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Abstract: Many researchers in recent years have studied fractional integrals and derivatives. Some
authors recently introduced generalized fractional integrals, the so-called unified fractional integrals.
In this article, we establish certain new integral inequalities by employing the unified fractional
integral operators. In fact, for a class of n (n € N), positive continuous and decreasing functions
on [v, v,], certain new classes of integral inequalities are discussed. The inequalities established in
this manuscript are more general forms of the classical inequalities given in the literature. The existing
classical inequalities can be rectified by imposing the conditions stated in remarks. By imposing certain
conditions on 7/ and A available in the literature, many new forms of fractional integral inequalities can
be produced.
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1. Introduction

Fractional calculus is presently primarily concerned with studying fractional-order integral and
derivative functions over real and complex domains and their applications. Using arithmetic from
classical analysis in the fractional analysis is critical in many cases for producing more realistic
findings. Fractional order differential equations can handle a wide variety of mathematical models.
Fractional mathematical models provide more comprehensive and accurate results than classical
mathematical models because they are particular cases of fractional-order mathematical models. In
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classical analysis, integer orders are not a good model for nature. On the other hand, fractional
computing allows us to look at any number of orders and come up with significantly more concrete
objectives.

In [1-5], some researchers defined new fractional derivative operators by using exponential and
Mittag-Leffler functions in the kernels. Such developments encourage further study into new concepts
for combining fractional derivative and integral operators and obtaining fractional integral inequalities
using these modified fractional derivatives and integral operators. In the theory of differential equations
and applied mathematics, integral inequalities and their applications are crucial. Using the classical
fractional integral, fractional derivative operators and their extensions, many different forms of classical
integral inequalities and their modifications have been created [6—13].

Sarikaya and Budak investigated the (k, s)-Riemann-Liouville fractional integral and its applications
in [14]. In [15], enlarged Hermite-Hadamard type inequalities are discovered using fractional integral
operators. Agarwal et al. [16] used the k-fractional integrals operators to introduce Hermite-Hadamard
type inequalities.

Using a family of n positive functions, Dahmani, in [17], presented certain classes of fractional
integral inequalities. Using the (k, s)-fractional integral operators, the authors of [18] constructed
fractional integral inequalities for a class of n (n € N), positive continuous and decreasing functions on
[a, b].

Using fractional conformable integrals, the authors [19-22] recently developed numerous forms of
inequalities. In [29], Akin studied the boundedness and compactness of integral operators on time
scales. Akin [30] established fractional maximal integrals to establish integral inequalities on time
scales. New principles of non-linear integral inequalities are presented in time scales via diamond-a
dynamic integrals and the nabla integral in [31]. Younus et al. [32] gave some new variants of Gronwall
type inequalities on time scales. An interesting application of fractional integrals and differentials can
be found in the works [33-35].

Definition 1.1. /23] Let A : [0, 00) — [0, ) be the function satisfying the hypothesis given below:

fl Mdv<c>0, (1.1)
0o U

R -

A%” < LA;?), Ay <y, (1.3)

|A%2) - A;?)| < M, - h1|A%2), % < % <2, (1.4)

where K, L, M > 0 and are independent of iy, hi, > 0. If A(hp)hg is increasing for some o > 0, and

% is decreasing for some u > 0, then A satisfies (1.1)—(1.4).
2

Definition 1.2. [25] Let the function h be differentiable and strictly increasing on [vy,v,] and let the
weighted function w(@) # 0 be defined on [vi,v,]. Let X, (vi,v2), 1 < p < oo, be the space of all
Lebesgue measurable functions defined on [vi, v,] for which ||N||x% < oo is

INIlxs, = (f | (W(O)N(O) I)”h'(Q)dH)p 1< p<oo,

vi

AIMS Mathematics Volume 7, Issue 8, 15563—-15583.



15565

and
[IN |x;, = ess sup | w(@)NR(O) |< co.
V1 <60<vy
Note that ¥ € X' (vi,v,) & a)(H)N(H)(h’(Q))p € Lp(vi,vy) for 1 < p < 0o, and N € X,/ (vi,2) &
W(O)N(O) € Leo(vy, v2).

Definition 1.3. [24] The unified weighted left and right sided integral operators are respectively given
below:

YA (R() -
(ZI fl N (/l) =w () j; 7(1(/(1) )_ h(z(Jl)})) w@)i W)RXW)dv, v, <A, (1.5)
and " A (h(v) — h(A
(20 8) (D) = ™' ﬁ 72(1(;)})—_7@ (ﬁ))) W Ry, v, > A. (1.6)

Remark 1.1. Here, we discuss the following special cases of (1.5) and (1.6) by applying some specific
conditions on h and A.

(i) If we take A (h(A)) = hi(A), then unified weighted integrals (1.5) and (1.6) will become

A
(27,:8) () = w™') f W) )RW)du, v < 4,
and "
(27,-8) (D) = ™' f W RW)dy, v, > A,
A

respectively.
(ii) If we take W(A) = A, then the unified integrals (1.5) and (1.6) will become

1
Al -
(57,:8) () = ™' ) f /(l/l—vv)a)(v)x(v)dv, Vi< A, (1.7)
Vi -
and
h ! PAW-D
(27,-8) (D) = ') —w(v)N(v)dv, va > A, (1.8)
respectively.
(iii) If we take A(h(1)) = %, then (1.5) and (1.6) will lead to the following generalized Riemann-
Liowville fractional integrals, respectively, as defined by [25].
h ') M 1
(LZ58) @ = 5 f (D) = BW) ™ wH WR@)y, v < A, (1.9)
Vi
and
w'()

(525,R) (D =

where £, € C with R() > 0.

s f/;vz (h(v) — h(/l)){—l wWH (V)XW)dv, v, > A, (1.10)
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(iv) If we take (1) = A and A(h(A)) = r( {), then (1.5) and (1.6) reduce to the given weighted Riemann-
Liouville fractional integrals, respectively:

-1 9
(WI%.R) (D) = ‘”F(g) f A= v w@R@)dy, v <4, (1.11)
and
(5 N) (0 = 2D (M- e
R () = o v =AD" ww)Xw)dvu, v, > A (1.12)
bl
(v) If we take (1) = InA and A(A()) = (1;(25’ then (1.5) and (1.6) will lead to the weighted
Hadamard integrals given below: A
-1 1
(WI5.R) () = ‘”r(g) f (1nA—1nv)<—1w(u)N(u)d7”, v <A, (1.13)
and - .
( L-R) (D) = r(g) ﬁ (1nu—1nﬂ)4—1w(u)x(u)%, vy > A (1.14)

(vi) If we take (1) = A7 and A(h(A)) = %", n > 0, then (1.5) and (1.6) will become weighted
Katugampola fractional integrals as follows:

-1 A _ {-1
(wfglx)u):“’r(gl) (ﬂn “n) w(v)N(v)%, v <A, (1.15)
d
v W) [ o=\ dv
(ILR) (D) = o ) ( ; ) WS > A (1.16)

(vid) If we take 7(A) = A and A(h()) = 4 exp(==22), 1 € (0,1), then (1.5) and (1.6) will reduce to
the weighted fractional integrals glven by

w! (/l)

(JT1.R) () = 2 (—T(/l v))w(v)N(v) v <A, (1.17)

and

-1
(oI7-R) (D) = () (

Remark 1.2. (i) If we take w(1) = 1 and A (h(/l)) = (), then (1.5) and (1.6) will become

(v /l)) wWNW)dv, vy > A (1.18)

A
("7,.8) (D) = f Ry, v <A,

Vi

and "
("7,,-8) (D) = f 7Ry, vs> A,
A

respectively.
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(ii) If we take w(d) = 1, then (1.5) and (1.6) will lead to the unified integrals defined by [26] as

follows:
T A (1) ~ W),
(hfﬁ+ )(ﬂ)=fm 7O — ) W W)R@)dv, v <4, (1.19)
" ? A (h(v) — i(2))
A _ ? V) — ,
("5 R) ) = L o) —hoy P @N@ds, v > (1.20)

(iii) If we take w(Ad) = 1 and (A1) = A, then (1.5) and (1.6) will reduce to the fractional integrals
defined by [27] as follows:

(7. )(/l)—f wx(v)dv v <A, (1.21)

and N
("7A_N) () = f —Aiv Vwydv, v > A (1.22)

A

(iv) [28,36] If we put w(d) = 1 and A(R(A)) = % then (1.5) and (1.6) will become generalized

Riemann-Liouville fractional integrals as follows:

("FER) () = — f B — ) H(@N@)dy, v < A, (1.23)

')
and
("75,8) () =

where {,€ C with R(() > 0.
(v) If we take w(A) = 1, (1) = A and A(h(A)) =
Riemann-Liouville fractional integrals

o f (h(v) — R T/ (WRW)dy, v, > A, (1.24)

r( 4’)’ then (1.5) and (1.6) will reduce to the following

(35R) ()= — f (A - v 'N@)dv, v <2, (1.25)

')

and

( vz_N)(/l)— f (- D Rw)dv, v, > A, (1.26)

I'({)
respectively (see, [28, 36]).

(vi) If we take w(A) = 1, i(A) = In A and A(A(Q)) = “;(g‘ﬂ then (1.5) and (1.6) will respectively become
the following Hadamard integrals [28, 36].

A
(Z5,.8) () = %@f (1nﬂ—1nv)f-‘x(v)d—5, v <A,

and

(F5,-8) ) = ) f (Inv - In )~ lx(v)— vy > A
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(vii) If we take w(l) = 1, (1) = AT and A(h(1)) = =, n > 0, then (1.5) and (1.6) will become
Katugampola [37] integrals as follows:

AT =y dv
(7 )“)_r@)f( n ) MOy <t

2y - At dv
(I{ I"(é‘) f ( ) N(U)m, vy > A

(viii) If we take w(2) = 1, h(2) = A and A(h(A)) = 4 exp (—21), 5 € (0, 1), then (1.5) and (1.6) reduce
to the integrals given below:

and

1 1-7n
(Iﬁlm)(ﬂ): —f eXP(——(ﬂ—v) N@), vi<4,
n 1

Vi

(77.- )u)——fzexp(—

respectively. Similarly, (1.5) and (1.6) will reduce to the integrals introduced by [22, 38-40].

and

LYo /1)) NW)dv, v > A,

The main motivation of this paper is to establish certain new integral inequalities by employing
the unified fractional integral operators. In fact, for a class of n (n € N) positive, continuous and
decreasing functions on [vy, V,], certain new classes of integral inequalities will be discussed. The
inequalities obtained in this manuscript are more general forms of the classical inequalities given in
the literature. The existing classical inequalities can be rectified by imposing the conditions stated in
remarks. By imposing certain conditions on 7 and A available in the literature, many new forms of
fractional integral inequalities can be produced. It is expected that the ideas and techniques of the paper
will inspire interested readers.

2. Main results

In this section, we utilize the weighted integral (1.5) to obtain the refinement of some classical
inequalities. Throughout the paper, we let the function 7 be an increasing and positive function on
[vi,v,] with a continuous derivative %’ on (v, v,). To do this, first we prove that the operators defined

by (1.5) and (1.6) are bounded.

Theorem 2.1. Let the functions A,N : [vi,v2] = R, 0 < v| < vy, be positive and integrable functions.
Let 1 : [vi,v2] = R be a positive, increasing function having a continuous derivative on (vi,v;). If %
is increasing on (v, v,], then for A € [vy,Vv;], we have

! A (i) - h()) ) -1
D1 fl 7o — ) W (WR@)AY |< w™ (DA (1(v2) = h(v1)) [IN]Ix?

and

= A (h(v) — () ) -1
w () | L ) — D) W@ R W)dv |< w™ (DA (A(v2) = A(v1)) [IN][x2.-
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Furthermore, one can get

- YA () - h(v)) - A (h(v) — ()
1 ’ 1 ’
w )] j; 7 i) wF (WRW)dv | +w™ () | j; 7o) — D) wWA' (VXW)dv |

Q2w (DA (A(v2) = B(v1)) NIl -

Proof. By the given hypothesis, 7 is increasing, and therefore for v € [v, A), 4 € [vy, v,], Ai(A) — A(v) <
h(A) — h(vy). Also, since the function % is increasing, we have

A — @) _ A @D — 7))
) -hw) T D) -k

2.1)

By the given hypothesis, N and w are positive functions, and 7 is increasing and differentiable.
Therefore, from (2.1), it follows that
A (WD) - 1)) A (WD) — 1(v1))

) —hw) YO ORO) < = e

W (V)R(V). (2.2)

From this, the following inequality can be easily obtained

YA — 1
ol [ A Ny 1< o A G - B0 I e . 23

Similarly, one can get

-1 A () - (D) , -1 _
w (D) | L ) — D) W (WR@)AY |< 0™ (DA (A(v2) = B(v) [| N [Ixr - 2.4)

Finally, by adding (2.3) and (2.4), we get the last inequality. O

Theorem 2.2. Suppose that the function N is a positive, continuous and decreasing function on [vy, v,].
Letvy < A <vy,% > 0,and o >y > 0. Then, for generalized integral operator (1.5), we have

LI N LT (- viNT)]
B0 INVCO1 ™ 17 = vy )i (a|

(2.5)

Proof. Since N is a positive, continuous and decreasing functions on the interval [v;, v;], we have

(0= vl = @ =v)]) (R @) = R"7(p)) 2 0, (2.6)

where vi < A < vy, % > 0,0 >y >0,and v,p € [vy, 1]
By (2.6), we have

(0 = v)IRTY@) + (W —v)IRT(0) — (o — v1)INTV(p) — (v = v)!RTV(v) = 0. (2.7)

Define a function A — hw)
— v ,
G4,v) = 7D — i) w(V)i' (v). (2.8)
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We observe that the function G(A, v) remains positive for all v € (vi,4) and v < v < 4 < v, as
each term of the above function is positive in view of the conditions stated in Theorem 2.2. Therefore,
multiplying (2.7) by

A (h(4) - h(v))

G, v)N'(v) = o — hw)

W' (V)N (v),
for v € (v, 4) and v; < A < vy, we have

G4, v) [(p = VIR (@) + (W = V)R (p) = (p = v)INT(p) - (v = )N (@) | N (W)

A —h
= (o=l N N

A (h(D) = h(w))
() — h(v)
2 A (D) ~ hv)
~ 0TI T
A (D) = h(w))
h() — h(v)

Integrating (2.9) with respect to v over (v, 4), we have

YA (M) - h(v))
b ’ oa
(o — ) f T0 Ty O N @)

)
+ (v -]

W) WN' (N7 (p)

W) N (W)NT7(p)

W (VR (WX 7 (v) > 0. (2.9)

7
- -w)

YA () R
+ N7 (p) fl ;(,l(/(l))_ h(l(jl)}))w(v)h’(v)(v — )N ()d

A (h(A) = h(v))
() = h(v)

A
— (0= V)R (p) f W) WN? (v)dv

B f T A (A(D) = Ti(w))

"D <) W) W) (v —v)IR (v)dv > 0. (2.10)

Multiplying (2.10) by ﬁ, we get

(o= vV BT IN7(D] + K77 () LI [(A=v)IN'(0)]

w

— (= v)INT () LT IN' (] - 110, [ = )R] Q2.11)

W= v+

Multiplying (2.11) by

A () - h(p))
G(A,pN(p) = w(EIR (P)N(p)

for p € (vi, 1) and v; < A < v, and integrating the resultant identity with respect to p over (v{, 1), we

get

LI INTD TN, [ = v)IN)| = BT (= v)INT)| BT, 18] 2 0.

w~ V] w~ v+ w™ V]

It follows that

LT INTOL AT (A= v D] 2 LI, [ = v)IRTW] BT INY()].

vit wT v+ = wf v+ v+

Dividing the above equation by 7714 [u—vl)g’wu)] hTA [NY(1)], we get the desired

w~ v+ w= v+

inequality (2.5). O
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Remark 2.1. If N is increasing on [vy, v,], then the inequality in Theorem 2.2 will reverse.

Remark 2.2. If we take w(d) = 1, (1) = A and A(A(Q)) = % then Theorem 2.2 will reduce to
Riemann-Liouville fractional integrals.

Remark 2.3. If we take w(Ad) = 1, i(1) = A, A = v, and A(A(A)) = A, then Theorem 2.2 will reduce to
Theorem 3, proved earlier by Liu et al. [8].

Example 2.1. The special case of Theorem 2.2 is by taking w(1) = 1, (1) = A, A(k(1)) = A, o = 2,
v =19 =1and R(v) = 2 — v, which is positive, continuous and decreasing on [0, 1], and then we have
1 1
i N2 @)dv N |y w8 @)dv

fol N(v)dv - fol uN(v)du
i.e., 4.666 >1.375.

Theorem 2.3. Suppose that the function N is a positive, continuous and decreasing function on [vy, v,].
Letvy < A <vy,% > 0,and o >y > 0. Then, for generalized fractional integral (1.5), we have

BT INTOI AT, (A= v D]+ BT2 IRT(O] LT, [ = v)INY()]

w~ V] w~ v+ w~ V] w~ v+

> 1. (2.12)
BT = v IR )| BIE, N D] + BTE, [ = v)INT()] BT, IN()]

W= Vi+
Proof. By multiplying both sides of (2.11) by

@ ((D) — h(p))
) = h(p)

for p € (vi, 1) and v; < 4 < v, and integrating the resultant identity with respect to p over (v{, 1), we
get

G4, PN (p) = w(p)i' (PN (p)

LI INTQOL LT (A= )N + LT8R O1 LT, [ = v)INY (D]

= o0 (A= vOINTD] LT0 L IN T = LT3, [ = v)INT)] LT3, IN' (D] 2 0.

It follows that

LT INT@] LTS (A= v)IR @]+ EI0 INTO] T, [ = v) N7 ()]

> 10 (A= v)INTD| 10, N D]+ EI0 [ = v)IRT@)| 210, IN()]. (2.13)

Hence, dividing (2.13) by
ST0 [ =N D] LT N1+ 10 [ = v)IN7D] LT, N ()]

completes the proof. O

Remark 2.4. Applying Theorem 2.3 for A = ®, we get Theorem 2.2.
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Theorem 2.4. Suppose that the functions 8 and h, are positive and continuous on [vy, v,] such that h,
is increasing and N is decreasing on the interval [vi,v;]. Let vi < A < vp,9 > 0, and o > vy > 0.

Then, for generalized fractional integral (1.5), we have

LT INT] TN [N

w~ v+ w~ v+

> 1.
0, [RICORT(D)| BT, [N ()]

Proof. By the hypothesis given in Theorem 2.4, we can write
(h(0) = Bl @) (R () = 877 (p)) > 0,

where vi < A < vy, > 0,0 >y >0,and v, p € [vy, 4].
From (2.15), we have

hIRT W) + K N7 (p) = K (PIRT (p) — ] @)IRT () > 0,
Multiplying both sides of (2.16) by

A () —
G, V)N (v) = ;l(i) )_ h(l(jz)}))w(v)h’(v)xy(v)

for v € (v, 4) and v; < A < v,, we have

G N W) [A)(PINT (@) + K )N (p) = K] (PR (p) = h] WINT (W)

o A = (W)

=) () — h(v)
A (h(D) - h(v)
a(A) — h(v)
AGD) =B®)
WD iy OO EN@)
A (WD) = h(v))
() — h(v)

wW)i' (V)X (v)

+ hY(v) W) W)RT 7 ()R (v)

~ hi(p)

N HOH W) )R (v) > 0.

Integrating (2.17) with respect to v over (v{, 1), we have

9 A (D) - h(v)) el
hi(p) ‘fa 700 — ) W (V)N (v)dv

o YA (h(2) = h(v)) )
+RT7(p) f W)_h(vl)’ W) )R )N (V)dv

A (n() — h(v))

D) ) wW)H (V)XY (v)du

A
W (oN () f
i fﬂ A G - hw))

’ 9 o
D ) YO N @)dv 2 0.

Multiplying (2.18) by 5 and in view of (1.5), we can write

W) LI, N1+ R (0) LT, [ ()N ()]

w* v+ w

(2.14)

(2.15)

(2.16)

(2.17)

(2.18)
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— hER" () Th N1 = 110 [ (ON" ()] = 0. (2.19)

w~ v+
Again, multiplying (2.19) by

A (7(A) — h(p))
h(A) = i(p)

for p € (vi,4) and v; < A < v, and integrating the resultant identity with respect to p over (v{, 1), we
get

G4, PN (p) = w(p)' (PN (p)

ST INTOL T [N W] = LT0, (W QON7@)] LT0, IN'()] 2 0.

w™ V] w= v+ w= v+

This can be written as

LI INTQOT LI, [l QONT(D)] geq T . [WI(ONT(O)| L T0, [N (],

w= v+ w= v+ w= v+
which completes the desired inequality (2.14) of Theorem 2.4. O

Theorem 2.5. Suppose that the functions 8 and h, are positive and continuous on [vy, v,] such that h;
is increasing and N is decreasing on the interval [vi,v;]. Let vi < x < vp,% > 0, and o > vy > 0.
Then, for generalized integral (1.5), we have

w= v+ w= v+ w= v+ w= v+

LI INTOL AT, [RONY ()| + BT [N7()] 115 [Af ()N ()]

> 1. (2.20)
TN [ACONT)| 1 T8, N1+ BT0, [AI(ONT()| BT, [87.2)]

Proof. Multiplying (2.19) by

@ (() — h(p))
() = h(p)

for p € (vi, 1) and v; < 4 < v, and integrating the resultant identity with respect to p over (v{, 1), we
get

G(4,p)N"(p) = w(p) ()N (p)

LI INTOL LT, [RIONY )] + BT8R (O] L0, [Al ()N ()]

= L0 [ QORI ] LIS N1 = LT[R ORTW)| LT INY()] 2 0.

It follows that

LI INTOL LT, [N )] + 10 N1 L1, [A ()N ()]

w~ v+ w= v+
> D10 [ ORT@D] BI8 INY@)] + BT [l (OR7(D] BI5, INY(D)].
Dividing both sides by

W™ vit 1 W~ v+ vi+

LT[R QORTWD| BTSN )T+ LI [RIORT| 110, [N ()]
gives the desired inequality (2.20). O
Remark 2.5. Taking A = ® in Theorem 2.5, we get Theorem 2.4.
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3. Unified integral inequalities for a class of decreasing positive functions

In this section, we utilize the left unified integral operator (1.5) to establish some inequalities for a
class of decreasing positive functions.

Theorem 3.1. Suppose that the functions (N))i=123... be n positive, continuous and decreasing
Sunctions on [vi,v2]. Let vi < A < vy, > 0,and oo > y, > O for any fixed g € {1,2,3,...,n}.
Then, for generalized fractional integral operator (1.5), we have

w= v+ w= v+

|, RIS § I (= v)! T, RRS)]
RIS BIs [a= vl TIL N'@)]

(3.1

Proof. Since (N));=123...» are n positive, continuous and decreasing functions on the interval [v;, v;],
we have

(G0 = v} = @ =v)!) (R @) = 8] "(p)) 2 0 (3.2)
for any fixed g € {1,2,3,...,n},vi <A<y, % >0,0 >y, >0and v,p € [v;,4]. By (3.2), we have
(o = VIR () + (W = v)IRG () = (o = vi) NG (p) + (v = V)RS (v). (3.3)
Multiplying both sides of (3.3) by
- A (WD) — () -
Vi — ’ Vi
G(A,v) ];[ N'W) = = T @) ];[ N7 (1)

for p € (vi,4) and v; < A < v,, we have
G(4,v) [(p —Vv)IRT (@) + (v = a){R77(p) = (p — v)IN 7 (p)

~w - v | [N'@)
=1

A (A1) — h(v)) T et aT—Ya
=@p-w)’ h) — ) w@)I (v) 1; NN, ")
A (B - T n .
+@w—w)’ ?('z(/(l))— h(z(jl)j)) wW)R (v) —[ N' ()N, (p)
=1
A (B() — h(v)) T et aaT—Ya
> (0=l @ (U)E N @] (o)
A\ - L .
Fw-nt ™ o (l(;)j))w(v)h’(v) [ [N @8y ). (3.4)

=1

Integrating (3.4) with respect to v over (v, 4), we have

NGO I)) T T —Ya
(o — vl)lfj; 7D h(vz)} w(W)i'(v) 1;1 le (NN, "1(v)dv
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- YA (WD) - h(v)) -
Yq ’ Yi
+R77(p) f Wb iy @) |l:1| N (v)dv

A (D) — 1))
() = h(v)

A
> (0= w)!RI () f

1

W @) | [N @)dv
=1

N f T A (A(D) = h(v))

W) —hy O @@ -y ,rll N ()R] (v)dv.

In view of (1.5), it follows that

(p _ Vl)l?hIA

1 w= v+

ﬂ Nl”N;’(/l)} XTI (A=) ]—[ x’,”u)}
L =1

l#q

. (3.5)

> (p = v){Ng () T []—[ N,”(ﬂ)} 3 (PRl [l )
=1 L

l#q

Again, multiplying both sides of (3.5) by

A (7(2) - h(p))
h(A) = h(p)

Gap | [N'0) = wp () | | ¥ (0)
=1 =1

for p € (vi,4) and v; < A < v,, and integrating the resultant identity with respect to p over (v{, 1), we
get

e |l RO F [u — vy ﬂxrw}
I#q =1
> rh l@=w)! ﬂ NYNI()| BT, [H N ()|,
I#q I=1
which gives the required inequality (3.1). O

Remark 3.1. If we consider that (N))=1 2., are increasing functions on vy, v,], then the inequality
in Theorem 3.1 will reverse .

Remark 3.2. If we take w(Ad) = 1, (1) = A and A(h(Q)) = % then Theorem 3.1 will reduce to the
result proved by Dahmani [17].

Remark 3.3. If we take w(d) = 1, (1) = A, A = vo, n = 1 and A(W(A)) = A, then Theorem 3.1 will
reduce to Theorem 3, proved earlier by Liu et al. [8].

Theorem 3.2. Suppose that the functions (N;)i=123..., are n positive, continuous and decreasing
functions on [vi,v;]. Letvi < A < vy, > 0,and o > vy, > O for any fixed q € {1,2,3,...,n}.
Then, for generalized fractional integral (1.5), we have
T [T, RIRGD) B0, [ = v)) Ty N + AT0, [TTh, NISW] BIA, [ = v TIE, 8]
BTN [(= v T YR BT8, [T, 8] + BI8, [ = v)! [T, NIR) BT, [T, 8]

>1. (3.6)
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Proof. Multiplying both sides of (3.5) by

Gp) | |8 0) =
=1

D (() — h(p))
() = h(p)

() (o) | [ N7p)
=1

for p € (vi, 1) and v; < 4 < v, and integrating the resultant identity with respect to p over (v{, 1), we

get

hIA

w~ v+

l#q

+h[®

w~ v+

>hIA

- wT v+

+hI<D

w~ v+

It follows that

n

hIA

w~ v+

I#q

+hI<D

w= v+

>hIA

- wT v+

+h]'(D

w~ v+

Hence, dividing (3.8) by

h]'/\

w= v+

_I_hICD

w~ v+

completes the proof.

[ [%rsgc

| [%rsgc

I#q

(A =v)f | [NIRg)

@=-v)f [ [Nr8g

[BERAR

n

[ =g

I#q

A=v)f | [NIR5)

@-vof | [ N85

@-v)f | [Nr87

-l | [ N85

n A
va1+

(A=)}

I#q

W~ v+

hIAl

I#q

=1

w= v+

h A l(a —v)?

n

I#q

n

w~ v+

hIA[

I#q

hIA[

w~ v+
I#q

oTos [(ﬂ -wi | [N
=1

=1

I
=1

oL i {r Nm)}
L[ xl"(z)] :
=1

"Te, [(a —v)! ]—[ x,”u)]

i x,”(ﬂ)]

=1

LI {F NW)}

=1

n

=1

AN [ﬂ Nl”u)}
=1

[ T8
=1

Remark 3.4. Applying Theorem 3.2 for A = ®, we get Theorem 3.1.
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Theorem 3.3. Suppose that the functions (N));=123.... and hy are positive and continuous on [vy, v;]
such that hy is increasing and (N))i=123..., are decreasing on [vi,v,]. Let vi < A < v,% > 0, and
o >y, >0 forany fixed q € {1,2,3,...,n}. Then, for generalized fractional integral (1.5), we have

W= v+ W~ v+

TN [HID) T, NYRGD] AT [T 8]

L0 [Ty NPRGO] LT [ T NP 1

Proof. Under the hypothesis given in Theorem 3.3, we can write
(h(0) = @) (87 “(w) = 8 (p)) 2 0

for any fixed g € {1,2,3,...,n},vi <A< v, >0,0 >y, >0and v,p € [v},4].
From (3.10), we can write

W] @) + B WIN] 7" (0) = h ()R] 7" (p) = W @R] " (v) > 0,

Multiplying (3.11) by

A (D) — W)
() — h(v)

G | [N = W @) | [N'@)
=1 =1

for v € (vi,4) and v; < A < v,, we have

A (WD) - 7))

O =08 Thay Y@ @) 1,—1[ NI @R @)
) T i w) 11_1[ NI N ()
- W R i ) ]:[ NI @RS 7 (p)
- hf(u)’fAé?/(l;l)__hz(j;))w(v)h'(v) ];1 NN, (v) 2 0.

Integrating (3.12) with respect to v over (vy, 1), we have

CA G - ) o
0 ’ Vi Yaq
0 S5 gy o @ [N N o

cye, o [CAGQ) -R@) o T T we
+RT7(0) f T T (u)h?(u)f];[N7 W)dv

A (D) — 1))
() — h(v)

A
KR (o) f

W @) | [N @)dv
=1

A n
-~ f Y (v) l_[ N, (v)dv > 0.
V1 =1

(3.9)

(3.10)

(3.11)

(3.12)

(3.13)
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In view of (1.5), we can write from (3.13)

W) LI [ [SIRg@)|+ 87 (o) L1,

I#q

Ol N,”w}
=1

O N A

I#q

> 0. (3.14)

N o (] xm] g,

L /=1

Again, multiplying (3.14) by

A (() — h(v))
() = h(v)

Gp) | |80 = W' @) [ [¥'0)
I=1 =1

for p € (vi,4) and v; < A4 < v,, and integrating the resultant identity with respect to p over (a, x), we
get

A
va1+

]—[ NY'NZ(D)

I#q

AR [hm [] NM}
=1

LT []—[ NY'(D)
=1

which gives the required inequality (3.9). i

_hIA

w~ v+

Ol EHOHE)

I#q

>0,

Theorem 3.4. Suppose that the functions (N))i=123...,» and hy are positive and continuous on [vy, v,]
such that h, is increasing and (N;)=12.3...n» are decreasing on the interval [vy,v,]. Let vi < A < vy, 0 >
0, and o > vy, > 0 for any fixed q € {1,2,3,...,n}. Then, for generalized fractional integral (1.5), we
have

T T RG] L0 [ T, N @] + 070|117, NIST| L1 [ T, K] ()
BTN [ T NYSTO] BT [T N O] + B0, [0 T, NYSGO] B0 [T N ()

\%

1. (.15

Proof. Multiplying (3.14) by

D ((D) — h(p))
() = h(p)

Gr.p) | [N'0) = ) (o) | | R]'0)
=1 =1

for p € (vi, 1) and v; < 4 < v, and integrating the resultant identity with respect to p over (v{, 1), we
get

n

]—[ NI'RT ()

I#q

hIA

w~ v+

oL [hm [ x’,”u)]
=1

[ =g

I#q

+hI<D

w= v+

AR [h?(ﬂ) [ Nl”u)]
=1
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e reN i e Ee N RN
| L /=1 |

I#q

—rre [ [Resg) Lo ] [Nro] 2o
I#q ) L /=1 |

This can be written as

n

BB

I#q

h A h 7@
'Z— val+

w~ v+

Ol xm)}
=1

[ [xrsg

I#q

oL [h’f(/l) [ [N/

=1

+h[(l)

w~ v+

O N BOHE)

I#q

>hIA

- wT v+

LI, [r NJ'(D)

=1

L0 [ TN?’(A)].
=1

+hI(I)

w= v+

HOM N EHOHE)

I#q

Dividing both sides by

n A
va1+

R [ | RR7)

I#q

O N A

I#q

LI, [ﬂ NI

=1

LT, [l—[ N,”(A)}

=1

+h[(l>

w~ v+

gives the desired inequality (3.15). O

Remark 3.5. Applying Theorem 3.4 for A = ®, we get Theorem 3.3. Similarly, we can establish the
inequalities for the right generalized proportional fractional integral defined by (1.6).

4. Special cases

By using our main results, we get the following certain new and well-known inequalities in terms
of well-known fractional integral operators:

Corollary 4.1. Suppose that the function N is a positive, continuous and decreasing function on [vy, v,].
Letvi < A < v, > 0,and o > vy > 0. Then, for generalized integral operator (1.7) (see, for
example, [27]), we have

TATIL ) I (U ]
I{}l+ [N (D] B I{J\1+ [(/l — V])?Ny(/l)]

Proof. Taking w = 1, i(1) = A and A(fi(1)) = A in Theorem 2.2, we get the desired result. O
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Corollary 4.2. Suppose that the functions (8));=123.... are n positive, continuous and decreasing on
[vi,va]. Letvi < A < vy, > 0,and o >y, > 0 for any fixed q € {1,2,3,...,n}. Then, for generalized
fractional integral operator (1.7), we have

7 7, 887 § I8, [ =)l T, N8R9 ()|
L Me N'@] I [a- vl T N )]

Proof. Taking w = 1, i(1) = A and A(A(1)) = A in Theorem 3.1, one can get the desired result. O

Similarly, by taking w = 1 in Theorems 2.2 and 3.1, one can get results for the fractional integral
defined by Farid [26] as follows:

Corollary 4.3. Suppose that the function N is a positive, continuous and decreasing function on [vy, v,].
Letvi < A < vy, % >0,and o >y > 0. Then, for generalized integral operator (1.19), we have

I IN) T [N
hf{,\l+ Ny(/l)] B hI{}\1+ I:(/l — V])?Ny(ﬂ)]

Corollary 4.4. Suppose that the functions (N));=123.... are n positive, continuous and decreasing on
[vi,val. Letvi <A < vy, 9 > 0,and o >y, > 0 for any fixed q € {1,2,3,...,n}. Then, for generalized
fractional integral operator (1.19), we have

T | T, RIRS)] § T (= vo? T, RN
LTI 8P @] 2, [ =) T N @)

where h is a differentiable, increasing and continuous function on [vy, v].

5. Conclusions

In this present investigation, we generalized many classical inequalities discussed in the literature
via unified fractional integrals and proved that the operators defined in (1.5) and (1.6) are bounded. We
developed certain new classes of unified fractional integral inequalities for a class of n (n € N) positive,
continuous and decreasing functions on [vy, v,]. Certain special cases of the main result are discussed
in Section 4. By applying specific conditions on 7 and A as given in the literature, we can produce
certain new classes of inequalities as discussed in Remark 1.1. We hope that our ideas and techniques
of this paper will inspire interested readers working in this field.

Acknowledgments

This research has received funding support from the National Science, Research and Innovation
Fund (NSRF), Thailand.

AIMS Mathematics Volume 7, Issue 8, 15563—-15583.



15581

Contflict of interest

The authors declare no conflict of interest.

References

1. T. Abdeljawad, D. Baleanu, Monotonicity results for fractional difference operators with discrete
exponential kernels, Adv. Differ. Equ., 2017 (2017), 78. https://doi.org/10.1186/s13662-017-1126-1

2. T. Abdeljawad, D. Baleanu, On fractional derivatives with exponential kernel and their discrete
versions, Rep. Math. Phys., 80 (2017), 11-27. https://doi.org/10.1016/S0034-4877(17)30059-9

3. A. Atangana, D. Baleanu, New fractional derivatives with nonlocal and non-singular
kernel, theory and application to heat transfer model, Thermal Sci., 20 (2016), 763-769.
https://doi.org/10.48550/arXiv.1602.03408

4. M. Caputo, M. Fabrizio, A new definition of fractional derivative without singular kernel, Progr.
Fract. Differ. Appl., 1 (2015), 73-85. http://dx.doi.org/10.12785/pfda/010201

5. J.Losada, J.J. Nieto, Properties of a new fractional derivative without singular kernel, Progr. Fract.
Differ. Appl., 1 (2015), 87-92.

6. Z. Dahmani, L. Tabharit, On weighted Griiss-type inequalities via fractional integration, J. Adv.
Res. Pure Math., 2 (2010), 31-38. https://doi.org/10.5373/jarpm.392.032110

7. Z.Dahmani, New inequalities in fractional integrals, Int. J. Nonlinear Sci., 9 (2010), 493-497.

8. W. Liu, Q. A. Ngo, V. N. Huy, Several interesting integral inequalities, J. Math. Inequ., 3 (2009),
201-212. https://doi.org/10.7153/jmi-03-20

9. K. S. Nisar, F. Qi, G. Rahman, S. Mubeen, M. Arshad, Some inequalities involving the extended
gamma function and the Kummer confluent hypergeometric k-function, J. Inequal. Appl., 2018
(2018), 135. https://doi.org/10.1186/s13660-018-1717-8

10. K. S. Nisar, G. Rahman, J. Choi, S. Mubeen, M. Arshad, Certain Gronwall type inequalities

associated with Riemann-Liouville k- and Hadamard k-fractional derivatives and their applications,
East Asian Math. J., 34 (2018), 249-263. https://doi.org/10.7858/eam;j.2018.018

11.M. Z. Sarikaya, Z. Dahmani, M. E. Kiris, F. Ahmad, (k, s)-Riemann-Liouville
fractional integral and applications, Hacet. J. Math. Stat., 45 (2016), 77-89.
https://doi.org/10.15672/HIMS.20164512484

12. E. Set, M. Tomar, M. Z. Sarikaya, On generalized Griiss type inequalities for k-fractional integrals,
Appl. Math. Comput., 269 (2015), 29-34. https://doi.org/10.1016/j.amc.2015.07.026

13. G. Rahman, K. S. Nisar, S. Mubeen, J. Choi, Certain Inequalities involving the
(k, p)-fractional integral operator, Far East J. Math. Sci., 103 (2018), 1879-1888.
https://doi.org/10.17654/MS103111879

14. M. Z. Sarikaya, H. Budak, Generalized Ostrowski type inequalities for local fractional integrals,
Proc. Am. Math. Soc., 145 (2017), 1527-1538. https://doi.org/10.1090/proc/13488

AIMS Mathematics Volume 7, Issue 8, 15563—-15583.


http://dx.doi.org/https://doi.org/10.1186/s13662-017-1126-1
http://dx.doi.org/https://doi.org/10.1016/S0034-4877(17)30059-9
http://dx.doi.org/https://doi.org/10.48550/arXiv.1602.03408
http://dx.doi.org/http://dx.doi.org/10.12785/pfda/010201
http://dx.doi.org/https://doi.org/10.5373/jarpm.392.032110
http://dx.doi.org/https://doi.org/10.7153/jmi-03-20
http://dx.doi.org/https://doi.org/10.1186/s13660-018-1717-8
http://dx.doi.org/https://doi.org/10.7858/eamj.2018.018
http://dx.doi.org/https://doi.org/10.15672/HJMS.20164512484
http://dx.doi.org/https://doi.org/10.1016/j.amc.2015.07.026
http://dx.doi.org/https://doi.org/10.17654/MS103111879
http://dx.doi.org/https://doi.org/10.1090/proc/13488

15582

15.E. Set, M. A. Noor, M. U. Awan, A. Gozpinar, Generalized Hermite-Hadamard type
inequalities 1involving fractional integral operators, J. Inequal. Appl., 169 (2017), 10.
https://doi.org/10.1186/s13660-017-1444-6

16. P. Agarwal, M. Jleli, M. Tomar, Certain Hermite-Hadamard type inequalities via generalized k-
fractional integrals, J. Inequal. Appl., 55 (2017), 10. https://doi.org/10.1186/s13660-017-1318-y

17. Z. Dahmani, New classes of integral inequalities of fractional order, Le Matematiche, 69 (2014),
237-247.

18. M. Aldhaifallah, M. Tomar, K. S. Nisar, S. D. Purohit, Some new inequalities for (k, s)-fractional
integrals, J. Nonlinear Sci. Appl., 9 (2016), 5374-5381. https://doi.org/10.22436/jnsa.009.09.06

19. G. Rahman, K. S. Nisar, F. Qi, Some new inequalities of the Griiss type for conformable fractional
integrals, AIMS Math., 3 (2018), 575-583. https://doi.org/10.3934/Math.2018.4.575

20. C. J. Huang, G. Rahman, K. S. Nisar, A. Ghaffar, F. Qi, Some inequalities of Hermite-Hadamard
type for k-fractional conformable integrals, Aust. J. Math. Anal. Appl., 16 (2019), 1-9.

21.FE Qi, G. Rahman, S. M. Hussain, W. S. Du, K. S. Nisar, Some inequalities of
Cebysev type for conformable k-fractional integral operators, Symmetry, 10 (2018), 614.
https://doi.org/10.3390/sym10110614

22. S. Mubeen, G. M. Habibullah, k-Fractional integrals and application, Int. J. Contemp. Math. Sci.,
7 (2012), 89-94.

23. M. Z. Sarikaya, H. Yildirim, On generalization of the Riesz potential, Indian J. Math. Math. Sci.,
3(2007), 231-235.

24. G. Rahman, A. Hussain, A. Ali, K. S. Nisar, R. N. Mohamed, More general weighted-
type fractional integral inequalities via Chebyshev functionals, Fractal Fract., 5§ (2021), 232.
https://doi.org/10.3390/fractalfract5040232

25. F. Jarad, T. Abdeljawad, K. Shah, On the weighted fractional operators of a function with respect
to another function, Fractals, 28 (2020), 204001 1. https://doi.org/10.1142/S0218348X20400113

26. G. Farid, Existence of an integral operator and its consequences in fractional and conformable
integrals, Open J. Math. Sci., 3 (2019), 210-216. https://doi.org/10.30538/oms2019.0064

27. M. Z. Sarikaya, F. Ertugral, On the generalized Hermite-Hadamard inequalities, Ann. Univ. Craiova
Math. Comput. Sci. Ser., 47 (2020), 193-213.

28. A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and application of fractional differential
equations, Elsevier: Amersterdam, 2006.

29. L. Akin, A new approach for the fractional integral operator in time scales with variable exponent
Lebesgue spaces, Fractal Fract., 5 (2021), 7. https://doi.org/10.3390/fractalfract5010007

30. L. Akin, On the fractional maximal delta integral type inequalities on time scales, Fractal Fract., 4
(2020), 26. https://doi.org/10.3390/fractalfract4020026

31. L. Akin, New principles of non-linear integral inequalities on time scales, Appl. Math. Nonlinear
Sci., 6 (2021), 1-8. https://doi.org/10.2478/amns.2021.1.00001

32. A. Younus, M. Asif, J. Alzabut, A. Ghaffar, K. S. Nisar, A new approach to interval-valued
inequalities, Adv. Differ. Equ., 319 (2020). https://doi.org/10.1186/s13662-020-02781-z

AIMS Mathematics Volume 7, Issue 8, 15563—-15583.


http://dx.doi.org/https://doi.org/10.1186/s13660-017-1444-6
http://dx.doi.org/https://doi.org/10.1186/s13660-017-1318-y
http://dx.doi.org/https://doi.org/10.22436/jnsa.009.09.06
http://dx.doi.org/https://doi.org/10.3934/Math.2018.4.575
http://dx.doi.org/https://doi.org/10.3390/sym10110614
http://dx.doi.org/https://doi.org/10.3390/fractalfract5040232
http://dx.doi.org/https://doi.org/10.1142/S0218348X20400113
http://dx.doi.org/https://doi.org/10.30538/oms2019.0064
http://dx.doi.org/https://doi.org/10.3390/fractalfract5010007
http://dx.doi.org/https://doi.org/10.3390/fractalfract4020026
http://dx.doi.org/https://doi.org/10.2478/amns.2021.1.00001
http://dx.doi.org/https://doi.org/10.1186/s13662-020-02781-z

15583

33.

34.

35.

36.
37.
38.
39.
40.

%% AIMS Press

M. M. Matar, A. A. Lubbad, J. Alzabut, On p-Laplacian boundary value problems
involving Caputo-Katugampula fractional derivatives, Math. Method. Appl. Sci., 2020,
https://doi.org/10.1002/mma.6534

W. Sudsutad, N. Jarasthitikulchai, C. Thaiprayoon, J. Kongson, J. Alzabut, Novel generalized
proportional fractional integral inequalities on probabilistic random variables and their
applications, Mathematics, 10 (2022), 573. https://doi.org/10.3390/math10040573

J. Alzabut, T. Abdeljawad, F. Jarad, W. Sudsutad, A Gronwall inequality via the
generalized proportional fractional derivative with applications, J. Inequal. Appl., 101 (2019).
https://doi.org/10.1186/s13660-019-2052-4

S. G. Samko, A. A. Kilbas, O. I. Marichev, Fractional integrals and derivatives, theory and
applications, Gordon and Breach Science: Yverdon, 1993.

U. N. Katugampola, New approach to a generalized fractional integral, Appl. Math. Comput., 218
(2011), 860-865. https://doi.org/10.1016/j.amc.2011.03.062

F. Jarad, E. Ugurlu, T. Abdeljawad, D. Baleanu, On a new class of fractional operators, Adv. Differ.
Equ., 2017 (2017), 247. https://doi.org/10.1186/s13662-017-1306-z

R. Khalil, M. A. Horani, A. Yousef, M. Sababheh, A new definition of fractional derivative, J.
Comput. Appl. Math., 264 (2014), 6570. https://doi.org/10.1016/j.cam.2014.01.002

T. U. Khan, M. A. Khan, Generalized conformable fractional integral operators, J. Comput. Appl.
Math., 346 (2018), 378-3809. https://doi.org/10.1016/j.cam.2018.07.018

©2022 the Author(s), licensee AIMS Press. This
is an open access article distributed under the

@ terms of the Creative Commons Attribution License

(http://creativecommons.org/licenses/by/4.0)

AIMS Mathematics Volume 7, Issue 8, 15563—-15583.


http://dx.doi.org/https://doi.org/10.1002/mma.6534
http://dx.doi.org/https://doi.org/10.3390/math10040573
http://dx.doi.org/https://doi.org/10.1186/s13660-019-2052-4
http://dx.doi.org/https://doi.org/10.1016/j.amc.2011.03.062
http://dx.doi.org/https://doi.org/10.1186/s13662-017-1306-z
http://dx.doi.org/https://doi.org/10.1016/j.cam.2014.01.002
http://dx.doi.org/https://doi.org/10.1016/j.cam.2018.07.018
http://creativecommons.org/licenses/by/4.0

	Introduction
	Main results
	Unified integral inequalities for a class of decreasing positive functions
	Special cases
	Conclusions

