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Abstract: Integral inequalities in mathematical interpretations are a substantial and ongoing body
of research. Because fractional calculus techniques are widely used in science, a lot of research
has recently been done on them. A key concept in fractional calculus is the Caputo-Fabrizio
fractional integral. In this work, we focus on using the Caputo-Fabrizio fractional integral operator
to build a multi-parameter fractional integral identity. Using the obtained integral identity, certain
generalized estimates of Bullen-type fractional inequalities have been generated. By establishing
certain inequalities, this study advances the fields of fractional calculus and convex function research.
Both graphical and numerical statistics are provided to show the correctness of our results. We finally
provide applications to modified Bessel functions, h-divergence measures, and probability density
functions.
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1. Introduction

Fractional calculus began with a legend in the 1800s there were two famous mathematicians, L’
Hopital and Leibniz, who were discussing how to evaluate % when n = % In the 17th century,

Leibniz published his book “Introductory Calculus”, in which he talked about how to take derivatives
of any function. After this brief discussion, the subject did not pick up much attention until 1819.
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Therefore, there was another time point when another famous mathematician by the name of Lacroix
wrote another book; the book was on fractional calculus, where he started to develop the formulation
for evaluating these derivatives. More specifically, Lacroix developed the fractional formula d;}ff for
a and m being fractions. As a result, he found an answer to the famous question raised by L’ Hopital
and Leibniz, namely, what is the fractional derivative of a function of the order % The discussion did
not end there, although Lacroix has shown an initial way to evaluate fractional derivatives, which has
some problems. To mitigate the problems, there was another mathematician by the name of Liouville
who extended the Lacroix definition. Liouville developed the formula for %(Zf;o cn exp(a,x)) for
Re(a,) > 0,c, € R, and a being a fraction. Liouville also developed the formula for d;;:" for m < 0 and
a being a fraction.

Fractional calculus has proven to be a potent and effective mathematical tool in recent years, helping
to define the intricate dynamics of real-world issues from a variety of scientific and engineering
disciplines [1-7]. Every traditional fractional differential operator has a distinct kernel and can be
applied to certain problems. For example, the Caputo-Fabrizio fractional operator is used in the linear
viscoelasticity framework. The most popular operator for computing a fractional-order integral among
a number of operators is the Riemann-Liouville fractional integral. It is basically just a straightforward
adaptation of the Cauchy formula from classical calculus for repeated integration. However, over the
past half decade, a number of operators for fractional-order integrals and derivatives have been put
out. These new operators are believed to arise because of the singularity in the kernel of the Riemann-
Liouville integral at one endpoint of the integration interval [0, 7']. It originates from the new fractional
operator, in which the integral involves the non-singular kernel.

The main motivation of the Caputo-Fabrizio integral and derivative operator is that it is a
generalization of classical integral and derivative. One of the characteristics that sets the operator
apart from others is its kernel, which is essentially a real power transformed into an integral using the
Laplace transform. As a result, finding an accurate answer to many issues is simple. An increasing
number of mathematicians working in the applied sciences are using the Caputo-Fabrizio fractional
integral operator to model their problems. For additional details, see [8—11]. The main benefit of the
Caputo-Fabrizio integral operator is its ability to admit the same form for the boundary condition of
fractional differential equations with Caputo-Fabrizio derivatives as it does for differential equations
of integer order. For studying fractional differential equation solutions, fractional integral inequalities
are crucial, particularly for determining the uniqueness of initial value problems. Using a function’s
convexity is one of the most effective techniques to establish integral inequalities. In fact, advances
in the theory of convex functions are closely related to the development of mathematical inequalities.
Convexity theory provides a powerful and efficient way to address a wide range of problems in different
fields of pure and applied mathematics. The most well-known and fascinating outcome of the convex
function is the Hermite-Hadamard integral inequality. The classical Hermite-Hadamard inequality,
which provides us with an estimation of the mean value of a convex function f : 7 € R — R for
ap, a, € I with a; < ay,

T(al +¢12)S

. () + (o)
> j; f(x)dx < —

1
a — ay Jg,

The geometrical relevance of this inequality led to its expansion, generalization, or improvement
through the application of basic analytical procedures. Over the last few years, many mathematicians
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who have researched in this field have contributed to its development and made attempts to strengthen
its modification in many ways [12—15].

Bullen [16] proved the inequality by giving the bound for the mean value of a convex function
f:ICR—>Rfora;,a eIwitha1 <,

f f(x)dx < —[ (a1 il az) L e +f(az)].

2 2

We can observe that the right side of the Hermite-Hadamard inequality should be viewed as an
extension of Bullen’s inequality. Bullen’s inequality holds a significant position in theory, as do
other classical inequalities like Jensen, Ostrowski, and Hermite-Hadamard. Numerous fields, including
numerical integration, midpoints, and trapezoidal quadrature rules, can benefit from its application. For
more current findings about the extension and improvement of Bullen-type inequality, see [17-21].
The paper is organized in the following way: After this introduction in Section 2 we have discussed
some basic related concepts, in Section 3 main results, in Section 4 numerically solved examples and
their graph, in Section 5 applications to some extent, and in the last Section 6 conclusion of the whole

paper.

a — I

2. Preliminaries

Some foundational ideas that are useful in understanding our main results are covered in this section.

Definition 1. [22] Let f € H'(m;, my), « € [0, 1], then the fractional integrals in the sense of Caputo
and Fabrizio are defined by:

G LN : _Wf() B( ) Jf(x0dx,

CF ja _ a i
CF 1 f)(1) o= —B( S0+ s f Fdsx,

provided that, B(a) > 0 is a normalization function satisfying B(0) = B(1) = 1.
Theorem 1. [23] Let f : [m;,my] € R — R be a convex function on [my, my] such that x; € [my, my],
a; € [0, 1] with Y% a; = 1,1 <i <k, then

k

k
f[ml DY aixi) < flm) + f(mo) = > i (x). 2.1
i=1

i=1
Proposition 1. [24] Let f : [m;,my] € R — R* be a log —convex function on [m;, my] such that
x; € [my, my], a; € [0, 1] with Zf.‘zl a; = 1,1 <i <k, then Jensen-Mercer inequality is defined by:

- fmy) f(my)
sy = Y | < ST 2.2)
f[ml " ,Zlax) 15, fo)

Before going on, we make the following assumption:

1
1,5, M3 ) = f(t—b)b'((v—i—l){ml—tm‘;mz—(1—t>u1}
0

i {mz N t)("; hl mZ)} + w) dt. 2.3)
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3. Main results

Lemma 1. Let by : I C R* — R be a differentiable function on I° (the interior of 1), where my,m, € I°
with my <y, v € N; let w € [y, 15]; 1y, 115 € [my, my] such that wy < ™52 <y, ¢ €(0,1], 0 € [0, 1].
Ify € L'[my, my], then

Ju(h; my, Mg g, 1)

= VZ_E [(1 — )2y —my — ) +i(2uy + 2up — 2my — 2my)
i=0

4 L (s my, mips g, 1p)

(1 — g)b (2(v—1)(m1—u1)+i(;12—3ml+2ul)+zw)

g[(l - V)(2111 - my — mz) + i(2u1 + 2112 - 2m1 - 2m2)]

1§ihb_Db(v-nmu—mg+x&m—nu—ZM>+%q
2
i=0

2
bh 2(\/ - 1)(m1 — 111) + l(m2 —-3m; + 2111) + 2w
2
2(v=1D)(my—up)+i(my—3my +2uy)+2w
B(g) v-1 gfl)(ml—m2)+i(f;mz—ml—2112)+2w+lgb( 1 L 212 L) )
'y P (1 - v)(2u1 —my — mz) + i(2u1 + 2112 - 2m1 — 2m2) ’
(3.1)
Proof. Integrating by parts the identity (2.3)
1, ;(h; my, mg; g, 1)
1
b (V _ l _ 1) ml+m2 _ (1 _ t)ul + l 5 — tuz _ (l—t)(m]+mz) +w
D i o e )
(wﬁﬂ - | Gy g =y — ) .
fl b((—i—1)fm — 25 — (1= thyy | + i fmy -ty - TG )
_ dt,
0 (v—1)[ =]y + =y — )
setting z = (v — i — 1) {my =2 — (1 =t} + i{my -ty = SRR 4y 5o that dt =
(v_l._])(ul_111142—nd1§)+l.(ml+1112 ll2), and Whent = 0, = (V— 11— 1)(m1 —111) +l(m2 — M) +w, and When t = 1’
Z=(v—i—1)(m1 m)+l(TT12—11.2)+W
1, (h; my, mas g, 1p)
2(1 _ b)b ((v—l)(m1—m2)+i(3mz—m]—2u2)+2w) + 2bb (2(v—1)(m]—u])+i(m2—3m]+2u1)+2w)
2 2
(V - 1)(2111 - ny — mz) - i(2u1 + 2112 - 2m1 - Zmz)
4 (v=1)(my —mz)+i(32mz —my —2up)+2w
bh(2)dz

- [(V — 1)(2111 — ml — mz) — i(2111 + 2112 — 2m1 — 2m2)]2 2(v—l)(m|—nl)+i(212—3n|1+211|)+2w

(I =v)Quy —my —my) + 12Uy + 2u, — 2m; — 21m,)
4

L, i (b my, mps g, 1)
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(b _ 1)[) ((v—l)(ml—mz)+i(;mz—m1—2112)+2w) _ Db (2(v—1)(m1—u1)+i(12112—3ml+2111)+2w)

2
(v=1)(my —my)+i(3my —my —2uyp)+2w
1 2
- . bh(2)dz.
(1 — v)(2u1 -my — mz) + 1(2111 + 2112 — 2m1 — 2m2) 2(V—1)(‘“1-“1)+i(;‘2-3"‘1+2“1)+2W
Multiplying both sides by S, _mZ);(lg()Z"‘ 2w Ay —2np)) and adding

1;gb ( 2(v=1)(m; =1y )+i(mpy—3my+21 )+2w)
B(s) 2

S [(1 - V)(lel - my — mz) + i(2u1 + 2112 - 2m1 - 2m2)]2

I, ;(h; my, mps g, 1)

4B(s)

1- S (2(V - 1)(m1 - 111) + z(m2 —3m; + 2111) + 2W)

B(s) 2
_ sl =v)Quy =y —my) +iuy + 2up — 2my — 2my)] 9

B(s)
(b _ l)b ((v—l)(ml—1112)+i(;m2—m1—2112)+2w) _ bb (2(v—l)(m1—ul)+i(;nz—3ml+2ul)+2w)
2
2(v—l)(ml—ul)+i(12n2—3ml+2ul)+2w 1 2( 1)(m u ) + (m 3m + 2u ) + 2
- - - i(my — W

+ S b(x)dz + S b v 1 1 2 1 1 '

B(S‘) (v=D)(my —rr12)+i(3;uz —my —2up)+2w B(g) 2

Now by the definition of Caputo-Fabrizio fractional operator

(1 - V)(2U1 - ny - mz) + i(2u1 + 21y, — 2my — 2m2)

4
(1 _ S‘)b (2(\/—1)(m1—111)+i(12112—3m1+2111)+2w)

L, (b my, mps uy, 1p)

S[(1 = v)QRuy —my —my) + i(2uy + 2uy — 211y — 211,) ]

(b _ 1)b ((v—l)(m1—m2)+i(gmz—ml—2u2)+2w) _ bb (2(v—1)(ml—111)+i(;n2—3m1+2u1)+2w)

2

CF IS 2(v=1)(my—uy)+i(my—3m; +21u;)+2w
(v=D)(my —my)+i(3my —my —2up )+2w n b 2
2

+B(s)

g’[(l - v)(2u1 -my — mz) + i(2111 + 2112 - 2m1 - 2m2)] ’
which completes the proof of (3.1). O

Remark 1. In particular for v = 2, identity (3.1) in Lemma 1 reduces to the following identity:

my + my, — 21 21y — My — My
fllo(b;ml»m%ul) + ) L1 (h; my, my;up)
DMy +w—u) + b (M)l +w—wy) + b ()
=(1-D) 7 D >
%:F,m . Igb (m1 -1 +W) CF Igb (m) b (mz—m]+2w)
_B(g‘) = (w—1p+1mp)+ 2 + I-¢ 2 + b(m+w—1y)
I my + my — 21y 21, — 1My — 1y ¢ |2up—my—my my 4+ =2u |

(3.2)
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provided that

ny + myp

1
Lo(h; my, mpsuy) 1= f (® -y’ (ml +w-—t -(- t)ul)dt,
0

dt.

1 p—
12,1(b; ny, My, 1,12) = f (b _ t)b/ (m2 +w— tu2 _ (1 t)(g] + mz))
0

Moreover, for vy = my, 1y = My, w = % and d = %, it reduces to the following identity:

nm -y _ 11 0my) +b(my) m+mp\ [ B(o)
g J(im,ma) = 2[ 2 +b( 2 )] (M — 1)
B +h my+ny
{mHICB(M) CF oy IS (my )} L ghom) +b(2 ) (3.3)
2 S mp — 1y

m1+m2 mp +my
Jeo (=5

S (- t)m2)} dt

1 my,my) = f (=20 { (tm + (1 -1
and further for ¢ = 1, it reduces to Lemma 2.1 of Xi and Qi [25].

Theorem 2. Letl): I C R* — R be a differentiable function on I° (the interior of 1), where my,m, € I°
with ny < mp; letw e [111,112], U, uy € [ml,mz] such that u < ml-;mz <, g E (O, 1], De [O, 1] Iflf)lla
is convex and iy € L'[my, m,], a > 1, then

f)(mz +w - u2) + b (%2"’2“’) N bb(ml +Ww— 111) + b(mz—n;ﬁzw)

1-»
(1-D) > >
CF I¢ -+ my—ny +2w no—m;+2w
_B(g) | meps b (imy W)+(C;vFltz+mz)+ gb( =3 ) +1—§‘ b( 3 ) N b (my+w—uy)
S my + my — 21y Uy — My — My S 21y — My — My 1y + 1y — 21
e[ 2wy [ @D+ -2 -0+ 0 b (2 ) — by (w)l"
N 4 (a+ I)(a+2)

14
a a

my 4y — 20, [@F DI+ W) = 2 =d+ Q) [y )l = [p (42)

4 (a+ D)(a+2)
2=y =y [ @ DAY+ = 1+ + @y (o) = (1 =) i (22522)[]°
ey [ 4 (a+ D(a+2)
i+ = 2uy | @D COR+HOON -~ A+ +a) o ()| = (1 =y (3.4)

4 (a+1)(a+2)
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Proof. For a > 1, by using the basic properties of modulus, Holder integral inequality, convexity of
[b’|%, and relation (2.1) in Theorem 1 to identity defined by (3.2), we have

I
|12,0(b; my, My 111)| = 'I} (d-Hp (m1 +w—t

Similarly

| Fo.1 (b5 my, uz)l—U (- by m2+w—<1—t>

AIMS Mathematics

Mg t)ul)dt‘
D a é
SDT{I(D b’(m1+w—tml+m2—(1—t)u1) dt}
0
1 a %
+(1—b)“«1{f (t— b'(m1+w—tm1+m2—(l—t)u1) dt}

<v% { f (- t)° (Ib ()" + [y W) - ‘b m1““2) —(1—t)|b’(u1)|°)dt}a

, (g 4+ )\
¥ (7 5)
(@2 amr o) - @ = b+ )l ol - oy (25)[ )
=0 (a+ 1)(a+2)

+(1-0)% {f (t-0)° (Ilf)'(ml)|a+Ib'(W)Ia—t - (-1 Ib'(ul)la) dt}a
D

(3.5)

(@2 @y anor iy oo - oa) i (2)[ -
. (a+ D(a+2)

(1-d) |b'(u1)|“}“

m1+m2

- J[112) dt‘

“dt}‘l'
adt}s

<v% { f (-1 (Ib (m)[* + [y (W)l —(1—t)|b 1+m2) —flf)'(uz)la)df};

y (“o) —t Ib’(uz)la) dt}i

L] @t 2) (I’ ()" + [H'(W)|") = (2 =D + a) 'b’ (T) b )|
=0 (a+ (a+2)

([
+(1—b){f (t-

+
(m2 +w—(1 —t)ml M _ tuz)

m1+m2

(m2 +w—-(1-1) —tug)

+(1-D)% {f(t—b)“ (Ib'(mz)|“+Ib'(W)I‘1
D

) (a+2) (1o’ (m)*+[H’'W)") =(1+d+a) [’ ()"~ (1-Dd) |’ (@) N
+(1-0) @+ D(a+2) :0)
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Multiplying (3.5) and (3.6) by, respectively, "““‘1‘2_2“‘ and Z“Z_T_mz , then addition yields

b(my +w = 1) + b () bb(ml +w =) + ()

1-» +
(1-v) > >
B( ) ml '"2+2W Fh(mi—ur+w) + (C;\f:—uz+mz)+1§b (%ﬁ—zw) + I-¢ b(w) + b (ny+w—w)
S my + my — 21y 21y — My — My ¢ |2uy —my —ny  ny 4+ 1 — 21y
2|2 =y [ @D O - 2D+ 0y (g2 ) = vy )l
= 4 (a+ )(a+2)
a %‘
4y — 21y | @+ 2 (DI + B WY = 2= d+ Q) [y ()l = d |y (2522)

4 (a+ I)(a+2)

1
ay -

oy [Zuz Dy [@F DY) YOI = (14D + Q) [y )l = (1= ) i (5)
+ —

4 (a+1)(a+2)

iy 4 g — 20y @D ACROI + IO = (1+ 0+ )|y (2522)
4 (a+D(a+2)

g -wyar]”
. 3.7

For a = 1, by using basic properties of modulus, convexity of ||, and relation (2.1) in Theorem 1
to identity defined by (3.2), we have

! m; +m
|1yt 17, s 1) =U(b—t)b’(m1+w—t (-
0

D
stb w@m+w—€m+””—a—0m)ﬁ
0
1
+JAH—MF’my+w—ﬁn+m2—ﬂ—0m)ﬁ
f (b—t) I )]+ [ () — ]b m1+m2)—(1—t)|b'(ul)|)dt

—(1-t) Ib’(ul)l)dt

+ f (t—b) Ib’(m1)|+|b’(W)|—t b'("‘l ;mz)
D
Gl + 150D = B = D)1 ()l - by (52)
=D
6
331y (o)l + 1y (w)) = 2+ 2)
6

b, (1111+1112)
2

— (I =) b’ ()l
. (3.8)

+(1 —d)?
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Similarly

m1+m2

|L,1(5; my, ma; 1) U (b—t)b’ m2+w—(1—t) — tuy dt‘

dt

—tu

f(b—t)'b m+w-(1-1)

my +m2

- tu2 dt

)
mem )
)

f(t—b)'b m+w-(1-1)

(B -ty ) ae

=)

< fo (0= 1)) + 1] = (1 =

+ fbl(t -D) (Ib'(mz)l + 15 W) = (1 =1 |b’(

y Ib’(uz)l) dt

3l + D = B =0 [ (2522)| - oy )
B 6
330 ()] + [ W) = 2+ D) [ (u)] = (1 =) [B (113™2)
+(1 - v)? g . (3.9
Multiplying (3.8) and (3.9) by, respectively, "= and 22-W=12 then addition yields
by +w— 1) + b (M) plny +w — ) + ()
(1-1) +
2 2
CF < — nmy—m w mp—m w
B(g) | mopy LD i+ w) . O o 1D (52 L1=s p(==52) L hGm+w—uy)
S m1+m2—2u1 2u2—m1—m2 S 2u2—m1—m2 m1+m2—2u1
3 ()] + o)) — 3 = D) B (22| - vy (o)
< {2y — my —my)
24
3AYm)l+ B’ — B =0)[H ()| = d |y @ﬂ
+(m1 + Ny — 2111) 24

7 M+ )|
2

3" (m)l + [’ (WD) = (2 + D) [b” ()|
24

+(1 —=b)? {(2112 — My — 1)

3 ()l + o) — 2+ 0) oy (252)
24

+(my +my — 2uy) (3.10)

~(1-1) Ib’(ul)l}

A combination of (3.7) and (3.10), yields the desired result (3.4). This completes the desired result. O

Theorem 3. Letl): I C R* — R be a differentiable function on I° (the interior of 1), where my;,m, € I°
with my < my; let w € [m,my], ¢ € (0,1], d € [0, 1]. If |Y'|* is log-convex and € L'[m;, m>], a > 1,

then
'(1 —b)b(ml —n;z+2w)+bb(mz—1;1 +2w) N 21 -¢) {b(mz—ml +2w)+b(w)}
s(my —my) 2

AIMS Mathematics Volume 9, Issue 9, 24590-24609.
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+h(w) — & {?ﬂf’ _— I5H (w) + Ig[) (M)}‘
g(my —my) 2

(1 + V) (my —m) [y (w)| {(%)H (@, @) + (5L ) (ha(d, @))* }

< : (3.11)
a
i — l)’(ml)%
provided that @ = 'b’ ol
» a1 . a(1-d) - .
hi(d,a) = “ha T o2 @ # L hy(d,@) := ma T (Ina)?? a# 1,
e . i a=1." 2 ' -2 a=1
27 . R = 1.

Proof. By power mean inequality and log —convexity of |§)’|* to identity defined by (3.2), we have

| F2.0(b; 1y, mig; my)|
1
- f(b—t)b’(m1+w—t
0
<fb(b b'm+w—;tm—im
= 1 D) 1 2 2
t t
f(t—b)‘ (m1+w—7m1—§m2)
< f(b—t)dt f(b—t) My + W=~y = S adté
S . 1 D) 1 2 2
1 a a T
+{f (t—b)dt} {f () dt}
D i
<(b_2)““1 { " (0 - DIy’ e, } ((1—1»)2)*' { (t= D )l P, }
2 o | 2 vy )T ()l

b(my)|? : (1- b)z)a“1 , f ]
== —t t— t
(2) 5" (w )I{f(b )'b( » } +( 7 Ib(W)I{ b( d}

ny + mp

~(1- t)ml)dt|

dt

dt

2 2

( 2t t )
b m+w-—-—m; — -ny

b’(my)
Y t
= |y (w)l[( ) {f (d - b *dt} +((1 b)) {f (t—b)a*dt}
b2\ " | 1—o2\" |

:Ib’(w)l{(g) (hl(baa))“+(( 2)) (hz(b,a))ﬂ}. (3.12)

Similarly
1

|50 (B 11, 103 1) = fo (b—t)b'(m2+w—tm2—(m”m;)(l_t))dt‘
§ bb ) 1+t 1—t ” 1t ) 1+t 1—t i
_jo‘( bm2+w—2m2—2m1 +£(—bm2+w—2m2—2m1
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1
b |lm, + 1+tm 1_J[m adt ﬂ
2T W ) 2 5 1

b ol >
s{ (b—t)dt} {f(b
0
=l LN
t—b)dt} {f(t—b)'b’(m2+w—1+tm2—l_tml) dt}
N 2 2

(DZ) { (= Bl (o) ) dt}+((1—2 b)2)“;1 { l(t—b)lb'(mz)lﬂlbf(w)|a dt}a

+

S J—

2 0y ()T [y ()T vy ()T [y (m)

2 b(my)|* (1- b)z) f mp) |2
= bt dt -0 dt
) 5’ (w) b’(m1) {f( )b’( 5 } ( > b’ (w )| { (t ) () }
a2
- ) [( ) {f(b—t) tdt} +((1 b)) {f (t—b)a/dt}
1-2)%\ "

”’%)' {(3) (i (o, a))! +(( m ) (h2<b,a>)u}. (3.13)

Multiplying both (3.12) and (3.13) by =2, yields the desired result. m|

An observation about the equality of the functional value of the the mean position and mean position
of the functional values comes to mind, that is, for a real valued function ) : [m;,m,] CR - R

my + g\ hmy) + hmy)
b( ; )_ o (3.14)

The affirmative answer about the validity of (3.14) was given by Xi and Qi [25] by the function h(t) =
+t3—9t2+27t te [1 5]
5, ,5].

Corollary 1. Leth : I C R* — R be a differentiable function on I° (the interior of 1), where m;, m; € I°
with my < my. If |}|* is convex and iy € L'[m;, m,], a > 1, then

)} (1-6) (b (o) +1 (232 B@){m”b(m”mz)*imz =y ()|
+

L {b(my)+h(imy) ny+1y
5{ &l

2 2 g(my —my) g(my —my)
M —my N ’ a ’ a Vil a ’ a
< - (V2a+ Mol + Ca+ 3y + Yy (ol + Ga+ Dy (mo)]
V42+(a + 1)(a +2)
+y/(Ga+ Db ()| + [ (mo)|* ++/(2a+3)[ (my)|*+(2a + 5)|b’(mz)|“) : (3.15)
Proof. The proof directly follows by setting u; = my, 1, = my, d = %, w = =522 in Theorem 2. ]

Corollary 2. Leth : I C R* — R be a differentiable function on I° (the interior of 1), where m;, m, € I°
with my < my. If |Y|* is log —convex and iy € L'[m;,m,], a > 1, then

)} (1-) (b (ma)+1 (23 ) B@){mlJS’b(""”‘z)+ff+mz =y )|
N

smy —my) g(my —my)

1 [ H(my)+Dh(my) my+ny
E{ 2 +b( 2
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_ (0 5@ = ) VITGIF T { i (3.) + e (o))
25(103\/— .
1 my+my

Proof. The proof directly follows by setting u; = my, 1 = my, » = 5, w = === in Theorem 3. m|

(3.16)

Remark 2. For ¢ = 1, Corollaries 1 and 2 coincides with Theorems 3.2 and 3.7 of Xi and Qi [25]
respectively.

In particular, under the relation (3.14), the left sides in (3.15) and (3.16) can be replaced by the
relations either (3.17) or (3.18) to get trapezoidal type inequality or midpoint type inequality

o) + by | 1= [0 m) +0(252) - B firen (mm) 4 €, 1 (o))

2 sy —my) > G-7)
(1-¢){h(my) + H(=5=2)1 — B(s) { S I (M52 +gf+1v12 I°h (my)
b(ml +m2)+ ¢ { 2 ( 2 )} ¢ { ( ) 2 } (3.18)
2 g(my —my)

4. Analysis in numbers and graphics

In order to better grasp the theoretical results, we go over the numerical and graphical analysis of
our main results in this part. Tables and figures in each example are unrelated to one another. Both
sets of statistics were selected at random. The table and graphic in each case demonstrate that the
inequality’s left-hand side is less than or equal to its right-hand side, according to the corresponding
theorem.

Example 1. Let h(t) = % VIt be such that t € [0,00) and ¢ = a = 1. In Table 1, we compute the values
from result (3.4) of Theorem 2. Furthermore, the validity of result (3.4) of Theorem 2 is graphically
shown in Figure 1 by considering H(t) with the following values: m; = 3, u; = 5, w = 18, u, = 20,
20<m; <30,0<d<1,a="7.

Table 1. Comparison of values in result of Theorem 2.
myoy woou oy d LHSof(3.4) RHSof (3.4)

5 6 15 15 16 0 123.6568 127.9318

23 33 33 4 50 02 339.7169 401.0339

11 11 47 75 100 04 208.3972 2.5144e+03
63 8 90 100 129 0.6 826.1879 1.8423e+03
2 3 30 40 60 0.8 1.0376e+03 1.1879e+03
101 102 106 107 111 0.99 1.3199e+03 1.3204e+03
20 30 40 75 75 1 3.6029e+03  3.7572e+03
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Left hand side

x 10° Right hand side
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Figure 2. Validity of inequality (3.11) in Theorem 3.

5. Applications

5.1. Modified Bessel functions
The modified Bessel functions of first and second kind are defined, respectively by Watson [26]

p(g) — A

o é)p+2n
o 6 | L L
Ip(g)_zz(;nlf(p+n+l)’ sin 7rp

Watson also defined the functions J,,, L, : R — [1, c0) by

é‘.‘ —-P é‘.‘ —-P
J,(&) =T(p+ 1)(5) L@ L& =T(p+ 1)(5) KV EER, p>—1,

differentiating with respect to & twice yields:

Elpr1(©) EJp2O+2p+2)ps1E) Ly (©) ELy@+2(0+2)Lps1 €) s
J/(&) = 2(}11) () = =+ 24(p+1)(p+2)p 22" and L/ (&) = 2(’;1) L) = == 24(p+1)(p+2)p 222 Convexities
of J,(¢) and L, (¢) directly follows from here. We incorporate this function as a result.

Proposition 2. For h(t) = Jy);a=1in Theorem 2, we have

2(m2 +w— 112)Jp+1(m2 +w— 112) + (m1 —mp + 2W)Jp+1 (%ﬁ&w)

(-0 8(p + 1)
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2+ W = U e (Mg +w = 1) + (Mg = My + 2w) T (252
+D
8(p + 1)
Ty (M2 — Jomy +w =) Jp(mp 4w — ) — (R
my + my — 21y 21y — My — My

(2b2 — 20+ 1) (my + my — 2u,)

< 32(p + D(p +2) (m%‘]pﬂ(ml) +2(p + Z)Jp+1(m1))
(22— 20+ 1) Qup =y =)

" 32(p+ D(p +2) (m2]ﬂ+2(m2) +2(p + 2)Jp+1(mz))
(22 -20+ 1)y —wp)

6D W)+ 205 D)

(2b3 — 602 +3b— 1)(m1 +my — 21) )

* 96(p + (p + 2) (u1Jp+2(u1) +2(p + 2)Jp+1(u1))
(-20* +30-2) @y -y —my)

* %0 T DP 12 (187,42112) + 20 + 2) 11 (1))

(2b3 — 60> +3b— 1) (21, — My — My) — (2n3 —3b+ 2) (m, +m, — 21;)
384(p + 1)(p +2)

x ((m1 ) (ml ; mz) + 80+ 2),1 (ml er m ))

+

Proposition 3. For h(t) = L(t); a = 1 in Theorem 2, we have

ml—m2+2w)

2(m2 +w - llz)Lp+1(m2 +w - 112) + (m1 —mp + 2W)Lp+1 ( >

(1-9) 8(p + 1)

2(1111 +w—- ul)Lp+1(m1 +w—- 111) + (m2 —ny + 2W)Lp+1 (

8p+1)

Lp(ml_n;2+zw) - Lp(ml +w—-1y) Lp(mZ +w—1p) - LP(THZ_TZI+2W)

m1+m2—2u1 2u2—m1—m2

nmy—my +2w>
2
+Dd

(21»2 —2b+ 1) (my +my — 2u;)

) 320 + D(p +2) (MiLpea(m) + 200 + 2) L (my)
(202 - 20+ 1) Quy =y —ma)
¥ 320+ D(p +2) (msz+2(m2) +2(p + 2)Lp+1(m2))
(22 -20+ 1) (o —wp) |,
BT Dpra (WLl + 260+ DLy (w)
(20° — 60 + 30— 1) (my +my = 2uy) ,
* 96(p + 1)(p + 2) (ule+2(u1) +2(p + 2)Lp+1(u1))
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(-20° +30 - 2) Quy -y =)
* 96(p + 1)(p + 2) (usz+2(u2) +2(0 + 2)Lp+1(u2))
(2b3 — 60" +3b— 1) 2uy —my —my) — (2D3 —-3b+ 2) (my +my — 2uy)

3840+ Dip + 2)
2) +8(0+ DL, (

—+

m; +m
2

X ((ml +1m,)? L, ( M+ ))

2

5.2. H-divergence measures

Let the set ¢ and the o finite measure u be given, and let the set of all probability densities on u be
defined on Q := {y|y : ¢ = R, xy(w) > 0, f¢ x(@)du(w) = 1}. Leth : R* — R be given mapping and
consider Dy(y, ¢) defined by:

Y(@)

= ))dﬂ(w') X9 € Q. (5.1)

Dy(x, ¥) = f/\,/(w)f)(
¢

If b is convex, then (5.1) is called Csiszar h-divergence. Consider the following Hermite-Hadamard
(HH) divergence:

(@)

S vvat
x@)
where b is convex on R* with h(1) = 0. Consider D, (y, ¢) defined by:

Dy(x.v) = f (@) — W) du(), (5.3)
[

so-called variation distance. Note that DI;,H(X, ¥) > 0 with equality holds if and only if y = .

Proposition 4. Let ) : I C R* — R be a differentiable function on I°, interior of I, my, m, € I° such
that || is convex and H(1) = 0, then

2Dy (1. %3*) + Dy (. ¥)

- D), (v, %)

by (w<w)+x<w) ) ‘}

(@)

— r (V@)
WD) | fw(w) x@ |y 42 +2

7 , 7 du(w). 5.4

Proof. Let @ :={w € ¢ : Y(w) > y(@)}; O, :={w € ¢ : Y(w) < y(w)} and O; := {w € ¢ : Y(w) =
X (@)}. Obviously, if w € @3, then equahty holds in (5.4). Now, if w € @4, then foru; = m;, w = %,
m=a=11u=m = ig;, D= in Theorem 2, multiplying both sides by the obtained result by

x (@) and integrating over @, we have

(@)
1 V(@) + x(w) 1 Y (w) x(@) [[* b(t)dt
‘5 L 1x<w>b(—2)((w) )dﬂ(W)+Z f x(@ )b( = ))dmw)— L T am dp(w)
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w) — w w w) + ()
g f (@) - x(@) {Ib'(l)l . |b, (M)' o b,(w)l}dﬂ(w)_ (5.5)
o 32 x(@) 2x(w)
Similarly, if @ € ®,, then for u; = m; = )%, w = %; a=1lw=nm=1,>d= % in Theorem 2,

multiplying both sides by the obtained result by y(z) and integrating over ®,, we have

(@)

1 W(@) + x () 1 W(w) x(@) [ p(b)dt

‘5 [} xon (MG e+ ;[ a4 i - [ e L

. f X(@) — y(@) {Ib’(l)l . lb, (sb(w))l oy (w<w> mw)‘} (), 5.6)
®, 32 X (@) (@)

Adding inequalities (5.5) and (5.6) and utilizing triangular inequality, we obtain the desired result (5.4).
]

5.3. Probability density functions

Let f : [my,my] — [0, 1] be the probability density function of m continuous random variable X
with the cumulative distribution function, F, given by:

Flo)=Pr(X<o0)= | f(tdt and E(X) = f b tdF(t) = m, — f " F(t)dt.

ny mp my

Then, from Theorem 2 for a = 1, we have the following result:

(1= [Pr(X <my+w—1) + Pr(X < M=) p[Pr(X <my+w—w)+ Pr(X < 2]
2 ¥ 2

Pr(X <my+w—1) - Pr(X < M=) Pr(X <y +w— 1) - Pr(X < =)
- +
my + my, — 21 21y — My — My

(207 = 20+ 1) {(my + g = 2u0) [F(m)] + i = 1y = o) [F(m)] + 2 (g = 11) | F (W)}

<

8
(20° = 602 + 30 = 1) (my + my — 21y) [ £(up)] + (=20° + 30 = 2) 2y — my = my) | f(1wy)|
" 24
(20% = 607 + 30 — 1)(2uy — my = my) = (20% = 30+ 2) (my + 1My = 20) |y 4y
* 24 ( 2 ) ' 5.7)

In particular, for 1y = my, 1, = my, d = % and w = =522, (5.7) reduces to

)

Pr(X<mp)+Pr(X<mp)+2Pr(X<ME) 0 poy)

4 n, — Ny

(ms=mo) (1me 2 7 (52)
<
B 32
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6. Concluding remarks

By constructing a multi-parameter fractional integral identity in the form of the Caputo-Fabrizio
fractional integral operator, we have generated some new generalized estimates for fractional Bullen-
type inequalities by using convexity, log-convexity, Holder inequality, and power mean inequality. We
have also included numerical and graphical examples to demonstrate the correctness of the generated
results. Additionally, modified Bessel functions, h-divergence measures, and probability density
functions are given as implementations of the resulting conclusions. It is anticipated that the paper’s
findings will pique readers’s interest.
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