Research article

Fixed point results of a generalized reversed $ F $-contraction mapping and its application

  • Received: 19 January 2021 Accepted: 03 June 2021 Published: 08 June 2021
  • MSC : 47H10, 47H19, 54H25

  • In this paper, we introduce the reversal of generalized Banach contraction principle and mean Lipschitzian mapping respectively. Secondly, we prove the existence and uniqueness of fixed points for these expanding type mappings. Further, we extend Wardowski's idea of $ F $-contraction by introducing the reversed generalized $ F $-contraction mapping and use our obtained result to prove the existence and uniqueness of its fixed point. Finally, we apply our results to prove the existence of a unique solution of a non-linear integral equation.

    Citation: Shahid Bashir, Naeem Saleem, Syed Muhammad Husnine. Fixed point results of a generalized reversed $ F $-contraction mapping and its application[J]. AIMS Mathematics, 2021, 6(8): 8728-8741. doi: 10.3934/math.2021507

    Related Papers:

  • In this paper, we introduce the reversal of generalized Banach contraction principle and mean Lipschitzian mapping respectively. Secondly, we prove the existence and uniqueness of fixed points for these expanding type mappings. Further, we extend Wardowski's idea of $ F $-contraction by introducing the reversed generalized $ F $-contraction mapping and use our obtained result to prove the existence and uniqueness of its fixed point. Finally, we apply our results to prove the existence of a unique solution of a non-linear integral equation.



    加载中


    [1] A. D. Arvanitakis, A proof of generalized Banach contraction conjecture, P. Am. Math. Soc., 131 (2003), 3647-3656. doi: 10.1090/S0002-9939-03-06937-5
    [2] S. Banach, Sur les operations dans les ensembles abstraits et leur application aux quations intgrales, Fund. Math., 3 (1992), 133-183.
    [3] D. Dukic, L. Paunovic, S. Radenovic, Convergence of iterates with errors of uniformly quasi-lipschitzian mappings in cone metric spaces, Kragujevac J. Math., 35 (2011), 399-410.
    [4] S. Furqan, H. Isik, N. Saleem, Fuzzy triple controlled metric spaces and related fixed point results, J. Funct. Space., 2021 (2021), 1-8.
    [5] V. P. García, L. Piasecki, On mean nonexpansive mappings and the Lifshitz constant, J. Math. Anal. Appl., 396 (2012), 448-454. doi: 10.1016/j.jmaa.2012.06.045
    [6] J. Garnicki, Fixed point theorems for $F$-expanding mappings, Fixed Point Theory A., 2017 (2017), 1-10.
    [7] K. Goebel, M. Japón Pineda, A new type of nonexpansiveness, In: Proceedings of 8-th International Conference on Fixed Point Theory and Applications, Chiang Mai, 2007.
    [8] K. Goebel, M. Koter, A remark on nonexpansive mappings, Can. Math. Bull., 24 (1981) 113-115.
    [9] K. Goebel, B. Sims, Mean lipschitzian mappings, Contemp. Math., 513 (2010), 157-167.
    [10] H. Huang, S. Radenovi, Some fixed point results of generalized Lipschitz mappings on cone $b$-metric spaces over Banach algebras, J. Comput. Anal. Appl., 20 (2016), 566-583.
    [11] W. A. Kirk, A fixed point theorem for mappings with a nonexpansive iterate, P. Am. Math. Soc., 29 (1971), 294-298. doi: 10.1090/S0002-9939-1971-0284887-3
    [12] J. Merryfield, J. Stein Jr., A generalization of the Banach contraction principle, J. Math. Anal. Appl., 273 (2002), 112-120. doi: 10.1016/S0022-247X(02)00215-9
    [13] C. Mongkolkeha, D. Gopal, Some common fixed point theorems for generalized $F$-contraction involving $w$-distance with some applications to differential equations, Mathematics, 7 (2019), 1-20.
    [14] L. Piasecki, Classification of Lipschitz mappings, CRC Press, 2013.
    [15] N. Saleem, M. De la Sen, S. Farooq, Coincidence best proximity point results in Branciari metric spaces with applications, J. Funct. Space., 2020 (2020), 1-17.
    [16] N. Saleem, I. Iqbal, B. Iqbal, S. Radenovíc, Coincidence and fixed points of multivalued $F$-contractions in generalized metric space with application, J. Fixed Point Theory A., 22 (2020), 1-24. doi: 10.1007/s11784-019-0746-3
    [17] N. Saleem, H. Isik, S. Furqan, C. Park, Fuzzy double controlled metric spaces and related results, Journnal of Intelligent and Fuzzy Systems, 40 (2021), 9977-9985. doi: 10.3233/JIFS-202594
    [18] D. Wardowski, Fixed point theory of a new type of contractive mappings in complete metric spaces, Fixed Point Theory Appl., 2012 (2012).
    [19] S. Xu, S. Radenovic, Fixed point theorems of generalized Lipschitz mappings on cone metric spaces over Banach algebras without assumption of normality, Fixed Point Theory Appl., 2014 (2014), 1-12. doi: 10.1186/1687-1812-2014-1
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2672) PDF downloads(165) Cited by(5)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog