Research article

Approximate inverse preconditioners for linear systems arising from spatial balanced fractional diffusion equations

  • Received: 28 April 2023 Revised: 16 May 2023 Accepted: 16 May 2023 Published: 18 May 2023
  • MSC : 65F08, 65F10

  • We consider the preconditioned iterative methods for the linear systems arising from the finite volume discretization of spatial balanced fractional diffusion equations where the fractional differential operators are comprised of both Riemann-Liouville and Caputo fractional derivatives. The coefficient matrices of the linear systems consist of the sum of tridiagonal matrix and Toeplitz-times-diagonal-times-Toeplitz matrix. We propose using symmetric approximate inverse preconditioners to solve such linear systems. We show that the spectra of the preconditioned matrices are clustered around 1. Numerical examples, for both one and two dimensional problems, are given to demonstrate the efficiency of the new preconditioners.

    Citation: Xiaofeng Guo, Jianyu Pan. Approximate inverse preconditioners for linear systems arising from spatial balanced fractional diffusion equations[J]. AIMS Mathematics, 2023, 8(7): 17284-17306. doi: 10.3934/math.2023884

    Related Papers:

  • We consider the preconditioned iterative methods for the linear systems arising from the finite volume discretization of spatial balanced fractional diffusion equations where the fractional differential operators are comprised of both Riemann-Liouville and Caputo fractional derivatives. The coefficient matrices of the linear systems consist of the sum of tridiagonal matrix and Toeplitz-times-diagonal-times-Toeplitz matrix. We propose using symmetric approximate inverse preconditioners to solve such linear systems. We show that the spectra of the preconditioned matrices are clustered around 1. Numerical examples, for both one and two dimensional problems, are given to demonstrate the efficiency of the new preconditioners.



    加载中


    [1] D. Benson, S. W. Wheatcraft, M. M. Meerschaert, Application of a fractional advection-dispersion equations, Water Resour. Res., 36 (2000), 1403–1412. https://doi.org/10.1029/2000WR900031 doi: 10.1029/2000WR900031
    [2] D. Benson, S. W. Wheatcraft, M. M. Meerschaert, The fractional-order governing equation of Lévy motion, Water Resour. Res., 36 (2000), 1413–1423. https://doi.org/10.1029/2000WR900032 doi: 10.1029/2000WR900032
    [3] M. Benzi, G. H. Golub, Bounds for the entries of matrix functions with applications to preconditioning, BIT Numerical Mathematics, 39 (1999), 417–438. https://doi.org/10.1023/A:1022362401426 doi: 10.1023/A:1022362401426
    [4] B. A. Carreras, V. E. Lynch, G. M. Zaslavsky, Anomalous diffusion and exit time distribution of particle tracers in plasma turbulence models, Phys. Plasmas, 8 (2001), 5096–5103. https://doi.org/10.1063/1.1416180 doi: 10.1063/1.1416180
    [5] R. H. Chan, M. K. Ng, Conjugate gradient methods for Toeplitz systems, SIAM Rev., 38 (1996), 427–482. https://doi.org/10.1137/S0036144594276474 doi: 10.1137/S0036144594276474
    [6] M. Donatelli, M. Mazza, S. Serra-Capizzano, Spectral analysis and structure preserving preconditioners for fractional diffusion equations, J. Comput. Phys., 307 (2016), 262–279. https://doi.org/10.1016/j.jcp.2015.11.061 doi: 10.1016/j.jcp.2015.11.061
    [7] Z. W. Fang, X. L. Lin, M. K. Ng, H. W. Sun, Preconditioning for symmetric positive definite systems in balanced fractional diffusion equations, Numer. Math., 147 (2021), 651–677. https://doi.org/10.1007/s00211-021-01175-x doi: 10.1007/s00211-021-01175-x
    [8] Z. Fang, M. K. Ng, H. W. Sun, Circulant preconditioners for a kind of spatial fractional diffusion equations, Numer. Algor., 82 (2019), 729–747. https://doi.org/10.1007/s11075-018-0623-y doi: 10.1007/s11075-018-0623-y
    [9] F. R. Lin, S. W. Yang, X. Q. Jin, Preconditioned iterative methods for fractional diffusion equation, J. Comput. Phys., 256 (2014), 109–117. https://doi.org/10.1016/j.jcp.2013.07.040 doi: 10.1016/j.jcp.2013.07.040
    [10] Z. Mao, J. Shen, Efficient spectral-Galerkin methods for fractional partial differential equations with variable coefficients, J. Comput. Phys., 307 (2016), 243–261. https://doi.org/10.1016/j.jcp.2015.11.047 doi: 10.1016/j.jcp.2015.11.047
    [11] M. K. Ng, J. Y. Pan, Approximate inverse circulant-plus-diagonal preconditioners for Toeplitz-plus-diagonal matrices, SIAM J. Sci. Comput., 32 (2010), 1442–1464. https://doi.org/10.1137/080720280 doi: 10.1137/080720280
    [12] J. Pan, R. Ke, M. K. Ng, H. W. Sun, Preconditioning techniques for diagnoal-times-Toeplitz matrices in fractional diffusion equations, SIAM J. Sci. Comput., 36 (2014), A2698–A2719. https://doi.org/10.1137/130931795 doi: 10.1137/130931795
    [13] J. Y. Pan, M. K. Ng, H. Wang, Fast iterative solvers for linear systems arising from time-dependent space fractional diffusion equations, SIAM J. Sci. Comput., 38 (2016), A2806–A2826. https://doi.org/10.1137/15M1030273 doi: 10.1137/15M1030273
    [14] J. Y. Pan, M. K. Ng, H. Wang, Fast preconditioned iterative methods for finite volume discretization of steady-state space-fractional diffusion equations, Numer. Algor., 74 (2017), A153–A173. https://doi.org/10.1007/s11075-016-0143-6 doi: 10.1007/s11075-016-0143-6
    [15] H. K. Pang, H. H. Qin, H. W. Sun, T. T. Ma, Circulant-based approximate inverse preconditioners for a class of fractional diffusion equations, Comput. Math. Appl., 85 (2021), 18–29. https://doi.org/10.1016/j.camwa.2021.01.007 doi: 10.1016/j.camwa.2021.01.007
    [16] H. K. Pang, H. H. Sun, Multigrid method for fractional diffusion equations, J. Comput. Phys., 231 (2012), 693–703. https://doi.org/10.1016/j.jcp.2011.10.005 doi: 10.1016/j.jcp.2011.10.005
    [17] I. Podlubny, Fractional Differential Equations, Academic Press, 1999.
    [18] M. F. Shlesinger, B. J. West, J. Klafter, Lévy dynamics of enhanced diffusion: Application to turbulence, Phys. Rev. Lett., 58 (1987), 1100–1103. https://doi.org/10.1103/PhysRevLett.58.1100 doi: 10.1103/PhysRevLett.58.1100
    [19] I. M. Sokolov, J. Klafter, A. Blumen, Fractional kinetics, Phys. Today, 55 (2002), 48–55. https://doi.org/10.1063/1.1535007 doi: 10.1063/1.1535007
    [20] T. Stromer, Four short stories about Toeplitz matrix calculations, Linear Algebra Appl., 343 (2002), 321–344. https://doi.org/10.1016/S0024-3795(01)00243-9 doi: 10.1016/S0024-3795(01)00243-9
    [21] H. Wang, K. X. Wang, T. Sircar, A direct $O(N\log^2 N)$ finite difference method for fractional diffusion equations, J. Comput. Phys., 229 (2010), 8095–8104. https://doi.org/10.1016/j.jcp.2010.07.011 doi: 10.1016/j.jcp.2010.07.011
    [22] M. K. Wang, C. Wang, J. F. Yin, A class of fourth-order Padé schemes for fractional exotic options pricing model, Electron. Res. Arch., 30 (2022), 874–897. https://doi.org/10.3934/era.2022046 doi: 10.3934/era.2022046
    [23] Z. Q. Wang, J. F. Yin, Q. Y. Dou, Preconditioned modified Hermitian and skew-Hermitian splitting iteration methods for fractional nonlinear Schrödinger equations, J. Comput. Appl. Math., 367 (2020), 112420. https://doi.org/10.1016/j.cam.2019.112420 doi: 10.1016/j.cam.2019.112420
    [24] Y. Xu, H. Sun, Q. Sheng, On variational properties of balanced central fractional derivatives, Int. J. Comput. Math., 95 (2018), 1195–1209. https://doi.org/10.1080/00207160.2017.1398324 doi: 10.1080/00207160.2017.1398324
    [25] G. M. Zaslavsky, D. Stevens, H. Weitzner, Self-similar transport in incomplete chaos, Phys. Rev. E, 48 (1993), 1683–1694. https://doi.org/10.1103/PhysRevE.48.1683 doi: 10.1103/PhysRevE.48.1683
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1266) PDF downloads(65) Cited by(1)

Article outline

Figures and Tables

Tables(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog