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Abstract: We consider the preconditioned iterative methods for the linear systems arising from
the finite volume discretization of spatial balanced fractional diffusion equations where the fractional
differential operators are comprised of both Riemann-Liouville and Caputo fractional derivatives. The
coeflicient matrices of the linear systems consist of the sum of tridiagonal matrix and Toeplitz-times-
diagonal-times-Toeplitz matrix. We propose using symmetric approximate inverse preconditioners
to solve such linear systems. We show that the spectra of the preconditioned matrices are clustered
around 1. Numerical examples, for both one and two dimensional problems, are given to demonstrate
the efficiency of the new preconditioners.
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1. Introduction

Fractional diffusion equations (FDEs) have been utilized to model anomalous diffusion phenomena
in the real world, see for instance [1,2,4,18,19,22,23,25]. One of the main features of the fractional
differential operator is nonlocality. It brings big challenge for finding the numerical solution of
FDEs, as the coefficient matrix of the discretized FDEs is typically dense, which requires O(N?) of
computational cost and O(N?) of memory storage if a direct solution method is employed, where N
is the number of unknowns. However, by making use of the Toeplitz-like structure of the coefficient
matrices, many efficient algorithms have been developed, see for instance [6,9, 12-16,21].

In this paper, we consider the following initial-boundary value problem of spatial balanced FDEs
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[7,24]:

au(x’ t) 4 RLDa (d+(x, 1) CD‘Y u(x, t)) + RLDﬁ (d_(x, 1) XCLDQU(X, Z)) = f(x’ t)’

ot XL x x 7 xg x 7 xg

(-x’ t) € (.XL,XR)X(O, T], (11)
u(xg, 1) = ur(0), u(xg,t) = up(®), 0=<r=<T,

u(x,0) = u’(x), x. <x<xg.

where d.(x,t) > 0 are diffusion coeflicients, f(x, t) is the source term, and «, 8 are the fractional orders

satisfying 3 < a,B < 1. Here %DZ and ®-D”_ denote the left-sided and right-sided Riemann-Liouville

fractional derivatives for O < y < 1, respectively, and are defined by [17]

1 d [ -1 d (*
u(é) dg, DY u(x) = - y)a (fuff))c)y

L -ydeJ, =g
where I'(:) is the Gamma function, while xCLDK and SDIR denote the left-sided and right-sided Caputo
fractional derivatives for 0 < v < 1, respectively, and are defined by [17]
X ’ XR ’
CDu(x) = _ 1 u' (&) d£, DY u(x) = -1 u'(é)
1=y Jy, (x=8)7 Id-nJe E-x7

The fractional differential operator in (1.1) is called the balanced central fractional derivative, which
was studied in [24]. One advantage of such fractional differential operator is that its variational
formulation has a symmetric bilinear form, which can greatly benefit theoretical investigation.

Recently, a finite volume approximation for the spatial balanced FDEs (1.1) is proposed in [7].
By applying a standard first-order difference scheme for the time derivative and a finite volume
discretization scheme for the spatial balanced fractional differential operator, a series of systems of
linear equations are generated, whose coefficient matrices share the form of the sum of a tridiagonal
matrix and two Toeplitz-times-diagonal-times-Toeplitz matrices. One attractive feature of these
coeflicient matrices is that they are symmetric positive definite, so that the linear systems can be solved
by CG method, in which the three-term recurrence can significantly reduce the computational and
storage cost. However, due to the ill-conditioning of the coeflicient matrices, CG method, when applied
to solve the resulted linear systems, usually converges very slow. Therefore, preconditioners should
be applied to improve the computational efficiency. In [7], the authors proposed two preconditioners:
circulant preconditioner for the constant diffusion coeflicient case and banded preconditioner for the
variational diffusion coefficient case.

In this paper, we consider the approximate inverse preconditioners for the resulting linear systems
arising from the finite volume discretization of the spatial balanced FDEs (1.1). Our preconditioner
is based on the symmetric approximate inverse strategy studied in [11] and the Sherman-Morrison-
Woodburg formula. Rigorous analysis shows that the preconditioned matrix can be written as the sum
of the identity matrix, a small norm matrix, and a low-rank matrix. Therefore, the quick convergence
of the CG method for solving the preconditioned linear systems is expected. Numerical examples,
for both one-dimensional and two-dimensional cases, are given to demonstrate the robustness and
effectiveness of the proposed preconditioner. We remark that our preconditioner can also be applied to
another class of conservative balanced FDEs which was studied in [8, 10].

l%DIM()C) =

dé,

de.
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The rest of the paper is organized as follows. In Section 2, we present the discretized linear
systems of the balanced FDEs. Our new preconditioners are given in Section 3, and their properties are
investigated in detail in Section 4. In Section 5, we carry out the numerical experiments to demonstrate
the performance of the proposed preconditioners. Finally, we give the concluding remarks in Section

6.
2. Discretization of the spatial balanced FDEs
Let At = T /M, be the time step where M, is a given positive integer. We define a temporal partition

tj = jAtfor j = 0,1,2,..., M, The first-order time derivative in (1.1) can be discretized by the
standard backward Euler scheme, and we obtain the following semidiscrete form:

u(x,t;) —u(x,tj_1) @ a
J At J + I?VI;DX (d+(.x, t}) (;DXRM(X’ t})) + RI;I)QR (d_(x’ tj) )?LDiu(x, t})) = f(.x’ t])9 (2.1)
for j=1,2,---,M,. Let Ax = (xg — x.)/(N + 1) be the size of the spatial grid where N is a positive

integer. We define a spatial partition x; = x; + iAx fori = 0,1,2,...,N + 1, and denote by X1 =
Xi—1 + X;

the midpoint of the interval [x;_1, x;]. Integrating both sides of (2.1) over [xi_%, X; +%] gives

XL Xivd i)
A ’ u(x, t;)dx + f : %D;’C‘ (d+(x, tj) SDzRu(x, tj)) dx + f : R&D@ (d_(x, tj) XCLD‘;u(x, tj)) dx
)CI._% X. 1

X.
i—

[~
NI

1 +4
— ’ u(x,tj_;)dx +

Xip 1
== f _12 f(x,t;)dx. (2.2)

1

[S]
[S]

Let Sa.(xz, xg) be the space of continuous and piecewise-linear functions with respect to the spatial
partition, and define the nodal basis functions ¢;(x) as

Al s X € [Xp—1, X,
Ax
di(x) = M’ x € [Xe Xpa 1],
Ax
0, elsewhere,
fork=1,2,...,N, and
X]— X el | X— Xy el |
s X X0s X115 ) X XNs XN+11s
go(x) =1 Ax Pnai(x) =1 Ax :
0, elsewhere, 0, elsewhere.

The approximate solution ua.(x, t;) € Sac(xr, xg) can be expressed as

N+1

upc6, 1) = U gu(0).
k=0
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Therefore, the corresponding finite volume scheme leads to

(J)f ¢J(x)dx+ f(x & d (&, t)CDG up(é, Z‘J))df

X1 X,

N
T

Yipd

e f (€ = 07 (d-€1) CDLwe, 1) dé

X1
=2

1 N+l -1 Xit1)2 Xit1)2
= A_ Z uk] f ¢J(X)dx + f f(x, t])d-x’
4 k=0 Xi-1/2 Xi-1/2

which can be further approximated and we obtain [7]

1 o o a
g( (J) + 614(]) fi)l + Na Zg( )d (X1+' 1 )[Z g](c )lul(cj) ( )1”%11)
N+1
1 t>(2gﬂuzﬂ o)
1 _
:g(uf”muﬁf Y ul )+ f fx,tpdx, 1<i<N, 1<j<M,
= Z
At At

where 1, =

B = and

2 - a)’Ax> L2 - p)2Ax¥F’

gV =a?, ¢V=d"-d”, k=1,2,...,N,

for y = a, 8, with

1 1—y 1 I-y 1 1-y
aé}’)_(z) ’ (7) (k+2) _(k_i) , k=1,2,...,N.

The initial value and boundary condition are
u® =u’(x), k=0,1,2,...,N+1,
“) =ug(t)), ul), =ug(t), j=12,....M
Collecting all components i into a single matrix system, we obtain
(M + 1,GuDYGCL + 1sGaDVGL)u? = Mut™ 4 ALf? + b, j=1,2,..., M,
where
DY = diag ({d+ (xk+%, t‘/‘)}iv:o) and DY = diag ({d_ (xk%, tj)}:;o)

. ) | : R o
are diagonal matrices, M = gtrldlag(1,6,1), uy = [u(J) u(zj),...,u%)] , fO = [ () £
with

NS EERE

fl.(j) f f(x,t))dx,

i—

N\

2

(2.3)

(2.4)

(2.5)

(2.6)

;]j)] T
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and

: N N S .k
0 — (J) G- _ (J) (A0 (@) D, =, G-D _ (D
b —[bl 8(u0 0). 665, bY) + S(MNH uNH)]

with

0 — (@) (@ () (@) (@) ()
b/ r)QZ:(gfo’aLr xl+1,t.)a1f,’lu1\§+l n(,gi“dJr(xl )goauoj

N+1
®B) ®B () ®) ®B, (D . _
+17,;Zg d x, %,t)al Uy = M8 i - (xNJr%,t)gO ugr s i=1,2,...,N.

The matrices G,, G are N-by-(N + 1) Toeplitz matrices defined by

®) ®) ®) ®)
g(a) gf)a) 8 &1 & 1 8w
( ) (@ (@) .
3 gz” g go" ~ P ¢V :
Ga = 5 Gﬁ = .
S . . g(ﬂ)
(a) (a) (a) (@)
g o g g g ggﬁ) g(lm

We remark that the entries of G, and Gﬁ are independent on the time partition ¢;.
We denote the coefficient matrix by A, that is,

AD = M +1,G, DY G + npGsDY G, 2.7)
As M and Df),f)(f) are symmetric positive definite, we can see that the coefficient matrix AV is
symmetric positive definite too.

For the entries of G, and Gy, we have the following result, which is directly obtained from Lemma
2.3 in[15].

1
Lemma 2.1. Let g(y) be defined by (2.5) with 7 <7< 1. Then

(l) g(V) > 0, g(V) < g(zy) . < g]((y) - <0y
(2) |g(7)| < Wfor k=23,..., where c, = y(1 —v);

3) hm |g(y) =0, Z g =0, and Z gV >0forp>1.

3. The approximate inverse preconditioner

As the coefficient matrix is symmetric positive definite, we can apply CG method to solve the linear
systems (2.6). In order to improve the performance and reliability of the CG method, preconditioning
is necessarily to employed. In this section, we develop the approximate inverse preconditioner for the
linear system (2.6).

For the convenience of analysis, we omit the superscript “(j)” for the jth time step, that is, we
denote the coefficient matrix (2.7) as

A =M +n,G,D,G] +ngGzD_G]J, (3.1)

AIMS Mathematics Volume 8, Issue 7, 17284—-17306.
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where D, = 15&’), D_=DY.
Let g, and G, be the first column and the last N columns of G,, respectively, that is, G, = (80> Gel

where
(@) (@)

& By @
(03 a a
8 8 8
g@=|>1eR¥ and G,=|"' °° e RV,
(@) (@) (@) (@)
N Eva1 0 810 8o

Analogously, we denote by gz and G the last column and the first N columns of G, respectively, that
is, Gﬁ = [Gﬁ, gﬂ] where

®B) ®B) ®)
g(ff) 8 & 7 8n-i
g(ﬁ) ®B) . :
gs=|"""eR' and Gj= g | € RV
: g
®B)
81 go(ﬁ)

Then we have

A =M +10[80, GalDi 8o Gol™ + 15l Gs, 851D-[Gp, g5]"
=M +1,GoD. G + 11gGgD_G + 0d(X1)8a8q + Mpd—(Xy, 18585

where R N A N
B, = aiag [0, (s )L - =g (x.0)2)

Therefore, A can be written as

A=A+UU", (3.2)
where
A =M +1,GoD. G}, +1sGpD_G} (3.3)
and
U =| i) g \Jpd-Crp) 5] € R (3.4)

According to Sherman-Morrison-Woodburg Theorem, we have
Al'=A+U0Un!' =AT"-A'Ua+ UTAT' U UTAT (3.5)
In the following, we consider the approximation of A~'. To this end, we first define a matrix A with
A =M +n,G,D,G] + nsGsD_G]}, (3.6)

where D, = diag ({d+ (xk)}szl) and D_ = diag ({d_ (xk)}ivzl).
Assume d,(x),d_(x) € C[xg, xg], then it is easy to see that for any € > 0, when the spatial gird Ax
is small enough, we have

di(n) —di(xup)| < € and |d-(x) - d_(n.p)| < e

AIMS Mathematics Volume 8, Issue 7, 17284—-17306.
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Meanwhile, we learn from Lemma 2.1 that there exists c,, cg > 0 such that ||G,|» < cq, |Ggll2 < cg. Let
S =A-A. (3.7)
Then it holds that
112 = |G a(Ds = DG + 1Gp(D- = DG, < (€l + mpcp)e.

This indicates that A can be a good approximation of A when Ax is very small. However, it is not easy
to compute the inverse of A.
Motivated by the symmetric approximate inverse preconditioner proposed in [11], we consider the
following approximations
A 2e; ~ Kl._l/zei, i=1,2,...,N,

where e; is the i-th column of the identity matrix / and
Ki = M + 1,d.(x)G.G,, + npd_(x)GpG, (3.8)

which is symmetric positive definite. That is, we approximate the i-th column of A~!/? by the i-th
column of Kl._]/ 2. Then we propose the following symmetric approximate inverse preconditioner

N TN
Pl_1 = (Z K;l/zeie;] [Z K;l/zeie;]. (3.9)
i=1 i=1

Although K; is symmetric positive definite, it is not easy to compute the inverse of its square root.
Hence we further approximate K; by circulant matrices whose inverse square roots can be easily
obtained by FFT.

Let Cy, C, and Cg be Strang’s circulant approximations [5] of M, G, and Gg, respectively. Then
we obtain the following preconditioner

N T/ N
Pgl = (Z C;l/zeie;) [Z Ci_l/zeie;], (3.10)
i=1 i=1

where C; = Cy + 1n,d.(x;,)C,C, + nﬁd_(xi)CﬁCg is circulant matrix.

In order to make the preconditioner more practical, similar to the idea in [11, 13], we utilize the
interpolation technique. Let {fck},f: , be ¢ distinct interpolation points in [x;, xg] with a small integer £
(¢ < N), and denote by A = (le, Ao /lﬁ), where Ay, A,, Ag are certain positive real numbers. Then we
define the function

-1/2
21(x) = (A + 1o dad (X) + mpdpd_(x)) ", x € [x1, x].

Let
qi1(x) = ¢1(X)ga(X1) + Pa(X)ga(X2) + - - - + Pe(X)ga(Xp)

be the piecewise-linear interpolation for g,(x) based on the ¢ points {(X;, g ,1(5ck))},f= |- Define

Ci = Cy + 1odi (%)C,CL + npd_(F)CpCL,  k=1,2,...,¢.

AIMS Mathematics Volume 8, Issue 7, 17284—-17306.
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Then C; is symmetric positive definite and can be diagonalized by FFT, that is,
Ci = FAWF",

where F is the Fourier matrix and Ay is a diagonal matrix whose diagonal entries are the eigenvalues
of C;. By making use of the interpolation technique, we approximate Ci_l/ % by

4 4
C;'?~ F[Z qbk(xl-)f\,:m)F* - Z¢k(x,-)c~k‘”2, i=1,2,...,N.
k=1

k=1

By substituting these approximations into P!, we obtain the practical preconditioner

*

t N t
F ) bR, F eie] ) [Z F Z B F e J
=1

1 k=1

t N ¢
Z dux)eie] FA, ”2] (Z > A,:”ZF*cpk(x»eie:]

i=1 k=1

N .
Z dr(x)eel FA; ”2](

i=

P

Pyl =

1

Mz

N
¢k(xi)€i€,-T )
=1

=1

A;
CI)kFA‘l/Z) [ZA 12 @k] (3.11)

- i

>~
1l

1

where @, = diag(¢r(x1), di(x2), ..., ¢d(xy)). Now applying P;' to any vector requires about
O((N log N) operations, which is acceptable for a moderate number ¢.

Finally, by substituting A~' in the Sherman-Morrison-Woodburg formula (3.5) with P;l, we obtain
the preconditioner

p'=pP'-P;'UdI+UPy'UY'UPS. (3.12)

We remark that both Pgl and P;' can be taken as preconditioners. It is clear that implementing
P;' requires more computational work than P;'. However, we note that P;' is a rank-2 update of P},
and g,, g are independent on ¢;, which indicates that, during the implementation of the preconditioner
Pgl to the CG method, we can precompute P; 'U ahead, as well as the inner product U TPglU and
the inverse of the 2-by-2 matrix / + UTP;'U. Therefore, at each CG iteration with preconditioner P},
besides the matrix-vector product with P;', only two inner-products and two vector updates are needed.
Therefore, it is expected that P, may have better performance for the one dimensional problems.

4. Analysis of the preconditioner

Since P;! is obtained by substituting A~! with P;! in the expression of A~!, the approximation
property of P;! to A™! is dependent on how close P;' to A~! will be. Therefore, in this section, we
study the difference between P;' and A~".

We first introduce the off-diagonal decay property [20], which is crucial for studying the circulant
approximation of the Toeplitz matrix.

AIMS Mathematics Volume 8, Issue 7, 17284—-17306.
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Definition 4.1. Let A = [a,',j]ijd be a matrix, where the index setis I = Z,N or {1,2,...,N}. We say

A belongs to the class L if

laij| £ = (4.1)
T+ e
holds for s > 1 and some constant ¢ > 0, and say A belongs to the class &, if
la; ;| < ce”" (4.2)

holds for r > 0 and some constant ¢ > Q.
The following results hold for the off-diagonal decay matrix class L and &, [3,11,15,20].

Lemmad4.1. Let A = [ai’j]ijef be a nonsingular matrix, where the index setis I = Z,Nor{1,2,...,N}.

(1) IfA € L, for some s > 1, then A™' € L.

(2) IfA € Ly, and B € Ly, are finite matrices, then AB € L., where s = min{sy, s,}.

(3) If A € &,, and B € &,, are finite matrices, then AB € &, for some constant 0 < r < min{r, r»}.

(4) Let A be a banded finite matrix and Hermitian positive definite, and let f be an analytic function
on [Amin(A), Anax(A)] and f(A) is real for real A, where Ayin(A) and Ayax(A) denote the minimal
and maximal eigenvalues of A, respectively. Then f(A) has the off-diagonal exponential decay
property (4.2). In particular, let f(x) = x™, x"'/2, and x'/?, respectively, then A~', A™'/?, and A'/?
have the off-diagonal exponential decay property (4.2).

Assume that d, (x),d_(x) € C[x;, xg], it follows from Lemma 2.1 and Lemma 4.1 that we have
G, GQG;, GQD+G; S £l+a/ and Gﬂ, GBGT, G,BD—G; € -£1+/3,

for 3 < @, < 1. Therefore, it holds that A, A™' € L minjayp)-

4.1. Approximation property of P7' to A™!

Given an integer m, let G,,, and Gg, be the (2m + 1)-banded approximations of G, and Gg,
respectively, that is,

. G,(i,)), li—jl<m, . Gp(i, j), i—jl<m,
Ga,m(la _]) = . Gﬁ,m(l’ _]) = p .
0, otherwise, 0, otherwise.
In the following discussion, we let
Ki =M + n,d (x)GomGg,, + nﬁd_(xi)Gﬁ,mG;,’m, i=1,2,---,N, “4.3)

which can be regarded as some kind of banded approximation of the K; defined in (3.8). We remark
that, in the actual applications, we still employ K; in (3.8) to construct the preconditioners.
Define
Aw =M +1.GoymD. G}, + 115G D -G, (4.4)
As A,, and K; are banded matrices and symmetric positive definite, it follows from Lemma 4.1 that
A~ K ' and Ki_l/ ? have off diagonal exponential decay property. Meanwhile, we have

ﬂmin(A) > /lmin(M) > ﬂmin(Am) > /lmin(M) 2

1 1
2’ 2’

AIMS Mathematics Volume 8, Issue 7, 17284—-17306.



17293

and hence
A, <2 and AL <2.

For a given € > 0, it follows from Theorem 12 in [7] that there exists an integer m; > 0 such that for
all m > m; we have
1A, — All, < €/4.

Therefore, it holds that
WA, = A7l = 1A, (A — A,) A7l < 1A, L 1A, — AL 1A < e (4.5)

and
1Py = AL < 1P =AM + 1A — A7V < 1P =AML + €

Now, we turn to estimate the upper bound of ||P;" — A} !|l,. Since both P;' and A, are symmetric,
we have

1Py = AN = p(P = Ay < |1PT = AN

-1 51
= max |[|(P; — A )e;
max [Py = A, e i

-1 _ g1y, -1 _ z-1y,.
gg;lll(Pl K; )e,,||1+1rnsjfg]<vll(l<, A, el (4.6)

For the first item, we have the following estimation.

Lemma 4.2. Let K; be defined by (4.3). Assume that 0 < din < d.(x), d_(x) < dmax. Then for a given
€ > 0, there exist an integer Ny > 0 and two positive constants c3, c4, such that

-1 !
|Pi'e; — Ki'e)||, < c3 max{Ay,d.;, Ay,d_j} + cae,

where AN1d+,j = max |d+,k - d+’j|, ANld—,j = max |d_’k - d—,jl-
J—N1<k<j+N; J-N1<k<j+N;

Proof. We have

N T
—1 —1 _ —1/2 T -1/2 —1
Piej - K; ej—(ZKi eiel.] K, "ej—Kj'e;

N

N
= Y el K 2K e = ) eel K e 4.7)
i=1 i=1

_ ZN: eiel (K_uz 3 K_—l/z) K,

l J J

As it was shown in Theorem 2.2 of [3], for a given € > 0, we can find a polynomial p;(¢) = z§:0 att
of degree k such that

‘[K;‘/Z]Lr — (KD < ||K2 = puK)||, <& 1<i<N, 1<Lr<h, 4.8)

AIMS Mathematics Volume 8, Issue 7, 17284—-17306.
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where [ - | . denotes the (/, r)-th entry of a matrix. Then we can write (4.7) as

N

Pl_lej_Kj_lej:Zee (K7 = pu(K) + pu(K)) = pu(K)) + pu(K)) = K1) K71 e.
i=1

= Z e; eTH(])e] + Z e; eTH(Z)eJ + Z e; eTH(3)ej,
i=

4.9)

where
HY = (K7 = pu(K)) K72, H = (pu(K) — puKp) K2 HE = (puK)) ~ K;'°) K2,

Note that p(K;) 1s (2km + 1)-banded matrix and Kl._l/ ? has the off diagonal exponential decay property,
we know that Kl._l/ *— pu(K;) also has the off diagonal exponential decay property. According to Lemma
4.1, we learn that Hfjl) has the off diagonal exponential decay property. Hence, analogous to the proof
of Lemma 3.8 in [11], we can find constants ¢ > 0 and # > 0 such that

(=71,

On the other hand, we denote the j-th column of Hz(,l) by [h1 oo+ »hyl7, and let K; £ Ki_l/z _
pi (K;). Observe that

—Al-r]

<ce for L,r=1,2,...,N. (4.10)

N
= > K. nK; P j), 1=1,2,--,N.

r=1

Then based on (4.8) and the fact that K;]/ ? has off diagonal exponential property, we can show that
there exists a constant ¢; such that

lh,jl < e, 1=1,2,...,N. (4.11)

Denote
N

D eielHYe; = [H)(1, j), HYQ2, ..., HYWN, j)]
i=1
From (4.10) and (4.11), we can show that there exists a constant ¢; > 0, such that

N
T 7D
Z eie; Hl.j e;
1

i=1

< i ‘H§}>(i, j)' <cie. (4.12)
i=1

Analogously, we can show that there exists a constant ¢, > 0 such that

N

Z e eTH( )ej

i=1

< y€. 4.13)

1

Now we turn to Hl(f) It follows from the proof of Lemma 3.11 in [11] that pi(K;) — p«(K;) has the
form

k -1
<2) ay (Z Kf—q—l (Ki— K j)K;’) Kj—l/z =(d.;—d,)) gl(f) +(d_;—d_;) ﬁ,(,z) (4.14)
=1

q=0

AIMS Mathematics Volume 8, Issue 7, 17284—-17306.
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where
k(-1 k(-1
A? = ZZamaKf "'G,GIK!| K" and A = [Zzamﬁﬁ 'GsGIK? | K.
=1 qZO =1 q:

It is easy to see that both Flff) and I:Isz) have the off diagonal exponential decay property. As

N
D el H e; = [(doy = d AT, ), .., (doy = du DHGIN, )]

i=1
A . 7y » T
+ [y —d_ DA, ). ... (d_y - d_pHTN. ]
there exists an integer N, such that

N

2
Z e,-el.THl.(j)ej

i=1

N N
< )Mo= do DK, l+ ) ldg = d_ A K, )
k=1 k=1

1

J+N 5 JAN) - 4.15)
< Y ldex—do NI I+ Y 1dg = d_ AR K, )]+ Admae
k=j-N, k=j=Ni

< emax{Ay,d, ;, Ay,d-j} + ddpmae,

where Ay d, j = max |d,x—d,jlandAyid_j= max |d_;—d_}jl.
J=N1<k<j+N; J=N1<k<j+N;

Let cz3 = ¢ and ¢4 = ¢1 + ¢5 + 4dpax. It follows from (4.12), (4.13) and (4.15) that

N

1 2 3
Z e,-el.THl.(j)ej Z e,-el.THl.(j)ej Z e,-el.THl.(j)ej

i=1 1 i=1 1 i=1
< (c1 + cp)e + ¢max{Ay,d, j, Ay d_j} + 4dmaxe

N N

|Pr'e; —K;]ej||1 < + +

1

= csmax{Ay,d, j, Ay d_;} + cs€.

Now we consider the second item in (4.6).

Lemma 4.3. Let K; and A,, be defined by (4.3) and (4.4), respectively. Assume that 0 < dpyi, <
d,(x),d_(x) < dnax. Then for a given € > 0, there exists an integer N, > 0 and constants cs,cq > 0
such that

(K" = A, Dejll < cs max max{A,dyi. Av,d-i} + coe. (4.16)

Proof. Let
Aw =M +1,GoG]D, +nsGpGD-

then we have
||(K}1 — A Dejlly < II(Kjl — A Dejlli + 1A, — A Dejlls. 4.17)

On the one hand, observe that
Ki' = A = A (An - K)) K7 = 144, GuGL(D, — di ;DK +npA, GG (D - d_ ;DK
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we have
K" = A Dejll < noll&; WIGalFIDs — de DK el + sl WIGEITIID- — d_ ;DK e,

where

N
ID: = do DK ejlly = > |(di = di DKk, )
k=1

and

N
D = d_;DK; el = Y |(d-s = d_ )K"k, )]
k=1

As KjTl has off diagonal exponential decay property, similar to the derivation of (4.15), we can show
that, given a € > 0, there exists a integer N, > 0 and a constant & > 0, such that

IDs — duyDK; el < E185,dej + 2dmae,

and
I(D- —d_;DK;'ejll < & Az, d-j + 2dmae.

Therefore, there exists positive constants ¢, and ¢3, such that
(K" = A, Dejlli < & max{Ay,d.. ;. Ay,d-j} + Es€. (4.18)
On the other hand, observe that
A=A = A A, - A4
= 1A, (GoD,G} = G,GID A, +1pA,  (GpD_G} — GG D )A,)
= 14A,' Go(D,G] = GID)A,! + 154, Go(D_G} — GID A,
we have

A = A Dejll < A - A,
< HAIA N (7allGalli DG = GID. 1 + mllGalliID-G = GED_|Iy).

Since G, and Gg have off diagonal decay property, then as shown in the proof of Lemma 4.7 in [15],
given a € > 0, there exists a integer N, > 0 and a constant & > 0 such that

||D+G(Ty - G£D+”1 < 54 1%52%/ AN2d+,k + deaxe

and
T _ T ~ -
ID-G} = G3D_Ily <& max As,d- + 2dme

where Ag,d,x = max _|d,; —diy| and Ag,d_x = max _|d_; — d_;|. Therefore, there exists
k=N, <I<k+N; k—N,<I<k+N;

positive constants ¢s and ¢ such that

(A} = A Dejll; < & max max{Ag,d, 1, Ay,d_i} + E6€. (4.19)
1<k<N
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Now, let
szmaX{Nl,Ng}, C5 = Cp + Cs and Ce = C3 + Cg.

It follows from (4.18) and (4.19) that, given a € > 0, there exists a integer N, > 0 and constants
¢s, cg > 0 such that

||(KJTl - A Dejll < s max max{An,d; i, An,d_ i} + Co€.
The proof is completed. O

In combination with (4.5), Lemma 4.2 and Lemma 4.3, we obtain the following theorem.

Theorem 4.1. Assume 0 < dpin < di(x),d_(x) < dnax. Then given an € > 0, there exist an integer
N5 > 0 and constants c7,cg > 0 such that

1P = A7 < ¢ max max{Ay,d i, Av,d- i} + cse. (4.20)

Remark 1. If d,(x), d_(x) € Clxp,xg], then 1max max{Ay,d, x, An,d_x} can be very small for

<k<N

sufficiently large N, which implies that P1_1 then will be a good approximation to A",

4.2. Approximation of P, Uto PII

Now we consider the difference between P; "'to P[‘. As shown in Section 3.3 of [11], we know that,
for a given € > 0, there exists a polynomial p(¢) = 2’;:0 at’ of degree k such that

|5 - puk||, < € and || - pucca, <€ fori=1,2, N @21)
Define
P, = [Z pi (K;) eieiT)* (Z pi (K)) eie;] (4.22)
and : :

P, = (Z‘ Pi(C)ese] ] (Zl Pr(C)ee] ) (4.23)

Then we have
P! — P = (P! = Py) + (P, - P)) + (P, - P{Y). (4.24)

Lemma 4.4. Let P, and P, be defined by (4.22) and (4.23), respectively. Then we have
rank(P, — P,) < 8km.
Proof. Observe that
Ki = Ci = M = C(M) + 14d.. (Go G}, = CoC]) + mpd_; (GG, — C4Cy). (4.25)
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It is easy to see that

6 1 6 1 1 _1
1 1
M-CM)=— b6 |t e = - . (4.26)
8 PR | ISR | 8
16 |1 1 6 -1
For the matrix G, and its Strang’s circulant approximation C,, they have the following form
Ko Ko K,
K] K() Kl KO
G, = . ) and C, = ) . ,
K1 Ko Kl KO
where K, K; € R™, Therefore, we have
K, [
C.C, =Gy + G, +
K]
| K] K,
= G,G] + G, + G, + (4.27)
K| | K]
K\Kj| [KiK]
=G,G] + + +
KoK]
Similarly, we can show that
KoK
CpCp = GGy + + + . (4.28)
KK} KiK]
Therefore, we can see from (4.25), (4.26), (4.27) and (4.28) that K; — C; is of the form
+ +
Ki-C; = ,
+ +
where “ + ” denotes a m-by-m block matrix.
Analogous to the proof of Lemma 3.11 in [11], it follows from
k . _ k-1 _
PUC) = pulK) = Y a;(Cl=K!) = > > a,Cl 71 (Ci - KDK]
Jj=0 J=0 £=0
and
N N N *r N
Py P = (Z eie;pk(ci)} [Z(m(co - m(&))eie;] - [Z(pk(co - pk<Ki>)eie;) [Z pk(K»e,-e;]
i-1 i=1 i=1 i=1
that rank(P, — P,) < 8km. O
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On the other hand, for P, — P, and P, — P,, we can directly apply the proof of Lemma 3.12 in [11]
to obtain the following lemma.

Lemma 4.5. Let P, and P, be defined by (4.22) and (4.23), respectively. Then given a € > 0, there
exist constants ¢; > 0 and &3 > 0 such that

\P;" = Pill, < &€ and ||P,' — Py, < &e.

By Lemma 4.4 and Lemma 4.5, we obtain the following theorem.

Theorem 4.2. Let PII and P} ! be defined by (3.9) and (3.10), respectively. Then given a € > 0, there
exists constants ¢o > 0 and k > 0 such that

P -P'=E+M,
where E = (P;' — Py) + (Py — P{") is a small norm matrix with ||E|l, < &y€, and M = P, — Py is a low
rank matrix with rank(M) < 8km.
4.3. Approximation of P3' to P!
We can directly apply the analysis of section 3.4 in [11] to reach the following conclusion.

Lemma 4.6. Let Pgl and Pgl be defined by (3.10) and (3.11), respectively. Then, for a given € > 0,
there exist an integer £y > 0 and a constant cy > 0 such that

-1 —1
||P3 _Pz I, < co€

holds when the number of interpolation points in P3' satisfies € > €.
Summarizing our analysis, we have the following theorem.

Theorem 4.3. Let P;l and A be defined by (3.11) and (3.2), respectively. Then we have
PJ'A=1+E+S,

where E is a low rank matrix and S is a small norm matrix.

Proof. Observe that

PyA= (P A+ AN A= (P - A" ) A+ A (A+A-A) =1+ (P5' -4 )A+ A7 (A-A).
(4.29)

By (3.2), (3.7), Theorems 4.1, 4.2 and Lemma 4.6, we can show that
A-A=E+S, and P;'-A"=E;+S,,

where E| and E, are two low rank matrices, and S; and S, are two small norm matrices. Therefore, it
is easy to see from (4.29) that
PJ'A=1+E+S,

where E is a low rank matrix and S is a small norm matrix. O
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5. Numerical experiments

In this section, we carry out numerical experiments to show the performance of the proposed
preconditioners P; and P4. We use the preconditioned conjugate gradient (PCG) method to solve
the symmetric positive definite linear systems (2.6). In all experiments, we set the stopping criterion as

7%l
15112

where r; is the residual vector after k iterations and b is the right-hand side.
For the sake of comparison, we also test two other types of preconditioners which are proposed
in [7]. One is the Strang’s circulant preconditioner C, defined as

<1078,

Cy = (M) + 112d+ 5(G)$(G)" + 1gd_5(Gp)s(Gy)",

where s(M), s(G,) and s(Gp) are the strang-circulant approximations of the Toeplitz matrices M, G,
and Gg, and d, and d_ are the mean values of the diagonals of D, and D_, respectively. Another is the
banded preconditioner B({) defined as

B(t) =M + naBaDY)B(Ty + nﬁBBD(_j)E,;,

where B, and Bﬂ are the banded approximations of G, and Gﬁ which are of the form

[ (@) (@) ] r N
81 8o ® B ®
: (@) (@ 8 &1 8
. 8 1 8 0 k=t
(@ -, .. .. ®B) ®
8 and S 8 AL
. c. g(
N ) . .
(@) (@) (@) .. .. :
Z & 0 &1 & ® B
k=C B L 8 0 8 1
respectively.

Example 1. We consider balanced fractional diffusion equation (1.1) with (x;, xg) = (0,1)and T = 1.
The diffusion coefficients are given by

d.(x,1) = 1000(x + D" + 72, d_(x,1) = 1000(x + 1)*# + £,

and f(x,t) = 1000.

In the numerical testing, we set the number of temporal girds with M, = N/2. The results for
different values of @ and § are reported in Table 1. We do not report the numerical results of the
unpreconditioned CG method as it converges very slow.

In the table, we use “P3(£)” and “P4({)” to denote our proposed preconditioners with ¢ being the
number of interpolation points, “Iter” to denote the average number of iteration steps required to solve
the discrete fractional diffusion equation (2.6) at each time step, and “CPU” to denote the total CPU
time in seconds for solve the whole discretized system.
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Table 1. Numerical results for Example 1.

Cs B4) B(6) P3(3) P3(4) P4(3) Py(4)
N Iter CPU Iter CPU Iter CPU Iter CPU Iter CPU Iter CPU Iter CPU

a=06,8=06

211 6144 1490 3500 1026 31.00 9.60 14.00 521 1200 501 13.00 524 1100 5.06
212 6298 5868 42.81 47.63 37.00 4257 1400 18.80 13.00 1836 13.00 18.73 12.00 17.76
213 64.00 23127 50.01 21070 44.00 187.71 1500 76.60 13.00 69.07 13.00 7141 12.00 69.55
214 6500 1060.76 58.01 1068.46 52.00 989.73 15.00 334.53 14.00 319.51 14.00 337.00 13.00 325.66

a=06,8=07

211 6506 1661 31.00 9.63 2741 897 1400 543 13.00 554 13.00 536 1100 5.15
22 6672 61.84 37.00 40.06 32.88 39.05 1585 21.13 13.00 1823 13.00 18.85 12.00 17.94
213 68.00 24834 43.00 182.87 38.00 17032 16.01 83.84 14.54 7990 1434 7994 13.00 77.52
214 69.01 1171.84 49.00 910.07 43.95 862.68 18.00 409.78 1595 37491 1499 366.86 13.99 357.92

a=0.7,8=07

211 6755 1741 2829 897 2501 841 1496 585 1352 582 13.00 538 1200 5.64
22 69.01 6525 3400 3890 30.11 37.09 1600 2202 13.86 2020 14.00 20.61 12.00 18.76
2137009 26448 40.00 17653 3539 16435 17.98 9551 1595 87.88 14.00 77.99 13.00 77.78
24 7131 1197.63 46.00 857.65 41.00 797.35 18.00 41570 17.00 408.09 15.00 383.49 13.00 349.08

a=0.7,8=08

21 72,00 17.96 2397 753 21.06 7.00 1600 6.02 1400 595 13.04 541 1200 5.60
212 7368 6846 28.00 32.62 2500 30.81 1873 2553 1600 2281 1500 2206 1299 20.87
213 7516 28266 32.00 141.63 2898 14093 18.96 101.00 17.47 96.63 1500 8431 14.00 82.02
2147676 1262.66 35.99 683.73 32.98 653.98 20.00 458.79 17.79 430.50 16.00 397.79 14.00 370.01

a=08,8=08

211 7469 1891 21.00 7.04 19.00 6.65 17.94 6.82 1494 634 1400 576 12.00 5.60
2127609 7032 24.00 2841 2200 27.70 19.00 26.66 1665 24.02 1400 20.89 12.00 18.97
213 7757 29059 28.00 128.10 25.00 120.11 20.00 105.85 18.00 10020 15.00 83.79 13.00 78.07
2147937 129196 31.00 592.09 28.99 587.79 2024 464.72 18.00 432.03 1599 405.75 14.00 370.07

a=08,8=09

21l 7985 2058 1600 567 1500 5.66 19.19 745 1700 720 1496 6.18 13.00 6.03
212 8145 77.06  18.00 2274 17.00 22.56 1971 2673 17.00 24.08 1500 21.87 13.00 19.83
213 8414 32003 20.00 9592 1899 10071 22.00 115.14 19.12 10420 16.00 90.63 14.00 81.37
214 8547 141342 21.98 44953 19.99 428.83 2322 529.87 19.93 478.16 1697 424.17 14.00 374.99

a=09,8=09

21l 8203 2064 1400 495 13.00 495 2000 7.1 1700 722 1400 5.62 1200 5.57
2128441 7771 1500 1957 1400 19.73 22.14 29.98 18.83 2668 1500 22.15 13.00 20.20
213 8577 324.09 17.00 83.82 1600 84.84 2252 118.15 20.00 111.70 1599 90.72 13.99 84.47
214 86.84 142257 18.00 38427 17.00 385.21 23.96 541.14 20.00 49421 16.00 409.06 13.99 373.06

From Table 1, we can see that the banded preconditioner B({) and our proposed preconditioners
P3(€) and P4({) perform much better than the circulant preconditioner C in terms of both iteration
number and elapsed time. The banded preconditioner B(¢) has better performance when @ = § = 0.9.
In this case, the off-diagonals of the coefficient matrix decay to zero very quickly. For other cases,
P;(¢€) and P4({) perform much better.

We also see that the performance of P5(¢) and P4({) are very robust in the sense that the average
iteration numbers are almost the same for different values of @ and 3, as well as for the different mesh
size.
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Example 2. Consider the two dimensional balanced fractional diffusion equation

ou(x,y,t) N o
a5 + lfg;Dxl (d+(x, v, 1) SDX;u(x, v, t)) + RI;CD’;; (d_(x, v, 1) ED@ u(x,y, t))
+ BD0 (e, (x,y, 1) SDR2uCx, v, 0) + KD (e_(x,y. 1) SDPu(x, y. ) = f(x.3.1),

(x,)’) € Q = (XL, XR) X ()’L,yR), re (Oa T]a
u(x,y,t) =0, (x,y)e€dQ,tel0,T],

u(-x’y, O) = Mo(x’)’), (X,Y) € [-xLaxR] X [yLayR]’

where % <ap,pfr,a,B <1, and d.(x,y,t) > 0, er(x,y,1) > 0 for (x,y,1) € Qx (0, T].

As was shown in [7], the finite volume discretization leads to
AYYD = (M, @ Mpu™" + f9, j=1,2,..., M,

where
AV = M, ® My + 114, (Ga, ® 1,) DY (GI, ® 1) + 1, (G, ® 1,) DY (G}, ® 1,)
+ 7, (I ® Go,) EY (I, ® GL, ) + 15, (1. ® G, ) EY (1, ® G, ).

Here M., M, are tridiagonal matrices and Dij), EE_,j) are block diagonal matrices

D(ij) = diag ({{di (xH%,yk, tj)}kNil}:) , E(ij) = diag ({{ei (xi,)’k+%’ ti)}kNio}Nx ) ’

i=1

where N, and N, denote the number of grid points in the x-direction and y-direction, respectively.

Similar to the construction of P; of (3.11), we can define an approximate inverse preconditioner
for the two dimensional problems. For convenience of expression, we omit the superscript in AY. To
construct the preconditioner, we define the following circulant matrices

Ci,j = CMx ® CM‘ + nmd+(x,',yj) (CQIC;I) ® Iy + nﬂld_(xi,yj) (Cﬁl C,gl) ® Iy
+ Ny (33 YL ® (Co, CL, ) + mpe—(xi, y )1, ® (Cp,CR)

Then we choose the interpolation points {(X;,y;},i = 1,2,...,¢,, j = 1,2,...,{,, and we approximate
C oy
.

6
CP | D) duilxypAL) | F.

k=1 [=1

=
>

where F refers to the two dimensional discrete Fourier transform matrix of size N,N,, and f\kJ is the
diagonal matrix whose diagonals are the eigenvalues of C;; for 1 < k < £, and 1 <[ < ¢,. Then we
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obtain the resulting preconditioner

Py = Z Z F* Z Z b YA F (i @ e)(er @ e,-)T]

k=1 I=1

Z
= ||
S
=

Fr ¢kl(-xz,y])A 1/2F (ei ®€j)(€,’ ®€j)T

VA 1/ZF(e,@)ej)(e,(X’e]) ¢k1(xuy/)]

fx 5}' Nx’ M
-1/2
= e @ee® e drilxiy) FA)
k=1 =1 i=1 j=1
fx fy Nx Nv
-1/2
DAL (e @ e)(e; ® ;) sl yj))
k=1 =1 =1 j=1
[X y [X [}'
* X —=1/2 1/2
- Dy Ak,l/ ZZA PFDy,|,
k=1 I=1 k=1 I=1

where @ ; = diag (¢k1()€1,)’1) Gri(x1,y2), - ,¢k,l(XNX,yN,,)) forl <k<{,and1<I[<Y¥,.
In the tests, weset Q = (0,1) x (0,1), T =1,

d.(x,y,1) = e'(1000x* + 1000y* + 1), d_(x,y,1) = &'(1000x*#" + 1000y + 1),
e (x,y,1) = e'(1000x* + 1000y*"*2 + 1), e_(x,,1) = ¢'(1000x*#2 + 1000y***2 + 1),

and f(x,y,1) = 1000. We also set Ny = Ny = N, M = N/2 and {, = €, = {. The maximum iteration
number is set to be 500. As it is expensive to compute the second item of the Sherman-Morrison-
Woodburg formula 3.5 for the two dimensional problem, we only test the preconditioner P5(¢).

The results are reported in Table 2. We can see that, for the two dimensional problem, although
our proposed preconditioners P3(3) and P;(4) take more iteration steps to converge than the banded
preconditioners B(3) and B(4), it is much cheaper to implement our new preconditioners than banded
preconditioner and circulant preconditioner in terms of CPU time.

6. Concluding remarks

In this paper, we consider the preconditioners for the linear systems resulted from the discretization
of the balanced fractional diffusion equations. The coefficient matrices are symmetric positive definite
and can be written as the sum of a tridiagonal matrix and two Toeplitz-times-diagonal-times-Toeplitz
matrices. We investigate the approximate inverse preconditioners and show that the spectra of the
preconditioned matrices are clustered around 1. Numerical experiments have shown that the conjugate
gradient method, when applied to solve the preconditioned systems, converges very quickly. Besides,
we extend our preconditioning technique to the case of two dimensional problems.
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Table 2. Numerical results for Example 2

Cy B(3) B(4) P3(3) P3(4)
N Iter CPU Iter CPU Iter CPU Iter CPU Iter CPU

a) =ay = 06, ﬁ] Zﬁz =0.6
27 497.05 24231 2095 39.17 18.00 45.78 28.81 18.30 28.73 21.17

28 >500 - 25.95 588.07 2298 718.04 33.02 11240 3197 126.29
2 >500 - 31.11 9887.04 2798 1243590 38.02 868.40 36.80 1023.78
a) =ay = 07, ﬁ] =ﬁ2 =0.7

27 > 500 - 17.02  33.78 1595 43.17 36.30 23.01 35.31 25.93
28 >500 - 21.00 511.49 19.00 637.12 43.07 14457 41.18 163.50
2 >500 - 25.84 8799.13 23.42 1121725 52.83 1233.09 50.97 1455.41
a)p =y = 08, ﬁl Zﬂz =0.8

27 >500 - 13.98 2996 12.73 38.05 46.31 29.15 45.38 33.82
28 >500 - 16.00 437.62 1500 568.48 5830 198.03 56.60 223.90
2 >500 - 18.99 735396 17.72 9675.65 7626 1767.78 72.09 2053.69
a)p =y = 09, ,81 Zﬂz =0.9

27 >500 - 998 2537  9.00 32.09 62.08 3955  58.61 4291
28 >500 - 11.00 360.76 10.00 47030  83.97 28448 7890 309.27
2 >500 - 12.00 593338 11.99 8162.24 114.65 2631.44 109.24 3042.00
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