Integral inequalities in mathematical interpretations are a substantial and ongoing body of research. Because fractional calculus techniques are widely used in science, a lot of research has recently been done on them. A key concept in fractional calculus is the Caputo-Fabrizio fractional integral. In this work, we focus on using the Caputo-Fabrizio fractional integral operator to build a multi-parameter fractional integral identity. Using the obtained integral identity, certain generalized estimates of Bullen-type fractional inequalities have been generated. By establishing certain inequalities, this study advances the fields of fractional calculus and convex function research. Both graphical and numerical statistics are provided to show the correctness of our results. We finally provide applications to modified Bessel functions, $ \mathfrak{h} $-divergence measures, and probability density functions.
Citation: Sobia Rafeeq, Sabir Hussain, Jongsuk Ro. On fractional Bullen-type inequalities with applications[J]. AIMS Mathematics, 2024, 9(9): 24590-24609. doi: 10.3934/math.20241198
Integral inequalities in mathematical interpretations are a substantial and ongoing body of research. Because fractional calculus techniques are widely used in science, a lot of research has recently been done on them. A key concept in fractional calculus is the Caputo-Fabrizio fractional integral. In this work, we focus on using the Caputo-Fabrizio fractional integral operator to build a multi-parameter fractional integral identity. Using the obtained integral identity, certain generalized estimates of Bullen-type fractional inequalities have been generated. By establishing certain inequalities, this study advances the fields of fractional calculus and convex function research. Both graphical and numerical statistics are provided to show the correctness of our results. We finally provide applications to modified Bessel functions, $ \mathfrak{h} $-divergence measures, and probability density functions.
[1] | M. I. Abbas, M. A. Ragusa, Solvability of Langevin equations with two Hadamard fractional derivatives via Mittag-Leffler functions, Appl. Anal., 101 (2022), 3231–3245. https://doi.org/10.1080/00036811.2020.1839645 doi: 10.1080/00036811.2020.1839645 |
[2] | Y. Adjabi, F. Jarad, D. Baleanu, T. Abdeljawad, On Cauchy problems with Caputo Hadamard fractional derivatives, J. Comput. Anal. Appl., 21 (2016), 661–681. |
[3] | A. El Mfadel, S. Melliani, M. Elomari, On the existence and uniqueness results for fuzzy linear and semilinear fractional evolution equations involving Caputo fractional derivative, J. Funct. Space., 2021 (2021), 4099173. https://doi.org/10.1155/2021/4099173 doi: 10.1155/2021/4099173 |
[4] | E. Ilhan, Analysis of the spread of Hookworm infection with Caputo-Fabrizio fractional derivative, Turk. J. Sci., 7 (2022), 43–52. |
[5] | A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Amsterdam: Elsevier, 204 (2006). |
[6] | P. O. Mohammed, J. A. T. Machado, J. L. Guirao, R. P. Agarwal, Adomian decomposition and fractional power series solution of a class of nonlinear fractional differential equations, Mathematics, 9 (2021), 1070. https://doi.org/10.3390/math9091070 doi: 10.3390/math9091070 |
[7] | W. Tan, F. L. Jiang, C. X. Huang, L. Zhou, Synchronization for a class of fractional-order hyperchaotic system and its application, J. Appl. Math., 2012 (2012), 974639. https://doi.org/10.1155/2012/974639 doi: 10.1155/2012/974639 |
[8] | T. Abdeljawad, Fractional operators with exponential kernels and a Lyapunov type inequality, Adv. Differ. Equ., 2017 (2017), 313. http://doi.org/10.1186/s13662-017-1285-0 doi: 10.1186/s13662-017-1285-0 |
[9] | A. Alshabanat, M. Jleli, S. Kumar, B. Samet, Generalization of Caputo-Fabrizio fractional derivative and applications to electrical circuits, Front. Phys., 8 (2020), 64. https://doi.org/10.3389/fphy.2020.00064 doi: 10.3389/fphy.2020.00064 |
[10] | M. Al-Refai, A. M. Jarrah, Fundamental results on weighted Caputo-Fabrizio fractional derivative, Chaos Soliton. Fract., 126 (2019), 7–11. https://doi.org/10.1016/j.chaos.2019.05.035 doi: 10.1016/j.chaos.2019.05.035 |
[11] | J. Hristov, R. Bennacer, Heat conduction: Methods, applications and research, USA: Nova Science Publishers, 2019. |
[12] | S. Al-Sa'di, M. Bibi, M. Muddassar, Some Hermite-Hadamard's type local fractional integral inequalities for generalized $\gamma$-preinvex function with applications, Math. Method. Appl. Sci., 46 (2023), 2941–2954. https://doi.org/10.1002/mma.8680 doi: 10.1002/mma.8680 |
[13] | S. Hussain, S. Rafeeq, Some new Hermite-Hadamard type integral inequalities for functions whose $n$-th derivatives are logarithmically relative $h$-preinvex, Miskolc Math. Notes, 18 (2017), 837–849. https://doi.org/10.18514/MMN.2017.1831 doi: 10.18514/MMN.2017.1831 |
[14] | K. L. Tseng, S. R. Hwang, K. C. Hsu, Hadamard-type and Bullen-type inequalities for Lipschitzian functions and their applications, Comp. Math. Appl., 64 (2012), 651–660. https://doi.org/10.1016/j.camwa.2011.12.076 doi: 10.1016/j.camwa.2011.12.076 |
[15] | L. L. Zhang, Y. Peng, T. S. Du, On multiplicative Hermite-Hadamard-and Newton-type inequalities for multiplicatively (P, m)-convex functions, J. Math. Anal. Appl., 534 (2024), 128117. https://doi.org/10.1016/j.jmaa.2024.128117 doi: 10.1016/j.jmaa.2024.128117 |
[16] | P. S. Bullen, Error estimates for some elementary quadrature rules, Publ. Elektrotehn Fak. Ser. Mat. Fiz., 602/633 (1978), 97–103. |
[17] | M. Cakmak, Refinements of Bullen-type inequalities for $s$-convex functions via Riemann-Liouville fractional integrals involving Gauss hypergeometric function, J. Interdiscip. Math., 22 (2019), 975–989. https://doi.org/10.1080/09720502.2019.1698803 doi: 10.1080/09720502.2019.1698803 |
[18] | T. S. Du, C. Y. Luo, Z. J. Cao, On the Bullen-type inequalities via generalized fractional integrals and their applications, Fractals, 29 (2021), 2150188. https://doi.org/10.1142/S0218348X21501887 doi: 10.1142/S0218348X21501887 |
[19] | S. Erden, M. Z. Sarikaya, Generalized Bullen type inequalities for local fractional integrals and its applications, RGMIA Res. Rep. Collect, 9 (2020), 945–956. |
[20] | S. Hussain, S. Rafeeq, Y. M. Chu, S. Khalid, S. Saleem, On some new generalized fractional Bullen-type inequalities with applications, J. Inequal. Appl., 2022 (2022), 138. https://doi.org/10.1186/s13660-022-02878-x doi: 10.1186/s13660-022-02878-x |
[21] | E. Set, N. Korkut, N. Uygun, Bullen-type and Simpson-type inequalities for fractional integrals with applications, AIP Conf. Proc., 1833 (2017), 020053. https://doi.org/10.1063/1.4981701 doi: 10.1063/1.4981701 |
[22] | H. R. Moradi, S. Furuichi, M. Sababheh, On the operator Jensen-Mercer inequality, operator theory, functional analysis and applications, Switzerland: Birkhauser Cham, 282 (2021). https://doi.org/10.1007/978-3-030-51945-2_24 |
[23] | S. M. Davarpanah, H. R. Moradi, A log-convex approach to Jensen-Mercer Inequality, J. Linear Topol. Algebra, 11 (2022), 169–176. https://doi.org/10.30495/jlta.2022.695231 doi: 10.30495/jlta.2022.695231 |
[24] | M. Gurbuz, A. O. Akdemir, S. Rashid, E. Set, Hermite-Hadamard inequality for fractional integrals of Caputo-Fabrizio type and related inequalities, J. Inequal. Appl., 2020 (2020), 172. https://doi.org/10.1186/s13660-020-02438-1 doi: 10.1186/s13660-020-02438-1 |
[25] | B. Y. Xi, F. Qi, Some Hermite-Hadamard type inequalities for differentiable convex functions and applications, Hacet. J. Math. Stat., 42 (2013), 243–257. |
[26] | G. N. Watson, A treatise on the theory of Bessel functions, London: Cambridge University Press, 2 (1922). |