In this paper, we introduce the reversal of generalized Banach contraction principle and mean Lipschitzian mapping respectively. Secondly, we prove the existence and uniqueness of fixed points for these expanding type mappings. Further, we extend Wardowski's idea of $ F $-contraction by introducing the reversed generalized $ F $-contraction mapping and use our obtained result to prove the existence and uniqueness of its fixed point. Finally, we apply our results to prove the existence of a unique solution of a non-linear integral equation.
Citation: Shahid Bashir, Naeem Saleem, Syed Muhammad Husnine. Fixed point results of a generalized reversed $ F $-contraction mapping and its application[J]. AIMS Mathematics, 2021, 6(8): 8728-8741. doi: 10.3934/math.2021507
In this paper, we introduce the reversal of generalized Banach contraction principle and mean Lipschitzian mapping respectively. Secondly, we prove the existence and uniqueness of fixed points for these expanding type mappings. Further, we extend Wardowski's idea of $ F $-contraction by introducing the reversed generalized $ F $-contraction mapping and use our obtained result to prove the existence and uniqueness of its fixed point. Finally, we apply our results to prove the existence of a unique solution of a non-linear integral equation.
[1] | A. D. Arvanitakis, A proof of generalized Banach contraction conjecture, P. Am. Math. Soc., 131 (2003), 3647-3656. doi: 10.1090/S0002-9939-03-06937-5 |
[2] | S. Banach, Sur les operations dans les ensembles abstraits et leur application aux quations intgrales, Fund. Math., 3 (1992), 133-183. |
[3] | D. Dukic, L. Paunovic, S. Radenovic, Convergence of iterates with errors of uniformly quasi-lipschitzian mappings in cone metric spaces, Kragujevac J. Math., 35 (2011), 399-410. |
[4] | S. Furqan, H. Isik, N. Saleem, Fuzzy triple controlled metric spaces and related fixed point results, J. Funct. Space., 2021 (2021), 1-8. |
[5] | V. P. García, L. Piasecki, On mean nonexpansive mappings and the Lifshitz constant, J. Math. Anal. Appl., 396 (2012), 448-454. doi: 10.1016/j.jmaa.2012.06.045 |
[6] | J. Garnicki, Fixed point theorems for $F$-expanding mappings, Fixed Point Theory A., 2017 (2017), 1-10. |
[7] | K. Goebel, M. Japón Pineda, A new type of nonexpansiveness, In: Proceedings of 8-th International Conference on Fixed Point Theory and Applications, Chiang Mai, 2007. |
[8] | K. Goebel, M. Koter, A remark on nonexpansive mappings, Can. Math. Bull., 24 (1981) 113-115. |
[9] | K. Goebel, B. Sims, Mean lipschitzian mappings, Contemp. Math., 513 (2010), 157-167. |
[10] | H. Huang, S. Radenovi, Some fixed point results of generalized Lipschitz mappings on cone $b$-metric spaces over Banach algebras, J. Comput. Anal. Appl., 20 (2016), 566-583. |
[11] | W. A. Kirk, A fixed point theorem for mappings with a nonexpansive iterate, P. Am. Math. Soc., 29 (1971), 294-298. doi: 10.1090/S0002-9939-1971-0284887-3 |
[12] | J. Merryfield, J. Stein Jr., A generalization of the Banach contraction principle, J. Math. Anal. Appl., 273 (2002), 112-120. doi: 10.1016/S0022-247X(02)00215-9 |
[13] | C. Mongkolkeha, D. Gopal, Some common fixed point theorems for generalized $F$-contraction involving $w$-distance with some applications to differential equations, Mathematics, 7 (2019), 1-20. |
[14] | L. Piasecki, Classification of Lipschitz mappings, CRC Press, 2013. |
[15] | N. Saleem, M. De la Sen, S. Farooq, Coincidence best proximity point results in Branciari metric spaces with applications, J. Funct. Space., 2020 (2020), 1-17. |
[16] | N. Saleem, I. Iqbal, B. Iqbal, S. Radenovíc, Coincidence and fixed points of multivalued $F$-contractions in generalized metric space with application, J. Fixed Point Theory A., 22 (2020), 1-24. doi: 10.1007/s11784-019-0746-3 |
[17] | N. Saleem, H. Isik, S. Furqan, C. Park, Fuzzy double controlled metric spaces and related results, Journnal of Intelligent and Fuzzy Systems, 40 (2021), 9977-9985. doi: 10.3233/JIFS-202594 |
[18] | D. Wardowski, Fixed point theory of a new type of contractive mappings in complete metric spaces, Fixed Point Theory Appl., 2012 (2012). |
[19] | S. Xu, S. Radenovic, Fixed point theorems of generalized Lipschitz mappings on cone metric spaces over Banach algebras without assumption of normality, Fixed Point Theory Appl., 2014 (2014), 1-12. doi: 10.1186/1687-1812-2014-1 |