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1. Introduction 

The use of probability distributions has been ages old in many areas of life. The probability 
distributions provide a way to model phenomenon in many fields that ranges from economics to 
finance and from physical sciences to astronomy. Various standard probability distributions are 
available that can be used to model various real-life phenomenon, but in several situations these 
standard probability distributions fail to capture the underlying trend of the data. In such situations, 
some extensions or generalizations are required. A method to extend any baseline probability 
distribution has been proposed by [1] by using the logit of beta distribution. Another simple method to 
extend any baseline distribution has been proposed by [2] and is known as the transmuted family of 
distribution. The cumulative distribution function (cdf) of this family of distributions is 

𝐹 (𝑥) = 𝐺(𝑥)[1 + 𝜆 − 𝜆𝐺(𝑥)],         (1) 

where 𝐺(𝑥) is the cdf of any baseline distribution and 𝜆 is the transmutation parameter such that −1 ≤

𝜆 ≤ 1. The transmuted family of distributions has been explored by various authors for different 
baseline distributions, see for example [3]. 

A general method of obtaining new families of distributions has been proposed by [4] by using 
two probability distributions. The proposed family of distributions is named as the T-X family of 
distributions. The cdf of the proposed family of distributions is 

𝐹 (𝑥) = ∫ 𝑟(𝑡)𝑑𝑡
[ ( )]

= 𝑅[𝑊{𝐺(𝑥)}]; 𝑥 ∈ ℝ,     (2) 

where 𝑟(𝑡) is density function of some random variable t with support on [𝑎, 𝑏] and 𝑊[𝐺(𝑥)] is some 
function of 𝐺(𝑥) such that 𝑊(0) → 𝑎 and 𝑊(1) → 𝑏. The T-X family of distributions gives rise to 
several other families of distributions as a special case. The transmuted family of distributions can be 
obtained from the T-X family of distribution by using 𝑟(𝑡) = 1 + 𝜆 − 2𝜆𝑡; 𝑡 ∈ [0,1] and 𝑊[𝐺(𝑥)] =

𝐺(𝑥) as shown by [5]. 
Several situations arise where we are interested in joint modeling of two or more than two random 

variables. For example, we might be interested in simultaneous modeling of computer memory and 
processing time or we might be interested in joint modeling of various characteristics of plants. In such 
situations the bivariate and/or the multivariate distributions are needed. The development of bivariate 
distributions has attracted various authors but in most of the situations the bivariate and/or multivariate 
distributions are not unique. A simple way of obtaining the bivariate distributions from the univariate 
marginals has been proposed by [6] and is known as the Gumbel bivariate distributions. The joint cdf 
of this family of distributions is  

𝐹 , (𝑥, 𝑦) = 𝐺 (𝑥)𝐺 (𝑦)[1 + 𝛾{1 − 𝐺 (𝑥)}{1 − 𝐺 (𝑦)}]; (𝑥, 𝑦) ∈ ℜ ,   (3) 

where 𝐺 (𝑥) and 𝐺 (𝑦) are marginal cdf’s of X and Y respectively and 𝛾 is a measure of association 
such that −1 ≤ 𝛾 ≤ 1. The bivariate Gumbel distribution (3) has been used by various authors to 
propose some new bivariate distributions, see for example [7–9]. 

Another method of generating the bivariate distributions from the univariate marginals is given 
by [10]. The joint cdf of this family of bivariate distributions is 
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𝐹(𝑥, 𝑦) =
( ) ( )

{ ( )}{ ( )}
; (𝑥, 𝑦) ∈ ℜ , −1 ≤ 𝛾 ≤ 1.

     (4) 

The bivariate family of distributions given in (4) includes the bivariate logistic distribution as a 
special case. The family of distributions given in (4) has not been studied in much details. The families 
of distributions given in (3) and (4) emerge by using the specialized technique of copulas. Further 
details about methods of generating bivariate and multivariate distributions by using copulas can be 
found in [11,12]. Some other bivariate families of distributions can be found in [13–16]. 

Recently, a new method has been proposed by [17] to obtain the bivariate families of distributions 
by obtaining the bivariate version of the T-X family of distributions. The joint cdf of the proposed 
bivariate T-X family of distributions is 

𝐹 , (𝑥, 𝑦) = ∫ ∫ 𝑟(𝑣 , 𝑣 )𝑑𝑣 𝑑𝑣
[ ( )][ ( )]

; 𝑎 < 𝑣 < 𝑏 ; 𝑎 < 𝑣 < 𝑏 ,  (5) 

where 𝑟(𝑣 , 𝑣 ) is some joint density function with support on [𝑎 , 𝑏 ] × [𝑎 , 𝑏 ]. Also, 𝑊 [𝐺 (𝑥)] 
and 𝑊 [𝐺 (𝑦)] are some absolutely continuous functions of 𝐺 (𝑥) and 𝐺 (𝑦) such that 𝑊 (0) → 𝑎 , 
𝑊 (1) → 𝑏 , 𝑊 (0) → 𝑎  and 𝑊 (1) → 𝑏 . A simpler version of the family (5) is given by [18] when 
the support of 𝑟(𝑣 , 𝑣 ) is [0,1] × [0,1]. The joint cdf in this case is given as  

𝐹 , (𝑥, 𝑦) = ∫ ∫ 𝑟(𝑣 , 𝑣 )𝑑𝑣 𝑑𝑣
( )( )

; 0 < 𝑣 < 1; 0 < 𝑣 < 1.    (6) 

It can be seen that the Gumbel bivariate distribution can be obtained from (6) by using 

𝑟(𝑣 , 𝑣 ) = 1 + 𝛾(1 − 2𝑣 )(1 − 2𝑣 ); (𝑣 , 𝑣 ) ∈ [0,1] . 

The family of distributions given in (6) has been used by [18] to propose a new bivariate family 
of distributions which is a simpler version of the Cambanis family of distributions, proposed by [19]. 
The proposed family of distributions has also been used by [20] to propose a bivariate transmuted Burr 
distribution by using the Burr-XII distribution, proposed by [21], as the baseline distribution. In this 
paper we have proposed a new bivariate family of distributions by using the bivariate T-X family of 
distributions given in (6). The research motivation and plan of this paper are given in the following. 

2. Research motivation and plan of paper 

It often happens that the joint modeling of two or more variables is required. For example, a 
computer scientist might be interested in joint modeling of processing time and processor speed. In 
such cases the bivariate and/or multivariate distributions are required. Not much work has been done 
in developing the bivariate and/or multivariate families of distributions and this research is motivated 
by this fact. The research will attempt to propose new bivariate and multivariate families of 
distributions for joint modeling of several random variables. The plan of the paper follows. 

The new bivariate family of distributions is proposed in Section 3 and some of its properties are 
studied in Section 4. Section 5 is dedicated to the multivariate extension of the proposed family 
alongside some of its properties. In Section 6, a new bivariate Weibull distribution has been proposed 
by using the new bivariate family of distributions. Some properties of the proposed bivariate Weibull 
distribution are also studied in the same section. This section also contains a brief about a new 
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multivariate Weibull distribution. Section 7 is reserved for simulation and real data applications of the 
proposed bivariate Weibull distribution. Conclusions and recommendations are given in Section 8. 

3. A new bivariate family of distributions 

The bivariate family of distributions given in (6) can be used to obtain new bivariate families of 
distributions for different choices of 𝑟(𝑣 , 𝑣 ) . Motivated by this fact, we have proposed a new 
bivariate family of distributions by using the following joint density of v1 and v2 

𝑟(𝑣 , 𝑣 ) = 1 + 𝜆 (1 − 2𝑣 ) + 𝜆 (1 − 2𝑣 ) + 𝜆 (1 − 4𝑣 𝑣 ); (𝑣 , 𝑣 ) ∈ [0,1]  

in (6) such that the new bivariate family of distribution will provide flexibility to model more complex 
bivariate data. The joint cdf of the proposed bivariate family of distributions is 

𝐹 , (𝑥, 𝑦) = ∫ ∫ {1 + 𝜆 (1 − 2𝑣 ) + 𝜆 (1 − 2𝑣 ) + 𝜆 (1 − 4𝑣 𝑣 )}𝑑𝑣 𝑑𝑣
( )( )

, 

which on simplification becomes 

𝐹 , (𝑥, 𝑦) = 𝐺 (𝑥)𝐺 (𝑦)[1 + 𝜆 {1 − 𝐺 (𝑥)} + 𝜆 {1 − 𝐺 (𝑦)} + 𝜆 {1 − 𝐺 (𝑥)𝐺 (𝑦)}], (7) 

for (𝑥, 𝑦) ∈ ℜ . The parameters (𝜆 , 𝜆 , 𝜆 )satisfy the conditions 

(𝜆 , 𝜆 , 𝜆 ) ∈ [−1,1]; 𝜆 + 𝜆 + 𝜆 ≥ −1; 𝜆 + 𝜆 + 3𝜆 ≤ 1; −1 ≤ 𝜆 + 𝜆 ≤ 1
  

and 

−1 ≤ 𝜆 + 𝜆 ≤ 1.
 

The joint cdf given in (7) can also be written as 

𝐹 , (𝑥, 𝑦) = 𝐺 (𝑥)𝐺 (𝑦)[1 + 𝜆 − 𝜆 𝐺 (𝑥) − 𝜆 𝐺 (𝑦) − 𝜆 𝐺 (𝑥)𝐺 (𝑦)], 

where 𝜆 = 𝜆 + 𝜆 + 𝜆 . The joint density function of the proposed bivariate family of distributions 
is easily obtained from (7) and is  

𝑓 , (𝑥, 𝑦) = 𝑔 (𝑥)𝑔 (𝑦)[1 + 𝜆 − 2𝜆 𝐺 (𝑥) − 2𝜆 𝐺 (𝑦) − 4𝜆 𝐺 (𝑥)𝐺 (𝑦)]; (𝑥, 𝑦) ∈ ℜ .
  (8) 

The proposed bivariate family of distributions can be used to obtain new bivariate distributions 
for different baseline distributions 𝐺 (𝑥) and 𝐺 (𝑦). The marginal families of distributions of X and 
Y can be easily obtained from (7) and are 

𝑓 (𝑥) = 𝑔 (𝑥)[1 + (𝜆 + 𝜆 ){1 − 2𝐺 (𝑥)}]&𝐹 (𝑥) = 𝐺 (𝑥)[1 + (𝜆 + 𝜆 ){1 − 𝐺 (𝑥)}]; 𝑥 ∈ ℜ
 

and 

𝑓 (𝑦) = 𝑔 (𝑦)[1 + (𝜆 + 𝜆 ){1 − 2𝐺 (𝑦)}]&𝐹 (𝑦) = 𝐺 (𝑦)[1 + (𝜆 + 𝜆 ){1 − 𝐺 (𝑦)}]; 𝑦 ∈ ℜ.
 

We can see that the marginal families of distributions are transmuted families. 
The conditional families of distributions for X and Y can be easily obtained and are 

𝑓 | (𝑥|𝑦) =
( )

( )
[1 + 𝜆 − 2𝜆 𝐺 (𝑥) − 2𝜆 𝐺 (𝑦) − 4𝜆 𝐺 (𝑥)𝐺 (𝑦)]; 𝑥 ∈ ℜ

   (9) 
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and 

𝑓 | (𝑦|𝑥) =
( )

( )
[1 + 𝜆 − 2𝜆 𝐺 (𝑥) − 2𝜆 𝐺 (𝑦) − 4𝜆 𝐺 (𝑥)𝐺 (𝑦)]; 𝑦 ∈ ℜ,

  (10) 

where 𝛥 (𝑦) = 1 + (𝜆 + 𝜆 ){1 − 2𝐺 (𝑦)} and 𝛥 (𝑥) = 1 + (𝜆 + 𝜆 ){1 − 2𝐺 (𝑥)}. The marginal 
and conditional distributions can be studied for any baseline distribution. 

4. Properties of the new bivariate family of distributions 

In this section we will discuss some properties of the proposed bivariate family of distributions. 
These properties are discussed in the following subsections. 

4.1. Product and ratio moments 

The moments of a random variable are useful in studying its properties. In case of joint 
distribution of two random variables the joint and ratio moments can be computed. The (r,s)th order 
joint moment of two random variables is defined as  

𝜇 ,
, = 𝐸(𝑋 𝑌 ) = ∫ ∫ 𝑥 𝑦 𝑓 , (𝑥, 𝑦)𝑑𝑥𝑑𝑦

∞

∞

∞

∞
. 

Now, using the joint density function of X and Y, given in (8), the (r,s)th order joint moment for 
the proposed bivariate family of distributions is 

𝜇 ,
, = ∫ ∫ 𝑥 𝑦 𝑔 (𝑥)𝑔 (𝑦)[1 + 𝜆 − 2𝜆 𝐺 (𝑥) − 2𝜆 𝐺 (𝑦) − 4𝜆 𝐺 (𝑥)𝐺 (𝑦)]𝑑𝑥𝑑𝑦

∞

∞

∞

∞
, 

which on simplification becomes 

𝜇 ,
, = (1 + 𝜆)𝜇 𝜇 − 𝜆 𝜇 ( : )𝜇 − 𝜆 𝜇 𝜇 ( : ) − 𝜆 𝜇 ( : )𝜇 ( : ),   (11) 

where 𝜇  is rth raw moment of X, 𝜇  is sth raw moment of Y, 𝜇 ( : ) is rth raw moment of larger 
observation in a sample of size 2 from 𝐺 (𝑥) and 𝜇 ( : ) is sth raw moment of larger observation in a 

sample of size 2 from 𝐺 (𝑦); see for example [22,23]. 
The ratio moments are also useful in some studies. The ratio moment for two random variables 

can be defined in two ways which are given as  

𝜇 , = 𝐸 = ∫ ∫ 𝑥 𝑦 𝑓 , (𝑥, 𝑦)𝑑𝑥𝑑𝑦
∞

∞

∞

∞
 and 𝜇 , = 𝐸 = ∫ ∫ 𝑥 𝑦 𝑓 , (𝑥, 𝑦)𝑑𝑥𝑑𝑦

∞

∞

∞

∞
. 

Using the joint distribution of X and Y the ratio moments 𝜇 ,  and 𝜇 ,  are 

𝜇 , = (1 + 𝜆)𝜇 𝜇 − 𝜆 𝜇 ( : )𝜇 − 𝜆 𝜇 𝜇 ( : ) − 𝜆 𝜇 ( : )𝜇 ( : ),   (12) 

and 
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𝜇 , = (1 + 𝜆)𝜇 𝜇 − 𝜆 𝜇 ( : )𝜇 − 𝜆 𝜇 𝜇 ( : ) − 𝜆 𝜇 ( : )𝜇 ( : ),   (13) 

where 𝜇  is rth inverse moment of X, 𝜇  is sth inverse moment of Y, 𝜇 ( : ) is rth inverse moment 
of larger observation in a sample of size 2 from 𝐺 (𝑥) and 𝜇 ( : ) is sth inverse moment of larger 

observation in a sample of size 2 from 𝐺 (𝑦). 

4.2. Conditional moments 

The conditional moments are useful in studying the properties of the conditional distributions. In 
case of two random variables, we can obtain the conditional moments of X given Y = y and conditional 
moments of Y given X = x. These moments are defined as 

𝜇 | = 𝐸(𝑋 |𝑦) = ∫ 𝑥 𝑓 | (𝑥|𝑦)𝑑𝑥
∞

∞
 and 𝜇 | = 𝐸(𝑌 |𝑥) = ∫ 𝑦 𝑓 | (𝑦|𝑥)𝑑𝑦

∞

∞
. 

Now, using the conditional distribution of X given Y = y, the rth conditional moment of X given 
Y = y is 

𝜇 | = 𝐸(𝑋 |𝑦) = ∫ 𝑥
( )

( )
[1 + 𝜆 − 2𝜆 𝐺 (𝑥) − 2𝜆 𝐺 (𝑦) − 4𝜆 𝐺 (𝑥)𝐺 (𝑦)]𝑑𝑥

∞

∞
, 

which on simplification becomes 

𝜇 | =
( )

(1 + 𝜆)𝜇 − 𝜆 𝜇 ( : ) − 2 𝜆 𝜇 + 𝜆 𝜇 ( : ) 𝐺 (𝑦) .    (14) 

Similarly, the sth conditional moment of Y given X = x can be obtained by using the conditional 
distribution of Y given X = x in  

𝜇 | = 𝐸(𝑌 |𝑥) = 𝑦 𝑓 | (𝑦|𝑥)𝑑𝑦
∞

∞  
and is given as 

𝜇 | =
( )

(1 + 𝜆)𝜇 − 𝜆 𝜇 ( : ) − 2 𝜆 𝜇 + 𝜆 𝜇 ( : ) 𝐺 (𝑥) .    (15) 

The conditional means and conditional variances can be easily obtained from (14) and (15). 

4.3. Bivariate reliability and hazard rate functions 

The bivariate reliability and hazard rate functions play important role in reliability analysis, see 
for example [24] and [25]. The bivariate reliability function is defined as 

𝑅(𝑥, 𝑦) = 1 − 𝐹 (𝑥) + 𝐹 (𝑦) − 𝐹 , (𝑥, 𝑦) . 

Now, using the joint and marginal cdf’s for the proposed bivariate family of distributions, the 
bivariate reliability function is given as 
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𝑅(𝑥, 𝑦) = 𝑆 (𝑥)𝑆 (𝑦)[1 − 𝑏𝐺 (𝑥) − 𝑑𝐺 (𝑦) − 𝜆 𝐺 (𝑥)𝐺 (𝑦)],    (16) 

where 𝑆 (𝑥) = 1 − 𝐺 (𝑥) , 𝑆 (𝑦) = 1 − 𝐺 (𝑦) , 𝑏 = 𝜆 + 𝜆  and 𝑑 = 𝜆 + 𝜆 . The bivariate 
reliability function can be computed for different baseline distributions and different values of the 
parameters. 

The bivariate hazard rate function is defined as, see [26], 

ℎ , (𝑥, 𝑦) = , ( , )

( , )
. 

The bivariate hazard rate function for the proposed bivariate family of distributions can be 
obtained by using (8) and (16) in above equation and is given as 

ℎ , (𝑥, 𝑦) =
( ) ( )[ ( ) ( ) ( ) ( )]

( ) ( )[ ( ) ( ) ( ) ( )]
,     (17) 

where b and d are defined earlier. 

4.4. The dependence measures 

The dependence measures are useful to see the strength of dependence between two random 
variables. Different dependence measures can be computed for a joint probability density function, see 
for example [11,12,27]. In the following we will discuss some important dependence measures for the 
new bivariate family of distributions. 

4.4.1. Kendall’s Tau coefficient 

The Kendall’s Tau coefficient is a useful measure to see the dependence between two continuous 
random variables. The coefficient is defined as 

𝜏 = 4 ∫ ∫ 𝐹 , (𝑥, 𝑦)𝑓 , (𝑥, 𝑦)𝑑𝑥𝑑𝑦
∞

∞

∞

∞
− 1. 

Using the joint density and distribution functions of the new bivariate family of distributions, we have 

𝜏 = 4 𝐺 (𝑥)𝐺 (𝑦)[1 + 𝜆 {1 − 𝐺 (𝑥)} + 𝜆 {1 − 𝐺 (𝑦)} + 𝜆 {1 − 𝐺 (𝑥)𝐺 (𝑦)}]
∞

∞

∞

∞
 

× 𝑔 (𝑥)𝑔 (𝑦)[1 + 𝜆 − 2𝜆 𝐺 (𝑥) − 2𝜆 𝐺 (𝑦) − 4𝜆 𝐺 (𝑥)𝐺 (𝑦)]𝑑𝑥𝑑𝑦 − 1. 

Making the transformation 𝑢 = 𝐺 (𝑥) and 𝑢 = 𝐺 (𝑦), we have 

𝜏 = 4 ∫ ∫ 𝑢 𝑢 [1 + 𝜆 (1 − 𝑢 ) + 𝜆 (1 − 𝑢 ) + 𝜆 (1 − 𝑢 𝑢 )](1 + 𝜆 − 2𝜆 𝑢 − 2𝜆 𝑢 −

4𝜆 𝑢 𝑢 )𝑑𝑢 𝑑𝑢 − 1. 

Solving the above double integral, the Kendall’s Tau coefficient for the new bivariate family of 
distributions is given as 

𝜏 = − [(𝜆 + 𝜆 )(𝜆 + 𝜆 ) + 𝜆 ].        (18) 
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The Kendall’s Tau coefficient does not depend upon the underlying base distribution. 

4.4.2. Spearman’s Rho coefficient 

The Spearman’s Rho coefficient is another useful dependence measure to see the dependence 
between two random variables. The coefficient is defined as 

𝜌 = 12 ∫ ∫ 𝐹 , (𝑥, 𝑦) − 𝐹 (𝑥)𝐹 (𝑦) 𝑓 (𝑥)𝑓 (𝑦)𝑑𝑥𝑑𝑦
∞

∞

∞

∞
. 

Using the joint and marginal cdf’s and the marginal density functions of X and Y for the new 
bivariate family of distributions, we have 

𝜌 = 12 [{𝐺 (𝑥)𝐺 (𝑦)[1 + 𝜆 {1 − 𝐺 (𝑥)} + 𝜆 {1 − 𝐺 (𝑦)} + 𝜆 {1 − 𝐺 (𝑥)𝐺 (𝑦)}]}
∞

∞

∞

∞
 

−{𝐺 (𝑥)[1 + (𝜆 + 𝜆 ){1 − 𝐺 (𝑥)}]}{𝐺 (𝑦)[1 + (𝜆 + 𝜆 ){1 − 𝐺 (𝑦)}]}] 

× 𝑔 (𝑥)[1 + (𝜆 + 𝜆 ){1 − 2𝐺 (𝑥)}]𝑔 (𝑦)[1 + (𝜆 + 𝜆 ){1 − 2𝐺 (𝑦)}]𝑑𝑥𝑑𝑦. 

Making the transformation 𝑢 = 𝐺 (𝑥), 𝑢 = 𝐺 (𝑦) and solving the resulting integral, we have 

𝜌 = − [(𝜆 + 𝜆 )(𝜆 + 𝜆 ) + 𝜆 ].        (19) 

We can see that the Spearman’s Rho will always be smaller than the Kendall’s Tau for the new 
bivariate family of distributions. 

4.4.3. The local dependence measure 

The local dependence measure for a bivariate family of distributions is defined by [27] as 

𝛾(𝑥, 𝑦) = 𝑙𝑛 𝑓 , (𝑥, 𝑦), 

which for the new bivariate family of distributions is 

𝛾(𝑥, 𝑦) = −
[( )( ) ] ( ) ( )

[ ( ) ( ) ( ) ( )]
,      (20) 

where 𝜆 = 𝜆 + 𝜆 + 𝜆 . We can see that the local dependence measure depends upon the baseline 
distribution. 

4.5. Random sample generation 

The random sample from the proposed bivariate family of distributions can be generated by using 
the conditional distribution approach. In this approach the random variate from a bivariate distribution 
is obtained by using the following steps: 
1) Generate a random observation from the marginal distribution of X, 𝐹 (𝑥), and call it x. 
2) Generate a random observation from the conditional distribution of Y given X = x, 𝐹 | (𝑦|𝑥), and 

call it y. 
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3) The pair  ,x y is a random observation from the joint distribution 𝐹 , (𝑥, 𝑦). 

Now, to use this method for the proposed bivariate family of distributions we have following steps: 
a) We first generate a random observation from the marginal distribution of X by solving 

𝐹 (𝑥) = 𝑢 𝑜𝑟𝐺 (𝑥)[1 + 𝑏{1 − 𝐺 (𝑥)}] = 𝑢 ; 𝑏 = 𝜆 + 𝜆 , 

for x where u1 is a uniform random number. Solving above equation for x, a random observation from 
the marginal distribution of X is 

𝑥 = 𝐺 (1 + 𝑏) ± (1 + 𝑏) − 4𝑏𝑢 = 𝐺 (𝑢∗),     (21) 

where 𝑢∗ = (1 + 𝑏) ± (1 + 𝑏) − 4𝑏𝑢  and choice between larger or smaller root is done to 

have an admissible solution. 
b) To apply the second stem, we first obtain the conditional cdf of Y given X = x as 

𝐹 | (𝑦|𝑥) =
1

𝛥 (𝑥)
𝑔 (𝑦)[1 + 𝜆 − 2𝜆 𝐺 (𝑥) − 2𝜆 𝐺 (𝑦) − 4𝜆 𝐺 (𝑥)𝐺 (𝑦)]𝑑𝑦

∞
 

=
𝐺 (𝑦)

𝛥 (𝑥)
[1 + 𝜆 − 2𝜆 𝐺 (𝑥) − 𝜆 𝐺 (𝑦) − 2𝜆 𝐺 (𝑥)𝐺 (𝑦)]; 𝜆 = 𝜆 + 𝜆 + 𝜆 .

 

Now, the random observation from the conditional distribution of Y given X = x can be obtained 
by solving 

𝐺 (𝑦)

𝛥 (𝑥)
[1 + 𝜆 − 2𝜆 𝐺 (𝑥) − 𝜆 𝐺 (𝑦) − 2𝜆 𝐺 (𝑥)𝐺 (𝑦)] = 𝑢

 

for y where u2 is another uniform random observation. The solution of above equation for y is 

𝑦 = 𝐺
( )

𝜆 (𝑥) ± 𝜆 (𝑥) − 4𝑢 𝛥 (𝑥)𝜆 (𝑥) = 𝐺 (𝑢∗),    (22) 

where 𝑢∗ =
( )

𝜆 (𝑥) ± 𝜆 (𝑥) − 4𝑢 𝛥 (𝑥)𝜆 (𝑥) , 𝜆 (𝑥) = 1 + 𝜆 − 2𝜆 𝐺 (𝑥) 

and 𝜆 (𝑥) = 𝜆 + 2𝜆 𝐺 (𝑥). 
c) The pair  ,x y  given in (21) and (22) is a random observation from the new bivariate family of 

distributions. 
d) Repeat steps 1–3 n times to obtain a random sample of size n from 𝐹 , (𝑥, 𝑦) given in (7). 

4.6. Stress-strength reliability analysis 

A stress-strength reliability analysis is very useful in engineering and survival analysis, see for 
example [28]. The reliability of the stress-strength model is computed as  R P Y X   where Y is 

stress and X is strength. Now, if the stress (Y) and strength (X) are dependent and have joint bivariate 
distribution given in (8) then the reliability is given as 

𝑅 = 𝑃(𝑌 < 𝑋) = ∫ ∫ 𝑔 (𝑥)𝑔 (𝑦)[1 + 𝜆 − 2𝜆 𝐺 (𝑥) − 2𝜆 𝐺 (𝑦) − 4𝜆 𝐺 (𝑥)𝐺 (𝑦)]𝑑𝑦𝑑𝑥
∞

, 

assuming that both X and Y are positive random variables. Simplifying above integral, the stress-
strength reliability of two components X and Y having joint distribution given in (8) is 
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𝑅 = ∫ 𝑔 (𝑥)𝐺 (𝑥)[(1 + 𝜆) − 2𝜆 𝐺 (𝑥) − 𝜆 𝐺 (𝑥) − 2𝜆 𝐺 (𝑥)𝐺 (𝑥)]𝑑𝑥
∞

.   (23) 

Further, if X and Y have identical distributions, that is if 𝐺 (𝑥) = 𝐺 (𝑥) = 𝐺(𝑥) then the reliability is 

𝑅 = ∫ 𝑔(𝑥)𝐺(𝑥)[(1 + 𝜆) − 2𝜆 𝐺(𝑥) − 𝜆 𝐺(𝑥) − 2𝜆 𝐺 (𝑥)]𝑑𝑥
∞

, 

which on simplification becomes 

𝑅 = (3 − 𝜆 + 𝜆 ).         (24) 

We can see that the reliability in case of identical distributions of X and Y does not depend upon 
the baseline distribution. 

4.7. Parameters estimation 

In this section we will discuss the maximum likelihood estimation of the parameters for the new 
bivariate family of distributions under the assumption that all the parameters of baseline distributions 
𝐺 (𝑥) and 𝐺 (𝑦) are known. For this, suppose 𝑋 , 𝑋 , … , 𝑋  is a random sample of size n from the 
bivariate transmuted family of distributions. The likelihood function is 

𝐿(𝜆 , 𝜆 , 𝜆 ; 𝒙) = ∏ 𝑔 (𝑥 )𝑔 (𝑦 )[1 + 𝜆 − 2𝜆 𝐺 (𝑥 ) − 2𝜆 𝐺 (𝑦 ) − 4𝜆 𝐺 (𝑥 )𝐺 (𝑦 )], 

where 𝜆 = 𝜆 + 𝜆 + 𝜆 . The log-likelihood function is 

ℓ = ∑ 𝑙𝑛 𝑔 (𝑥 ) + ∑ 𝑙𝑛 𝑔 (𝑦 ) + ∑ 𝑙𝑛[1 + 𝜆 − 2𝜆 𝐺 (𝑥 ) − 2𝜆 𝐺 (𝑦 ) −

4𝜆 𝐺 (𝑥 )𝐺 (𝑦 )].       (25) 

The derivatives of log-likelihood function with respect to 𝜆 , 𝜆  and 𝜆 are 

ℓ
= ∑

( )

[ ( ) ( ) ( ) ( )]
,     (26) 

ℓ
= ∑

( )

[ ( ) ( ) ( ) ( )]
     (27) 

and 

ℓ
= ∑

( ) ( )

[ ( ) ( ) ( ) ( )]
.      (28) 

The maximum likelihood estimators of 𝜆 , 𝜆  and 𝜆  are obtained by equating (26)–(28) to zero 
and numerically solving the resulting equations. 

In the following section we will give a multivariate extension of the bivariate family of 
distributions discussed above. 

5. A new multivariate family of distributions 

A multivariate extension of the bivariate T-X family of distributions, given in (5), is 
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𝐹𝒙(𝒙) = ∫ ⋯ ∫ 𝑟 𝑣 , … , 𝑣 𝑑𝑣 ⋯ 𝑑𝑣
[ ( )]

; 𝑎 < 𝑣 < 𝑏 , 𝑖 = 1,2, … , 𝑝, 

where 𝒙 = 𝑋 , 𝑋 , … , 𝑋  is a vector of p random variables and 𝑟 𝑣 , … , 𝑣  is any multivariate 
distribution with support on [𝑎 , 𝑏 ] × ⋯ × 𝑎 , 𝑏 . A simpler version of above family has the 
following form when domain of 𝑟 𝑣 , … , 𝑣  is on [0,1]  

𝐹𝒙(𝒙) = ∫ ⋯ ∫ 𝑟 𝑣 , … , 𝑣 𝑑𝑣 ⋯ 𝑑𝑣
( )

; 0 < 𝑣 < 1; 𝑖 = 1,2, … , 𝑝.   (29) 

The multivariate T-X family of distributions, given in (29), can be used to obtain new multivariate 
families of distributions for suitable choices of 𝑟 𝑣 , … , 𝑣 . We have proposed a new multivariate 
family of distributions by using 

𝑟 𝑣 , … , 𝑣 = 1 + 𝜆 (1 − 2𝑣 ) + 𝜆 1 − 2 𝑣  

in (29). The joint cdf of the new multivariate family of distribution is 

𝐹𝒙(𝒙) = ⋯ 1 + 𝜆 (1 − 2𝑣 ) + 𝜆 1 − 2 𝑣 𝑑𝑣 ⋯ 𝑑𝑣
( )

 

which on simplification becomes 

𝐹𝒙(𝒙) = ∏ 𝐺 (𝑥 ) 1 + ∑ 𝜆 {1 − 𝐺 (𝑥 )} + 𝜆 1 − ∏ 𝐺 (𝑥 ) ; 𝒙 ∈ ℜ ,  (30) 

where 𝐺 (𝑥 ) is marginal cdf of ith random variable Xi and 𝜆 , 𝜆 , … , 𝜆 are the parameters such 

that ∑ 𝜆 ≥ −1 , ∑ 𝜆 + (𝑝 + 1)𝜆 ≤ 1 , 𝜆 ∈ [−1,1] and −1 ≤ 𝜆 + 𝜆 ≤ 1  for 𝑖 =

1,2, … , 𝑝. The joint density function of the new multivariate family of distributions is 

𝑓𝒙(𝒙) = ∏ 𝑔 (𝑥 ) 1 + 𝜆 − 2 ∑ 𝜆 𝐺 (𝑥 ) − 2 𝜆 ∏ 𝐺 (𝑥 ) ; 𝒙 ∈ ℜ ,  (31) 

where 𝑔 (𝑥) is the density function corresponding to 𝐺 (𝑥 ) and 𝜆 = ∑ 𝜆 . It can be easily seen 
that the marginal density function of any random variable, Xi, for the joint density (31) is same as 
given in (1) with parameter 𝜆 + 𝜆 . We can also see that the joint marginal distribution for any 
pair of random variables, (𝑋 , 𝑋 ), for the joint density (31) is the same as given in (8). 

The marginal density function of a subset of random variables 𝒙 = (𝑋 , 𝑋 , … , 𝑋 )for the new 
multivariate family of distributions is readily written from (31) as 

𝑓𝒙 (𝒙 ) = ∏ 𝑔 (𝑥 ) 1 + 𝜆 − 2 ∑ 𝜆 𝐺 (𝑥 ) − 2 𝜆 ∏ 𝐺 (𝑥 ) ; 𝒙 ∈ ℜ .  (32) 

The conditional density function of any random variable Xi given the information of all other 
random variables is easily obtained by using 

𝑓 |𝒙( )
𝑥 |𝒙( ) = 𝒙(𝒙)

𝒙( )
𝒙( )

, 
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where 𝒙( ) is the random vector x without Xi. The conditional distribution of Xi given the information 
of all other variables for the proposed multivariate family of distributions is 

𝑓 |𝒙( )
𝑥 |𝒙( ) =

( )

𝒙( )
1 + 𝜆 − 2 ∑ 𝜆 𝐺 (𝑥 ) − 2 𝜆 ∏ 𝐺 (𝑥 ) ; 𝑥 ∈ ℜ,   (33) 

where 𝛥 𝒙( ) = 1 + ∑ 𝜆ℎ{1 − 2𝐺ℎ(𝑥ℎ)}ℎ + 𝜆 1 − 2 ∏ 𝐺ℎ(𝑥ℎ)ℎ . 

The joint conditional distribution of any pair of random variables (𝑋 , 𝑋 ) given the information 
of all other variables is obtained by using 

𝑓 , |𝒙( , )
𝑥 , 𝑥 |𝒙( , ) =

𝑓𝒙(𝒙)

𝑓𝒙( , )
𝒙( , )

,

 

where 𝒙( , ) is the random vector x without Xi and Xm. The joint conditional distribution of (𝑋 , 𝑋 ) 
given the information of all other variables for the proposed multivariate family of distributions is 

𝑓 , |𝒙( , )
𝑥 , 𝑥 |𝒙( , ) =

( ) ( )

, 𝒙( , )
1 + 𝜆 − 2 ∑ 𝜆 𝐺 (𝑥 ) − 2 𝜆 ∏ 𝐺 (𝑥 ) , (34) 

for (𝑥 , 𝑥 ) ∈ ℜ where 

𝛥 , 𝒙( , ) = 1 + 𝜆ℎ{1 − 2𝐺ℎ(𝑥ℎ)}

ℎ ,

+ 𝜆 1 − 2 𝐺ℎ(𝑥ℎ)

ℎ ,

.

 

In general, the conditional distribution of one subset of variables x1 given the information of other 
subset of variables x2 for the new multivariate family of distributions is 

𝑓𝒙 |𝒙 (𝒙 |𝒙 ) =
(𝒙 )

{∏ 𝑔 (𝑥 )} 1 + 𝜆 − 2 ∑ 𝜆 𝐺 (𝑥 ) − 2 𝜆 ∏ 𝐺 (𝑥 ) ,  (35) 

where 𝛥 (𝒙 ) = 1 + ∑ 𝜆ℎ{1 − 2𝐺ℎ(𝑥ℎ)}ℎ + 𝜆 1 − 2 ∏ 𝐺ℎ(𝑥ℎ)ℎ . 
Some properties of the new multivariate family of distributions are given in the following. 

5.1. Marginal, joint and conditional moments 

The marginal and joint moments for the proposed multivariate family of distributions can be 
easily obtained in the same way as discussed above in the case of the new bivariate family of 
distributions. The conditional moments of a single random variable given the information of all other 
variables can be obtained by using 

𝜇 |𝒙( )
= 𝐸 𝑋 𝒙( ) = ∫ 𝑥 𝑓 |𝒙( )

𝑥 |𝒙( ) 𝑑𝑥
∞

∞
. 

Now, using the conditional distribution of xi given the information of all other variables from (33), 
we have 
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𝜇 |𝒙( )
=

1

𝛥 𝒙( )

𝑥 𝑔 (𝑥 ) 1 + 𝜆 − 2 𝜆 𝐺 (𝑥 ) − 2 𝜆 𝐺 (𝑥 ) 𝑑𝑥
∞

∞
 

or 

𝜇 |𝒙( )
=

𝒙( )
1 + 𝜆 − 2 ∑ 𝜆ℎ𝐺ℎ(𝑥ℎ)ℎ 𝜇 − 𝜆 − 2 𝜆 ∏ 𝐺ℎ(𝑥ℎ)ℎ 𝜇 ( : ) . (36) 

The joint conditional moments of (𝑋 , 𝑋 ) given the information of other random variables can be 
obtained by using 

𝜇 ,
,

= ∫ ∫ 𝑥 𝑥 𝑓 , |𝒙( , )
𝑥 , 𝑥 |𝒙( , ) 𝑑𝑥 𝑑𝑥

∞

∞

∞

∞
. 

Now, using the joint conditional distribution from (34), we have 

𝜇 ,
,

=
1

𝛥 , 𝒙( , )

𝑥 𝑥 𝑔 (𝑥 )𝑔 (𝑥 ) 1 + 𝜆 − 2 𝜆 𝐺 (𝑥 )
∞

∞

∞

∞

− 2 𝜆 𝐺 (𝑥 ) 𝑑𝑥 𝑑𝑥 .
 

Simplifying above integral, the joint conditional moment of (𝑋 , 𝑋 ) given the information of other 
random variables is 

𝜇 ,
,

=
1

𝛥 , 𝒙( , )

1 + 𝜆 − 2 𝜆ℎ𝐺ℎ(𝑥ℎ)

ℎ ,

𝜇 𝜇 − 𝜆 𝜇 ( : )𝜇 − 𝜆 𝜇 𝜇 ( : ) 

−2 𝜆 𝜇 ( : )𝜇 ( : ) ∏ 𝐺 (𝑥 )ℎ , .      (37) 

The conditional means, variances and conditional covariances can be obtained from (36) and (37). 

5.2. The multivariate dependence measures 

In the following we have given the multivariate dependence measures for the proposed multivariate 
family of distributions. We have discussed two multivariate dependence measures which are the Kendall’s 
Tau and Spearman’s Rho. These measures are given in the following. 

5.2.1. Kendall’s Tau coefficient 

The multivariate extension of Kendall’s Tau coefficient is given as see [29], 

𝜏 = ∫ ⋯ ∫ 𝐹𝒙(𝒙)𝑓𝒙(𝒙)𝑑𝑥 … 𝑑𝑥
∞

∞

∞

∞
− . 
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Now, using the joint distribution and density functions of the proposed multivariate family of 
distributions, from (30) and (31), we have 

𝜏 =
2

2 − 1
⋯ 𝐺 (𝑥 ) 1 + 𝜆 {1 − 𝐺 (𝑥 )} + 𝜆 1 − 𝐺 (𝑥 )

∞

∞

∞

∞
 

× 𝑔 (𝑥 ) 1 + 𝜆 − 2 𝜆 𝐺 (𝑥 ) − 2 𝜆 𝐺 (𝑥 ) 𝑑𝑥 … 𝑑𝑥 −
1

2 − 1
. 

Making the transformation 𝐺 (𝑥 ) = 𝑢 , we have  

𝜏 =
2

2 − 1
⋯ 𝑢 1 + 𝜆 (1 − 𝑢 ) + 𝜆 1 − 𝑢  

× 1 + 𝜆 (1 − 𝑢 ) − 2 𝜆 𝑢 𝑑𝑥 … 𝑑𝑥 −
1

2 − 1
. 

Solving above multiple integrals, the Kendall’s Tau coefficient for the proposed multivariate family 
of distributions is 

𝜏 = − ∑ ∑ 𝜆 𝜆 − ∑ 𝜆 −
×

𝜆 1 + 𝜆 . (38) 

We can see that for p = 2 the expression (38) reduces to (18) as it should be. 

5.2.2. Spearman’s Rho coefficient 

The multivariate extension of Spearman’s Rho coefficient is given as see [30], 

𝜌 =
2 (𝑝 + 1)

2 − (𝑝 + 1)
⋯ 𝐹𝒙(𝒙) 𝑓 (𝑥 ) 𝑑𝑥 … 𝑑𝑥

∞

∞

∞

∞
−

(𝑝 + 1)

2 − (𝑝 + 1)
.

 
Now, using the joint distribution function and marginal density functions of individual variables we 

have 

𝜌 =
2 (𝑝 + 1)

2 − (𝑝 + 1)
⋯ 𝐺 (𝑥 ) 1 + 𝜆 {1 − 𝐺 (𝑥 )} + 𝜆 1 − 𝐺 (𝑥 )

∞

∞

∞

∞
 

× 𝑔 (𝑥 ) 1 + 𝜆 + 𝜆 [1 − 2𝐺 (𝑥 )] 𝑑𝑥 … 𝑑𝑥 −
(𝑝 + 1)

2 − (𝑝 + 1)
⋅ 

Making the transformation 𝑢 = 𝐺 (𝑥 ), we have 
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𝜌 =
2 (𝑝 + 1)

2 − (𝑝 + 1)
⋯ 𝑢 1 + 𝜆 (1 − 𝑢 ) + 𝜆 1 − 𝑢  

× 1 + 𝜆 + 𝜆 (1 − 2𝑢 ) 𝑑𝑥 … 𝑑𝑥 −
(𝑝 + 1)

2 − (𝑝 + 1)
⋅ 

Simplifying above multiple integral, the Spearman’s Rho for the proposed multivariate family of 
distributions is 

𝜌 =
[ ( )]

∏ 3 − 𝜆 − 𝜆 1 + ∑ − 3 .   (39)

  It can be easily seen that (39) reduces to (19) for p = 2 as it should be. 

5.3. Parameters estimation 

In the following we have given maximum likelihood estimator for parameters of the proposed 
multivariate family of distributions when all the parameters of the base distribution are known. For this, 
we assume that a random sample of n vector observations is available from the joint density function (31). 
The likelihood function is 

𝐿(𝝀; 𝒙 , 𝒙 , … , 𝒙 ) = ∏ ∏ 𝑔 𝑥 ∏ 1 + ∑ 𝜆 1 − 2𝐺 𝑥 + 𝜆 1 − 2 ∏ 𝐺 𝑥 , 

where 𝝀 = 𝜆 , 𝜆 , … , 𝜆 is vector of unknown parameters. The log of likelihood function is 

ℓ(𝝀) = ∑ ∑ 𝑙𝑛 𝑔 𝑥 + ∑ 𝑙𝑛 1 + ∑ 𝜆 1 − 2𝐺 𝑥 + 𝜆 1 − 2 ∏ 𝐺 𝑥 . 

The derivatives of log of likelihood function for 𝜆 ; 𝑖 = 1,2, … , 𝑝 and 𝜆 are 

ℓ(𝝀)
= ∑

∑ ∏
; 𝑖 = 1,2, … , 𝑝   (40:1–p) 

and 

ℓ(𝝀)
= ∑

∏

∑ ∏
.    (41) 

The maximum likelihood estimators can be obtained by numerically solving above (𝑝 + 1) equations. 
We will now study a special case of the proposed bivariate and multivariate families of distributions 

for Weibull baseline distribution. 

6. New bivariate and multivariate Weibull distributions 

In this section we have discussed new bivariate and multivariate Weibull distributions by using 
Weibull baseline distribution, proposed by [31], in the new bivariate and multivariate families of 
distributions proposed above. 
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6.1. A new bivariate Weibull distribution 

In the following we have given a new bivariate Weibull distribution by using following baseline 
Weibull distributions for X and Y in (7) and (8) 

𝐺 (𝑥) = 1 − 𝑒 ; 𝑥, 𝜃 , 𝛼 > 0 and 𝐺 (𝑦) = 1 − 𝑒 ; 𝑦, 𝜃 , 𝛼 > 0. 

The joint distribution function of the new bivariate Weibull distribution is 

𝐹 , (𝑥, 𝑦) = 1 − 𝑒 1 − 𝑒 1 + 𝑏𝑒 + 𝑑𝑒 − 𝜆 𝑒 , (42) 

where (𝑥, 𝑦, 𝛼 , 𝛼 , 𝜃 , 𝜃 ) > 0. Also (𝜆 , 𝜆 , 𝜆 ) ∈ [−1,1] , 𝜆 + 𝜆 + 𝜆 ≥ −1, 𝜆 + 𝜆 + 3𝜆 ≤ 1 , 
−1 ≤ 𝜆 + 𝜆 ≤ 1and −1 ≤ 𝜆 + 𝜆 ≤ 1. The density function corresponding to (42) is 

𝑓 , (𝑥, 𝑦) =
𝛼 𝛼

𝜃 𝜃
𝑥 𝑦 𝑒 𝑒 1 + 𝜆 2𝑒 − 1 + 𝜆 2𝑒 − 1  

−𝜆 3 − 4𝑒 − 4𝑒 + 4𝑒 ; 𝑥, 𝑦 > 0, 

or 

𝑓 , (𝑥, 𝑦) = 𝑥 𝑦 𝑒 𝑒 𝛥 (𝑥, 𝑦); 𝑥, 𝑦 > 0,   (43) 

where 𝛥 (𝑥, 𝑦) = 1 − 𝜆 + 2𝜆 𝑒 + 2𝜆 𝑒 − 2𝜆 1+2e , 𝜆 =

(𝜆 + 2𝜆 ) and 𝜆 = (𝜆 + 2𝜆 ). The marginal distributions of X and Y are immediately written from 
(43) as 

𝑓 (𝑥) =
𝛼

𝜃
𝑥 𝑒 1 − (𝜆 + 𝜆 ) + 2(𝜆 + 𝜆 )𝑒 ; 𝑥 > 0 

and  

𝑓 (𝑦) = 𝑦 𝑒 1 − (𝜆 + 𝜆 ) + 2(𝜆 + 𝜆 )𝑒 ; 𝑦 > 0. 

The conditional distributions of X given Y = y and of Y given X = x are readily obtained 
from (9) and (10) and are 

𝑓 | (𝑥|𝑦) =
( )

𝑥 𝑒 𝛥 (𝑥, 𝑦)     (44) 

and 
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𝑓 | (𝑦|𝑥) =
( )

𝑦 𝑒 𝛥 (𝑥, 𝑦),     (45) 

where 𝛥 (𝑥) = 1 + 𝑏 − 2𝑏𝑒  and 𝛥 (𝑦) = 1 + 𝑑 − 2𝑑𝑒 . The conditional 
distributions are useful in studying the conditional behavior of one random variable given the information 
of other. 

Some plots of the joint density function are given in Table 1 below for 𝜃 = 𝜃 = 1 and for different 
combinations of other parameters. 

Table 1. The density function of new bivariate Weibull distribution. 

 1 20.5, 0.5    1 20.5, 1.5    1 21.5, 0.5    1 21.5, 1.5    

1
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2

3

0.50

0.35
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1

2

3

0.35

0.45

0.45





 

 

 

    

From above graph we can see that the shape is controlled by parameters 𝛼 and 𝛼 . The joint hazard 
rate function of the distribution is immediately written from (17) as 

ℎ , (𝑥, 𝑦) =
( , )

∗ ( , )
,        (46) 

where 𝛥∗ (𝑥, 𝑦) = 1 − 𝜆 + 𝜆 𝑒 + 𝜆 𝑒 − 𝜆 2+e . The hazard rate 

function can be plotted for different combinations of the parameters. 
Some important properties of the proposed bivariate Weibull distribution are in the following. 

6.1.1. The joint and conditional moments 

We have seen that expressions for joint, marginal and conditional moments of the new bivariate family 
of distributions involve moments of baseline distribution and moments of larger observation in a sample 
of size 2 from the baseline distribution. It is known that the rth moment and rth moment of larger 
observation in a sample of size 2 from Weibull distribution with density 
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𝑓(𝑤) =
𝛼

𝜃
𝑤 𝑒 ; 𝑤 > 0 

are given as 

𝜇 = 𝜃 𝛤 1 +  and 𝜇 ( : ) = 2𝜃 𝛤 + 1 1 − 2 . 

Using these expressions in (11) the joint moments for the new bivariate Weibull distribution is 

𝜇 ,
, = 𝜃 𝜃 𝛤 1 + 𝛤 1 + 1 − 𝜆 + 𝜆 2 + 𝜆 2 − 𝜆 2 + 2 . (47) 

Again, using simple moments and moments of order statistics of Weibull distribution in (14) and (15), 
the conditional moments for the new Weibull distribution are 

𝜇 | =
( )

𝜃 𝛤 1 + 1 − 𝜆 + 𝜆 2 + 2𝜆 𝑒 − 2𝜆 1 + 2 𝑒  (48) 

and 

𝜇 | =
( )

𝜃 𝛤 1 + 1 − 𝜆 + 𝜆 2 + 2𝜆 𝑒 − 2𝜆 1 + 2 𝑒 . (49) 

The conditional means and conditional variances can be obtained from (48) and (49). 

6.1.2. The dependence measures 

We have discussed different dependence measures in Section 4.4. We have seen that two of the 
dependence measures, namely Kendall’s Tau and Spearman’s Rho do not depend upon a specific baseline 
distribution. We have also seen that the local dependence measure, given (20), depends upon a specific 
distribution. The local dependence measure for the new bivariate Weibull distribution can be obtained by 
using the density and distribution functions of Weibull random variables in (20) and is 

𝛾(𝑥, 𝑦) = −
[( )( ) ]

( , )
.    (50) 

The local dependence measure can be computed for specific values of the parameters. We can see that 
𝛾(𝑥, 𝑦) is positive if (𝜆 + 𝜆 )(𝜆 + 𝜆 ) < −𝜆  and is negative otherwise. 

6.1.3. Stress-strength reliability 

In the following we have obtained the stress-strength reliability if the stress (Y) and strength (X) have 
joint bivariate distribution given in (43). We have seen that the stress-strength reliability of for the new 
bivariate family of distributions is given in (23) as 
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𝑅 = ∫ 𝑔 (𝑥)𝐺 (𝑥)[(1 + 𝜆) − 2𝜆 𝐺 (𝑥) − 𝜆 𝐺 (𝑥) − 2𝜆 𝐺 (𝑥)𝐺 (𝑥)]𝑑𝑥
∞

. 

Now, using 𝐺 (𝑥) = 1 − 𝑒 and 𝐺 (𝑥) = 1 − 𝑒 , the reliability for the new bivariate 
Weibull distribution is 

𝑅 =
𝛼

𝜃
𝑥 𝑒 1 − 𝑒 (1 + 𝜆) − 2𝜆 1 − 𝑒 − 𝜆 1 − 𝑒

∞

 

−2𝜆 1 − 𝑒 1 − 𝑒 𝑑𝑥 

or 

𝑅 =
𝛼

𝜃
𝑥 𝑒 1 − 𝑒 (1 − 𝜆 − 𝜆 ) − 2𝜆 𝑒 − 𝜆 𝑒

∞

 

+2𝜆 𝑒 + 2𝜆 𝑒 − 2𝜆 𝑒 𝑒 𝑑𝑥. 

Simplifying the above integral, the reliability coefficient for the new bivariate Weibull distribution is 

𝑅 = 𝜆 − 𝜆 +
𝜃

𝜃
𝛤 1 +

𝛼 𝑟

𝛼

(−2)

𝑟!
𝜆 − 2𝜆 + 𝜆 2

∞

 

−
( )

!
𝜆 − 2𝜆 + 𝜆 2 − 𝜆 2 .      (51) 

The reliability coefficient can be computed for specific values of the parameters. 

6.1.4. Random Sample Generation 

A random sample from the proposed bivariate Weibull distribution can be obtained by using the 
algorithm given in Section 4.5. An algorithm to generate a random sample from the proposed bivariate 
Weibull distribution is listed below. 
1) Generate a random observation from the marginal distribution of X by using 

𝑥 = 𝜃 [− 𝑙𝑛(1 − 𝑢∗)] ,        (52) 

where 𝑢∗ = (1 + 𝑏) ± (1 + 𝑏) − 4𝑏𝑢  and choice between larger or smaller root is done to 

have an admissible solution. 
2) Generate a random observation from the conditional distribution of Y given X = x by using 

𝑦 = 𝜃 [− 𝑙𝑛(1 − 𝑢∗)] ,        (53) 
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where 𝑢∗ =
( )

𝜆 (𝑥) ± 𝜆 (𝑥) − 4𝑢 𝛥 (𝑥)𝜆 (𝑥) , 𝜆 (𝑥) = 1 + 𝜆 − 2𝜆 1 − 𝑒 , 𝜆 =

𝜆 + 𝜆 + 𝜆  and 𝜆 (𝑥) = 𝜆 + 2𝜆 1 − 𝑒 . 

3) The pair (x,y) in (52) and (53) is a random observation from the proposed bivariate Weibull 
distribution. 

6.1.5. Parameter estimation 

In the following we will discuss maximum likelihood estimation for parameters of the new bivariate 
Weibull distribution. For this suppose that a random sample of n observations is available from the joint 
density given in (43). The likelihood function is 

𝐿(𝒙, 𝒚; 𝜽) =
𝛼 𝛼

𝜃 𝜃
𝑥 𝑦 𝑒

∑
𝑒

∑
𝛥 𝑥 , 𝑦 . 

where 𝜽 = (𝛼 , 𝛼 , 𝜃 , 𝜃 , 𝜆 , 𝜆 , 𝜆 ) and 

𝛥 𝑥 , 𝑦 = 1 − 𝜆 + 2𝜆 𝑒 + 2𝜆 𝑒 − 2𝜆 1+2e . 

The log of likelihood function is 

ℓ(𝜽) = 𝑛 𝑙𝑛 𝛼 + 𝑛 𝑙𝑛 𝛼 − 𝑛𝛼 𝑙𝑛 𝜃 − 𝑛𝛼 𝑙𝑛 𝜃 + (𝛼 − 1) 𝑙𝑛 𝑥 + (𝛼 − 1) 𝑙𝑛 𝑦  

− ∑ − ∑ + ∑ 𝑙𝑛 𝛥 𝑥 , 𝑦 .     (54) 

The derivatives of log-likelihood function with respect to the unknown parameters are 

ℓ(𝜽)
= − − ∑ 𝑥 + ∑

,
𝜆 + 2𝜆 − 2𝜆 𝑒 , (55) 

ℓ(𝜽)
= − − ∑ 𝑦 + ∑

,
𝜆 + 2𝜆 − 2𝜆 𝑒 , (56) 

𝜕ℓ(𝜽)

𝜕𝛼
=

𝑛

𝛼
+ 𝑙𝑛 𝑥 − 𝑛 𝑙𝑛 𝜃 −

𝑥

𝜃
𝑙𝑛

𝑥

𝜃
− 2

𝑥
𝜃

𝑙𝑛
𝑥
𝜃

𝛥 𝑥 , 𝑦
 

× 𝑒 (𝜆 + 2𝜆 ) − 2𝜆 𝑒 ,      (57) 
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𝜕ℓ(𝜽)

𝜕𝛼
=

𝑛

𝛼
+ 𝑙𝑛 𝑦 − 𝑛 𝑙𝑛 𝜃 −

𝑦

𝜃
𝑙𝑛

𝑦

𝜃
− 2

𝑦
𝜃

𝑙𝑛
𝑦
𝜃

𝛥 𝑥 , 𝑦
 

× 𝑒 (𝜆 + 2𝜆 ) − 2𝜆 𝑒 ,     (58) 

ℓ(𝜽)
= ∑

,
2𝑒 − 1 ,      (59) 

ℓ(𝜽)
= ∑

,
2𝑒 − 1       (60) 

and 

ℓ(𝜽)
= ∑

,
4 𝑒 + 𝑒 − 𝑒 − 3 .  (61)

 

The maximum likelihood estimator of parameter vector 𝜽 = (𝛼 , 𝛼 , 𝜃 , 𝜃 , 𝜆 , 𝜆 , 𝜆 )  can be 
obtained by numerically solving (55)–(61). 

We will, now, briefly discuss a new multivariate Weibull distribution by using the proposed 
multivariate family of distribution. 

6.2. A new multivariate Weibull distribution 

In the following we have given a new multivariate Weibull distribution by using following baseline 
Weibull distributions for Xi in (30) and (31) 

𝐺 (𝑥 ) = 1 − 𝑒 ; 𝑥 , 𝜃 , 𝛼 > 0. 

The joint distribution function of the new multivariate Weibull distribution is 

𝐹𝒙(𝒙) = ∏ 1 − 𝑒 1 + ∑ 𝜆 𝑒 + 𝜆 1 − ∏ 1 − 𝑒 ; 𝒙 ∈ ℜ . (62) 

The density function corresponding to (60) is 

𝑓𝒙(𝒙) = ∏ 𝑥 𝑒 1 − ∑ 𝜆 − 2 ∑ 𝜆 𝑒 + 𝜆 1 − 2 ∏ 1 − 𝑒 . (63) 

The marginal and conditional distributions can be easily obtained by using the methods given 
in Section 5. In particular the joint marginal distribution of any pair of random variables is same as 
given in (43). Further, the conditional distribution of any random variable given the information of other 
random variables can be obtained by using (33). In particular, the joint conditional distribution of any two 
random variables given the information of all other variables can be obtained by using (34) and is 
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𝑓 , |𝒙( , )
𝑥 , 𝑥 |𝒙( , ) =

, 𝒙( , )
𝑥 𝑥 𝑒 𝛥 (𝒙); 𝑥 , 𝑥 > 0, (64) 

where 

𝛥 (𝒙) = 1 − 𝜆 − 2 𝜆 𝑒 + 𝜆 1 − 2 1 − 𝑒  

and 

𝛥 , 𝒙( , ) = 1 + ∑ 𝜆ℎ 2𝑒
ℎ

ℎ

ℎ

− 1ℎ , + 𝜆 1 − 2 ∏ 1 − 𝑒
ℎ

ℎ

ℎ

ℎ , . 

The joint conditional moments for any two random variables given the information of all other 
variables can be obtained by using (37). Now, using the raw moments of a Weibull random variable and 
moments of maximum in a sample of size 2 from the Weibull distribution, the joint conditional moments 
between Xi and Xm given the information of other random variables for the proposed multivariate Weibull 
distribution is 

𝜇 ,
,

==
1

𝛥 , 𝒙( , )

𝜃 𝜃 𝛤 1 +
𝑟

𝛼
𝛤 1 +

𝑟

𝛼
𝛥 ,

∗ 𝒙( , ) − 2𝜆 1 − 2  

−2𝜆 1 − 2 − 2 𝜆 1 − 2 1 − 2 ∏ 1 − 𝑒
ℎ

ℎ

ℎ

ℎ , , (65) 

where 𝛥 ,
∗ 𝒙( , ) = 1 + 𝜆 − 2 ∑ 𝜆ℎ 1 − 𝑒

ℎ
ℎ

ℎ

ℎ , . 

The conditional means, conditional variances and conditional covariances can be obtained from (65). 
We will now give some numerical study about the proposed bivariate Weibull distribution. 

7. Numerical study 

In this section we have given some numerical study for the proposed bivariate Weibull distribution. 
The study contains simulation study and real data application. These are given in the following subsections. 

7.1. Simulation study 

In this section we will give a simulation study for the proposed bivariate Weibull distribution. The 
simulation algorithm is given below. 
1) Generate a random sample of specific size n, by using different values of the parameters, from 

the bivariate Weibull distribution by using the steps given in Sub-section 6.1.4. 
2) Compute maximum likelihood estimates of the parameters by using the sample obtained in Step 1. 
3) Repeat Steps 1 and 2 for a specific number of times, say M. 
4) Obtain the simulated estimate and simulated mean square error of the estimate by using 

     211

1 1
ˆ ˆ ˆ ˆ ˆ1

M M

k kj k kj kj j
M and MSE M    

 
     , 
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where 𝜃 is kth parameter and 𝜃  is kth parameter obtained from jth sample. 

We have conducted simulation study by using samples of sizes 20, 50, 100, 200 and 500 and the 
number of simulations used are 20000. The results are given in Table 2 below. 

Table 2. Simulation results for the new bivariate Weibull distribution. 

  
1 1.5   2 2.5   1 1.25   2 1.75   1 0.25   2 0.35   3 0.45    

20 1.496 2.5 1.253 1.752 0.284 0.328 -0.455 
 (0.658) (1.132) (0.551) (0.778) (0.107) (0.149) (0.194) 
50 1.498 2.497 1.242 1.751 0.283 0.322 -0.455 
 (0.270) (0.443) (0.215) (0.316) (0.043) (0.061) (0.078) 
100 1.497 2.496 1.250 1.745 0.212 0.369 -0.451 
 (0.137) (0.217) (0.108) (0.152) (0.021) (0.032) (0.038) 
200 1.497 2.501 1.248 1.745 0.281 0.353 -0.446 
 (0.068) (0.108) (0.055) (0.077) (0.011) (0.016) (0.02) 
500 1.504 2.499 1.247 1.745 0.237 0.334 -0.465 
 (0.026) (0.044) (0.023) (0.03) (0.005) (0.006) (0.008) 
1000 1.503 2.502 1.249 1.751 0.243 0.344 -0.457 
 (0.025) (0.043) (0.023) (0.029) (0.005) (0.005) (0.008) 
 

1 2.5   2 1.7   1 2.25   2 1.5   1 0.25    2 0.45   3 0.25   

20 2.496 1.695 2.247 1.505 -0.282 0.428 0.272 
 (1.064) (0.756) (0.938) (0.679) (0.107) (0.199) (0.113) 
50 2.498 1.697 2.252 1.495 -0.262 0.439 0.242 
 (0.423) (0.289) (0.399) (0.273) (0.046) (0.076) (0.044) 
100 2.5 1.705 2.246 1.506 -0.266 0.435 0.27 
 (0.218) (0.147) (0.197) (0.136) (0.023) (0.04) (0.021) 
200 2.501 1.702 2.251 1.495 -0.213 0.453 0.212 
 (0.112) (0.076) (0.102) (0.064) (0.012) (0.02) (0.011) 
500 2.499 1.698 2.252 1.503 -0.217 0.452 0.266 
 (0.042) (0.03) (0.041) (0.027) (0.005) (0.008) (0.005) 
1000 2.502 1.703 2.251 1.504 -0.223 0.451 0.258 
 (0.043) (0.03) (0.039) (0.024) (0.005) (0.007) (0.005) 

From results of above table, we can see that the estimated values are close to pre-specified values of 
the parameters and hence the maximum likelihood estimates are consistent. We can also see that the mean 
square error (in parenthesis) of the estimates decreases with increase in the sample size. 

We will now give a real data application to compare the proposed bivariate Weibull distribution with 
some available bivariate distributions. 

7.2. Real data application 

In the following a real data application will be given where the proposed bivariate Weibull distribution 
is compared with some available bivariate distributions. We have used two data sets for comparison of the 
proposed bivariate distribution with some existing bivariate distributions. The first data set that we have 
used is the mammal brain data (Data 1) that has been obtained from [32]. This data set contains body weight 
of mammals (X) and the brain weigh (Y) of 84 mammals. The second data set that we have used is the 
child smoker data (Data 2) that has been obtained from [34]. This data set contains information about forced 
expiratory volume (X) and height (Y) of 655 children. Some summary measures of the data are given in 
Table 3 below. 
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Table 3. Summary measures for the two data sets. 

Data  Min Q1 Median Mean Q3 Max Variance Skewness 
1 X 0.02 0.96 6.00 38.79 45.00 250.00 4053.22 1.886 

Y 0.45 9.82 50.00 106.92 183.50 442.00 15127.71 1.102 
2 X 0.79 1.98 2.55 2.64 3.12 5.79 0.75 0.66 

Y 117.00 145.00 156.00 155.30 166.0 188.00 209.43 –0.21 

The summary measures indicates that both of the variables in data 1 are positively skewed whereas 
for second data one variable is positively skewed and one is negatively skewed. We have fitted the proposed 
bivariate Weibull distribution on this data alongside three more bivariate distributions. The other 
distributions fitted on the data are a bivariate exponential distribution by [33], a bivariate Weibull 
distribution by [34] and a bivariate Weibull distribution obtained by using the Gumbel copula. The joint 
density functions of these bivariate distributions are Bivariate Exponential [33] 

𝑓(𝑥, 𝑦) = 𝛼𝑥 𝑒𝑥𝑝[−𝑥(𝛼 + 𝑦)] ; 𝑥, 𝑦, 𝛼 > 0.      (66) 

Bivariate Weibull [34] 
𝑓(𝑥, 𝑦) = 𝛼 𝛼 𝑥 𝑦 𝑒𝑥𝑝[−𝑥 (1 + 𝑦 )] ; 𝑥, 𝑦, 𝛼 , 𝛼 > 0.    (67) 

Bivariate Weibull with Gumbel copula 

𝑓(𝑥, 𝑦) = 𝑥 𝑦 𝑒𝑥𝑝 − + 1 + 𝛾 2 𝑒𝑥𝑝 − − 1 2 𝑒𝑥𝑝 − − 1 , (68) 

where 𝑥 > 0, 𝑦 > 0, 𝛼 > 0, 𝛼 > 0, 𝛽 > 0, 𝛽 > 0 and −1 ≤ 𝛾 ≤ 1. 
The distributions are fitted by computing the maximum likelihood estimates of the parameters of 

various distributions. The maximum likelihood estimation has been done by using “maxLik” package of 
R, [35]. The maximum likelihood estimates alongside the standard errors are given in the Table 4 below. 

Table 4. Maximum likelihood estimates for various distributions. 

Distribution Parameter Estimate SE Estimate SE 
  Brains Data Smoker’s Data 

The New Bivariate Weibull 

1  16.3241 2.1523 2.9194 0.0234 
2  47.3533 1.2427 119.2692 1.1326 
1  0.4767 0.0307 3.5293 0.1432 
2  0.5873 0.0407 1.7304 0.0605 
1  0.9995 0.2514 0.9970 0.6769 
2  0.2206 0.0842 –0.2819 0.0844 
3  –0.9998 0.3800 –0.7178 0.0756 

Bivariate Exponential, [33]   0.0258 0.0028 0.3793 0.0148 

Bivariate Weibull, [34] 
1  0.1378 0.0118 0.4433 0.0136 

2  0.1375 0.0114 0.1152 0.0035 

Gumbel Bivariate Weibull 

1  0.4712 0.0438 3.2904 0.0308 
2  0.6643 0.0310 1.2238 0.0113 
1  4.1226 0.8869 36.3390 3.2536 
2  19.6784 2.5634 447.3664 0.6409 

  0.9999 0.6035 0.9958 0.5890 
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We have next computed some goodness of fit measures to decide about the most suitable model for 
the data. These summary measures are given in Table 5 below. 

Table 5. Goodness of fit measures for various distributions. 

Data Set Distribution Log Likelihood AIC BIC 

1 

The New Bivariate Weibull –772.7114 1559.423 1558.893 
Bivariate Exponential, [33] –86512.922 173027.8 173027.8 
Bivariate Weibull, [34] –996.2986 1996.597 1996.446 
Gumbel Bivariate Weibull –782.7159 1575.432 1575.053 

2 

The New Bivariate Weibull –4214.01 8442.02 8473.41 
Bivariate Exponential, [33] –275602.100 551206.20 551210.68 
Bivariate Weibull, [34] –7697.799 15399.60 15408.57 
Gumbel Bivariate Weibull –4594.979 9199.96 9222.38 

From Table 5, we can see that the proposed bivariate Weibull distribution is the best fit for both of the 
data sets as it has smallest value of AIC and BIC. We have also plotted the bivariate histograms of two data 
sets alongside the fitted distribution and are given in Table 6, below. 

Table 6. Bivariate histograms and fitted distributions for two data sets. 

Data Observed Histogram Fitted Distribution 
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From above figures in Table 6 we can see that the fitted distributions are reasonable fit to the two data 
sets. 
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8. Conclusions 

In this paper we have proposed new bivariate and multivariate families of distributions. These families 
of distributions are useful to generate the new bivariate and multivariate distributions from the univariate 
marginals. We have studied some important properties of the proposed families of distributions. We have 
seen that the moments of the proposed families of distributions depend upon the raw moments and 
moments of order statistics for the baseline distributions. The measures of dependence of the proposed 
families have also been discussed. We have also given the stress-strength reliability analysis for the 
proposed bivariate family of distributions. We have studied the proposed bivariate and multivariate families 
of distributions for the baseline Weibull distribution and have proposed new bivariate and multivariate 
Weibull distributions. We have studied some useful properties of the proposed bivariate Weibull 
distribution including moments, reliability and maximum likelihood estimation of the parameters. The 
simulation study and real data application of the proposed bivariate Weibull distribution has been done by 
using the mammal brain data. We have seen that the proposed bivariate Weibull distribution is the best fit 
for the data used. The proposed bivariate and multivariate families of distributions can be explored for 
different baseline distributions. 
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