea < x < b,9 > 0,0 >y, >0 and for any fixed p € {1,2,3,--- ,n}.
From (2.27), we have

h(p)g, (1) +h' (g, () - h(p)g, () - h'(t)g, (&) > 0.

Multiplying both sides of (2.28)
L , t N\TT .
1 i) = —t”‘]t‘VF(,’,,’;;1——,1——) Tt
F(x ),Dg’() (x—1) s(vr g gnmt - - t];[g,o
(where §(x, p) is defined by (2.5)), we get
AN 5 SN
(o) (x — 1Y F3(vv £8m 1 —)—C,l—;)l—[gi’(t)gp (1)
O = 07 Fy (6,851 - 2 1——)ﬂg”(r)g°’ "

~h’(p)(x = "'t Fy (V Vg &ml -~ 1 - —)ﬂg”(t)g‘r i

O d A (RN —)—C,l—f)];[g?(r)g;f‘%zo.

Integrating (2.29) with respect to ¢ over (a, x), we have
* : t o
() f (=0 (g - 2 - ’—C) [ Jst g 0
X t ;
g Vp(p)f (=0 Fy(wv g€t - 21 = 2R ]_[g”(z)dt

@ @) [ o F g - 1——)ﬂg"(r)dr

- [w-orte (e - - Do [ e 0ar = 0.
a X t ‘i

Multiplying (2.30) by %) we get

hﬁ(p)si\;,ﬁflﬂ {n gl%g;'(x):| + g;'—yp(p)sz:\;,é:f'ﬂ [hﬁ(x) n gl%(x)]
i=1

i#p

(2.27)

(2.28)

(2.29)

(2.30)
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1" (p)gy " (0) [y ﬂ gl ()| = I [h%c) [] g?"(x)} > 0. (2.31)
=1 i=1
Again, multiplying (2.31) by
’p)ng%(p) VF3 (V,V’,é:f,;’];l _8’1 _f)ﬁg?t(p)
( ) X p

i=1

(where &(x, p) is defined by (2.5)) and integrating the resultant identity with respect to p over (a, x),
we get

e ]_[ gl'gp () | Iy e [hl’u) [ e
Lizp i=1 |
e hﬂ(x) ﬂ g's (x)} e [ﬂ gl(0[20
i#p i=1 J
which completes the desired inequality (2.26) of Theorem 8. O

Theorem 9. Let (g;)i=123... » and h be positive continuous functions on the interval [a, b] such that h
is increasing and (g;)i=123..- » be decreasing functions on the interval [a,b]. Leta < x < b, ¥ > 0,
o >y, >0 forany fixed p € {1,2,3,--- ,n}. Then for MSM fractional integral (1.1), we have

[T7,, &g (0| S e Ao TIL, &' (%) .

SR 1) T, &) 5 (0)| 305 | Ty £ ()]
where a,B,(,{', A, v, v, £,&, n € R such that n > max{v,v',&,&'} > 0and A > max{v,V',£,&'} > 0
Proof. Multiplying (2.31) by

(2.32)

S M &) g5 (0| a2 [0 T 8] (0] +
S EE 00 T, 8] 85 (0| ek | T, 87 ()] +
S|

[

71

%(aﬁu A1 - p,l—g) 2" (p)

i=1

F(/l) F(/l)

(where &(x, p) is defined by (2.5)) and integrating the resultant identity with respect to p over (a, x),
we get

vV EE, i ~xaB.80 A | 0 [ ] i
s\ [ ] greg o] 3eb<H o [ | &)
,#p ] L i=1 |

ax
i:#p L i=1

; _
2 i ~vV £8P [T 7
+3gpee | |g?g;<x> IS R () | ] 8l

R h%c) ]_[g” HOIR

i#p

cvafﬁ{( /l|: g?/t(X)
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—IeRe [hl’(x) [ [ersreals > 0.

i#p

s farn
i=1

It follows that

vV L EE i ~a.B.L.0 A ) [ ] i
S| ] ergg o |3e8<H (o | ] el o)
iip ] L i=1 |

+IpLeA ]_[g/g,xx) S @ [ gl @)
z¢p L i=1 i

S h”(x)ﬂgi"g;',(X) JEBLLAN L gV (x)
i#p J L =1 |

) i (a3 ’, 5 /, i
FIGELCA (x)ﬂg, g,,<x> et o).

i#p L i=1
Dividing both sides by
Sy h%c) ﬂ glgr |3 | el @
i#p | L i=1 |
+3ghed h%c) ]_[ ey 0| [ ] gr]
i#p ) L i=1 |
which gives the desired inequality (2.32). O

Remark 2.6. Applying Theorem 9 fora =v,B=V,{ =& { =&, A =n, we get Theorem 8.

Remark 2.7. The results presented in this paper generalize some previous works cited therein.

3. Concluding remarks

In this present paper, the we introduced certain inequalities by employing the MSM fractional
integral operator. Also, they presented some inequalities for a class of n positive continuous and
decreasing functions on the interval [a, b]. The inequalities obtained in this present paper are more
general than the classical inequalities available in the literature. The MSM operator defined by (1.1)
was introduced by [13] as Mellin type convolution operator with a special function F5(.) in the kernel.
This MSM operator was re-discovered by Saigo [31] which is the generalized form of Saigo fractional
integral operator [11]. The MSM operator (1.1) will led to the Saigo fractional integral operator [31]
due to the following relation 3, O£ ) = 3P7774(x), (y € C). Thus, the inequalities obtained in this
paper will reduce to the inequalities integral 1nequalities involving Saigo fractional integral operators
recently defined by Houas [7].
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