We assess the multi-derivative nonlinear neutral fractional order integro-differential equations with Atangana-Baleanu fractional derivative of the Riemann-Liouville sense. We discuss results about the existence and difference solution on some data, based on the Prabhakar fractional integral operator εαδ,η,V;c+ with generalized Mittag-Leffler function. The results are obtained by using Krasnoselskii's fixed point theorem and the Gronwall-Bellman inequality.
Citation: Veliappan Vijayaraj, Chokkalingam Ravichandran, Thongchai Botmart, Kottakkaran Sooppy Nisar, Kasthurisamy Jothimani. Existence and data dependence results for neutral fractional order integro-differential equations[J]. AIMS Mathematics, 2023, 8(1): 1055-1071. doi: 10.3934/math.2023052
[1] | Ihtisham Ul Haq, Nigar Ali, Hijaz Ahmad, Taher A. Nofal . On the fractional-order mathematical model of COVID-19 with the effects of multiple non-pharmaceutical interventions. AIMS Mathematics, 2022, 7(9): 16017-16036. doi: 10.3934/math.2022877 |
[2] | Qi Wang, Chenxi Xie, Qianqian Deng, Yuting Hu . Controllability results of neutral Caputo fractional functional differential equations. AIMS Mathematics, 2023, 8(12): 30353-30373. doi: 10.3934/math.20231550 |
[3] | Kanagaraj Muthuselvan, Baskar Sundaravadivoo, Kottakkaran Sooppy Nisar, Suliman Alsaeed . Discussion on iterative process of nonlocal controllability exploration for Hilfer neutral impulsive fractional integro-differential equation. AIMS Mathematics, 2023, 8(7): 16846-16863. doi: 10.3934/math.2023861 |
[4] | Lahcene Rabhi, Mohammed Al Horani, Roshdi Khalil . Existence results of mild solutions for nonlocal fractional delay integro-differential evolution equations via Caputo conformable fractional derivative. AIMS Mathematics, 2022, 7(7): 11614-11634. doi: 10.3934/math.2022647 |
[5] | Muhammed Jamil, Rahmat Ali Khan, Kamal Shah, Bahaaeldin Abdalla, Thabet Abdeljawad . Application of a tripled fixed point theorem to investigate a nonlinear system of fractional order hybrid sequential integro-differential equations. AIMS Mathematics, 2022, 7(10): 18708-18728. doi: 10.3934/math.20221029 |
[6] | Ahmed Morsy, Kottakkaran Sooppy Nisar, Chokkalingam Ravichandran, Chandran Anusha . Sequential fractional order Neutral functional Integro differential equations on time scales with Caputo fractional operator over Banach spaces. AIMS Mathematics, 2023, 8(3): 5934-5949. doi: 10.3934/math.2023299 |
[7] | Mohammed A. Almalahi, Mohammed S. Abdo, Satish K. Panchal . On the theory of fractional terminal value problem with ψ-Hilfer fractional derivative. AIMS Mathematics, 2020, 5(5): 4889-4908. doi: 10.3934/math.2020312 |
[8] | Kangqun Zhang . Existence and uniqueness of positive solution of a nonlinear differential equation with higher order Erdélyi-Kober operators. AIMS Mathematics, 2024, 9(1): 1358-1372. doi: 10.3934/math.2024067 |
[9] | Kanagaraj Muthuselvan, Baskar Sundaravadivoo, Suliman Alsaeed, Kottakkaran Sooppy Nisar . New interpretation of topological degree method of Hilfer fractional neutral functional integro-differential equation with nonlocal condition. AIMS Mathematics, 2023, 8(7): 17154-17170. doi: 10.3934/math.2023876 |
[10] | M. Mallika Arjunan, Nabil Mlaiki, V. Kavitha, Thabet Abdeljawad . On fractional state-dependent delay integro-differential systems under the Mittag-Leffler kernel in Banach space. AIMS Mathematics, 2023, 8(1): 1384-1409. doi: 10.3934/math.2023070 |
We assess the multi-derivative nonlinear neutral fractional order integro-differential equations with Atangana-Baleanu fractional derivative of the Riemann-Liouville sense. We discuss results about the existence and difference solution on some data, based on the Prabhakar fractional integral operator εαδ,η,V;c+ with generalized Mittag-Leffler function. The results are obtained by using Krasnoselskii's fixed point theorem and the Gronwall-Bellman inequality.
Fractional differential equations (FDEs) appeared as an excellent mathematical tool for, modeling of many physical phenomena appearing in various branches of science and engineering, such as viscoelasticity, statistical mechanics, dynamics of particles, etc. Fractional calculus is a recently developing work in mathematics which studies derivatives and integrals of functions of fractional order [26].
The most used fractional derivatives are the Riemann-Liouville (RL) and Caputo derivatives. These derivatives contain a non-singular derivatives but still conserves the most important peculiarity of the fractional operators [1,2,10,11,23,24]. Atangana and Baleanu described a derivative with a generalized Mittag-leffler (ML) function. This derivative is often called the Atangana-Baleanu (AB) fractional derivative. The AB-derivative in the senses of Riemman-Liouville and Caputo are denoted by ABR-derivative and ABC-derivative, respectively.
The AB fractional derivative is a nonlocal fractional derivative with nonsingular kernel which is connected with various applications [3,5,6,8,9,13,14,15,16]. Using the advantage of the non-singular ML kernal present in the AB fractional derivatives, operators, many authors from various branches of applied mathematics have developed and studied mathematical models involving AB fractional derivatives [18,22,29,30,31,32,35,36,37].
Mohamed et al. [25] considered a system of multi-derivatives for Caputo FDEs with an initial value problem, examined the existence and uniqueness results and obtained numerical results. Sutar et al. [32,33] considered multi-derivative FDEs involving the ABR derivative and examined existence, uniqueness and dependence results. Kucche et al. [12,19,20,21,34] enlarged the work of multi-derivative fractional differential equations involving the Caputo fractional derivative and studied the existence, uniqueness and continuous dependence of the solution.
Inspired by the preceding work, we perceive the multi-derivative nonlinear neutral fractional integro-differential equation with AB fractional derivative of the Riemann-Liouville sense of the problem:
dVdȷ+⋆0Dδȷ[V(ȷ)−x(ȷ,y(ȷ))]=φ(ȷ,V(ȷ),∫ȷ0K(ȷ,θ,V(θ))dθ,∫T0χ(ȷ,θ,V(θ))dθ),ȷ∈I | (1.1) |
V(0)=V0∈R, | (1.2) |
where ⋆0Dδȷ denotes the ABR fractional derivative of order δ∈(0,1), and φ∈C(I×R×R×R,R) is a non-linear function. Let P1V(ȷ)=∫ȷ0K(ȷ,θ,V(θ))dθ and P2V(ȷ)=∫T0χ(ȷ,θ,V(θ))dθ. Now, (1.1) becomes,
dVdȷ+⋆0Dδȷ[V(ȷ)−x(ȷ,y(ȷ))]=φ(ȷ,V(ȷ),P1V(ȷ),P2V(ȷ)),ȷ∈I, | (1.3) |
V(0)=V0∈R. | (1.4) |
In this work, we derive a few supplemental results using the characteristics of the fractional integral operator εαδ,η,V;c+. The existence results are obtained by Krasnoselskii's fixed point theorem and the uniqueness and data dependence results are obtained by the Gronwall-Bellman inequality.
Definition 2.1. [14] The Sobolev space Hq(X) is defined as Hq(X)={φ∈L2(X):Dβφ∈L2(X),∀|β|≤q}. Let q∈[1,∞) and X be open, X⊂R.
Definition 2.2. [11,17] The generalized ML function Eαδ,β(u) for complex δ,β,α with Re(δ)>0 is defined by
Eαδ,β(u)=∞∑t=0(α)tα(δt+β)utt!, |
and the Pochhammer symbol is (α)t, where (α)0=1,(α)t=α(α+1)...(α+t−1), t=1,2...., and E1δ,β(u)=Eδ,β(u),E1δ,1(u)=Eδ(u).
Definition 2.3. [4] The ABR fractional derivative of V of order δ is
⋆0Dδȷ[V(ȷ)−x(ȷ,y(ȷ))]=B(δ)1−δddȷ∫ȷ0Eδ[−δ1−δ(ȷ−θ)δ]V(θ)dθ, |
where V∈H1(0,1), δ∈(0,1), B(δ)>0. Here, Eδ is a one parameter ML function, which shows B(0)=B(1)=1.
Definition 2.4. [4] The ABC fractional derivative of V of order δ is
⋆0Dδȷ[V(ȷ)−x(ȷ,y(ȷ))]=B(δ)1−δ∫ȷ0Eδ[−δ1−δ(ȷ−θ)δ]V′(θ)dθ, |
where V∈H1(0,1), δ∈(0,1), and B(δ)>0. Here, Eδ is a one parameter ML function, which shows B(0)=B(1)=1.
Lemma 2.5. [4] If L{g(ȷ);b}=ˉG(b), then L{⋆0Dδȷg(ȷ);b}=B(δ)1−δbδˉG(b)bδ+δ1−δ.
Lemma 2.6. [26] L[ȷmδ+β−1E(m)δ,β(±aȷδ);b]=m!bδ−β(bδ±a)m+1,Em(ȷ)=dmdȷmE(ȷ).
Definition 2.7. [17,27] The operator εαδ,η,V;c+ on class L(m,n) is
(εαδ,η,V;c+)[V(ȷ)−x(ȷ,y(ȷ))]=∫t0(ȷ−θ)α−1Eαδ,η[V(ȷ−θ)δ]Θ(θ)dθ,ȷ∈[c,d], |
where δ,η,V,α∈C(Re(δ),Re(η)>0), and n>m.
Lemma 2.8. [17,27] The operator εαδ,η,V;c+ is bounded on C[m,n], such that ‖(εαδ,η,V;c+)[V(ȷ)−x(ȷ,y(ȷ))]‖≤P‖Θ‖, where
P=(n−m)Re(η)∞∑t=0|(α)t||α(δt+η)|[Re(δ)t+Re(η)]|V(n−m)Re(δ)|tt!. |
Here, δ,η,V,α∈C(Re(δ),Re(η)>0), and n>m.
Lemma 2.9. [17,27] The operator εαδ,η,V;c+ is invertible in the space L(m,n) and φ∈L(m,n) its left inversion is given by
([εαδ,η,V;c+]−1)[V(ȷ)−x(ȷ,y(ȷ))]=(Dη+ςc+ε−αδ,η,V;c+)[V(ȷ)−x(ȷ,y(ȷ))],ȷ∈(m,n], |
where δ,η,V,α∈C(Re(δ),Re(η)>0), and n>m.
Lemma 2.10. [17,27] Let δ,η,V,α∈C(Re(δ),Re(η)>0),n>m and suppose that the integral equation is
∫ȷ0(ȷ−θ)α−1Eαδ,η[V(ȷ−θ)δ]Θ(θ)dθ=φ(ȷ),ȷ∈(m,n], |
is solvable in the space L(m,n).Then, its unique solution Θ(ȷ) is given by
Θ(ȷ)=(Dη+ςc+ε−αδ,η,V;c+)[V(ȷ)−x(ȷ,y(ȷ))],ȷ∈(m,n]. |
Lemma 2.11. [7] (Krasnoselskii's fixed point theorem) Let A be a Banach space and X be bounded, closed, convex subset of A. Let F1,F2 be maps of S into A such that F1V+F2φ∈X ∀ V,φ∈U. The equation F1V+F2V=V has a solution on S, and F1, F2 is a contraction and completely continuous.
Lemma 2.12. [28] (Gronwall-Bellman inequality) Let V and φ be continuous and non-negative functions defined on I. Let V(ȷ)≤A+∫ȷaφ(θ)V(θ)dθ,ȷ∈I; here, A is a non-negative constant.
V(ȷ)≤Aexp(∫ȷaφ(θ)dθ),ȷ∈I. |
In this part, we need some fixed-point-techniques-based hypotheses for the results:
(H1) Let V∈C[0,T], function φ∈(C[0,T]×R×R×R,R) is a continuous function, and there exist +ve constants ζ1,ζ2 and ζ. ‖φ(ȷ,V1,V2,V3)−φ(ȷ,φ1,φ2,φ3)‖≤ζ1(‖V1−φ1‖+‖V2−φ2‖+‖V3−φ3‖) for all V1,V2,V3,φ1,φ2,φ3 in Y, ζ2=maxV∈R‖f(ȷ,0,0,0)‖, and ζ=max{ζ1,ζ2}.
(H2) P1 is a continuous function, and there exist +ve constants C1,C2 and C. ‖P1(ȷ,θ,V1)−P1(ȷ,θ,φ1)‖≤C1(‖V1−φ1‖)∀V1,φ1 in Y, C2=max(ȷ,θ)∈D‖P1(ȷ,θ,0)‖, and C=max{C1,C2}.
(H3) P2 is a continuous function and there are +ve constants D1,D2 and D. ‖P2(ȷ,θ,V1)−P2(ȷ,θ,φ1)‖≤D1(‖V1−φ1‖) for all V1,φ1 in Y, D2=max(ȷ,θ)∈D‖P2(ȷ,θ,0)‖ and D=max{D1,D2}.
(H4) Let x∈c[0,I], function u∈(c[0,I]×R,R) is a continuous function, and there is a +ve constant k>0, such that ‖u(ȷ,x)−u(ȷ,y)‖≤k‖x−y‖. Let Y=C[R,X] be the set of continuous functions on R with values in the Banach space X.
Lemma 2.13. If (H2) and (H3) are satisfied the following estimates, ‖P1V(ȷ)‖≤ȷ(C1‖V‖+C2),‖P1V(ȷ)−P1φ(ȷ)‖≤Cȷ‖V−φ‖, and ‖P2V(ȷ)‖≤ȷ(D1‖V‖+D2),‖P2V(ȷ)−P2φ(ȷ)‖≤Dȷ‖V−φ‖.
Theorem 3.1. The function φ∈C(I×R×R×R,R) and V∈C(I) is a solution for the problem of Eqs (1.3) and (1.4), iff V is a solution of the fractional equation
V(ȷ)=V0−B(δ)1−δ∫ȷ0Eδ[−δ1−δ(ȷ−θ)δ][V(ȷ)−x(ȷ,y(ȷ))]dθ+∫ȷ0φ(θ,V(θ),P1V(θ),P2V(θ))dθ,ȷ∈I. | (3.1) |
Proof. (1) By using Definition 2.3 and Eq (1.3), we get
ddȷ(V(ȷ)+B(δ)1−δ∫ȷ0Eδ[−δ1−δ(ȷ−θ)δ][V(ȷ)−x(ȷ,y(ȷ))]dθ)=φ(ȷ,V(ȷ),P1V(ȷ),P2V(ȷ)). |
Integrating both sides of the above equation with limits 0 to ȷ, we get
V(ȷ)+B(δ)1−δ∫ȷ0Eδ[−δ1−δ(ȷ−θ)δ][V(ȷ)−x(ȷ,y(ȷ))]dθ−V(0)=∫ȷ0φ(θ,V(θ),P1V(θ),P2V(θ))dθ,ȷ∈I. |
Conversely, with differentiation on both sides of Eq (3.1) with respect to ȷ, we get
dVdȷ+B(δ)1−δddȷ∫ȷ0Eδ[−δ1−δ(ȷ−θ)δ][V(ȷ)−x(ȷ,y(ȷ))]dθ=φ(ȷ,V(ȷ),P1V(ȷ),P2V(ȷ)),ȷ∈I. |
Using Definition 2.3, we get Eq (1.3) and substitute ȷ=0 in Eq (3.1), we get Eq (1.4).
Proof. (2) In Equation (1.3), taking the Laplace Transform on both sides, we get
L[V′(ȷ);b]+L[⋆0Dδȷ;b][V(ȷ)−x(ȷ,y(ȷ))]=L[φ(ȷ,V(ȷ),P1V(ȷ),P2V(ȷ));b]. |
Now, using the Laplace Transform formula for the AB fractional derivative of the RL sense, as given in Lemma 2.5, we get
bˉX(b)−[V(ȷ)−x(ȷ,y(ȷ))]−V(0)+B(δ)1−δbδˉX(b)bδ+δ1−δ=ˉG(b), |
ˉX(b)=[V(ȷ);b] and ˉG(b)=L[φ(ȷ,V(ȷ),P1V(ȷ),P2V(ȷ));b]. Using Eq (1.4), we get
ˉX(b)=V01b−B(δ)1−δbδ−1ˉX(b)bδ+δ1−δ[V(ȷ)−x(ȷ,y(ȷ))]+1bˉG(b). | (3.2) |
In Eq (3.2) applying the inverse Laplace Transform on both sides using Lemma 2.6 and the convolution theorem, we get
L−1[ˉX(b);ȷ]=V0L−1[1b;ȷ]−B(δ)1−δ(L−1[bδ−1bδ+δ1−δ][V(ȷ)−x(ȷ,y(ȷ))]∗L−1[ˉX(b);ȷ])+L−1[ˉG(b);ȷ]∗L−1[1b;ȷ]=V0−B(δ)1−δ(Eδ[−δ1−δȷδ][V(ȷ)−x(ȷ,y(ȷ))])+φ(ȷ,V(ȷ),P1V(ȷ),P2V(ȷ))=V0−B(δ)1−δ∫ȷ0Eδ[−δ1−δ(ȷ−θ)δ][V(ȷ)−x(ȷ,y(ȷ))]dθ+∫ȷ0φ(θ,V(θ),P1V(θ),P2V(θ))dθ.V(ȷ)=V0−B(δ)1−δ∫ȷ0Eδ[−δ1−δ(ȷ−θ)δ][V(ȷ)−x(ȷ,y(ȷ))]dθ+∫ȷ0φ(θ,V(θ),P1V(θ),P2V(θ))dθ. | (3.3) |
Theorem 3.2. Let δ∈(0,1). Define the operator F on C(I):
(FV)(ȷ)=V0−B(δ)1−δ(ε1δ,1,−δ1−δ;0+)[V(ȷ)−x(ȷ,y(ȷ))],V∈C(I). | (3.4) |
(A) F is a bounded linear operator on C(I).
(B) F satisfying the hypotheses.
(C) F(X) is equicontinuous, and X is a bounded subset of C(I).
(D) F is invertible, function φ∈C(I), and the operator equation FV=φ has a unique solution in C(I).
Proof. (A) From Definition 2.7 and Lemma 2.8, the fractional integral operator ε1δ,1,−δ1−δ;0+ is a bounded linear operator on C(I), such that
‖ε1δ,1,−δ1−δ;0+‖‖[V(ȷ)−x(ȷ,y(ȷ))]‖≤P‖V‖,ȷ∈I,where |
P=T∞∑n=0(1)nα(δn+1)(δn+1)|−δ1−δTδ|nn!=T∞∑n=0(δ1−δ)nTδnα(δn+2)=TEδ,2(δ1−δTδ), |
and we have
‖FV‖=|B(δ)1−δ|‖ε1δ,1,−δ1−δ;0+‖‖[V(ȷ)−x(ȷ,y(ȷ))]‖≤PB(δ)1−δ‖V‖,∀V∈C(I). | (3.5) |
Thus, FV=φ is a bounded linear operator on C(I).
(B) We consider V,φ∈C(I). By using linear operator F and bounded operator ε1δ,1,−δ1−δ;0+, for any ȷ∈I,
|(FV)(ȷ)−(Fφ)(ȷ)|=|F(V−φ)[V(ȷ)−x(ȷ,y(ȷ))]|≤B(δ)1−δ‖(ε1δ,1,−δ1−δ;0+V−φ)[V(ȷ)−x(ȷ,y(ȷ))]‖≤PB(δ)1−δ‖V−φ‖. |
Where, P=TEδ,2(δ1−δTδ), then the operator F is satisfied the hypotheses with constant PB(δ)1−δ.
(C) Let U={V∈C(I):‖V‖≤R} be a bounded and closed subset of C(I), V∈U, and ȷ1,ȷ2∈I with ȷ1≤ȷ2.
|(FV)(ȷ1)−(FV)(ȷ2)|=|B(δ)1−δ(ε1δ,1,−δ1−δ;0+)[V(ȷ1)−u(l1,x(l))]−B(δ)1−δ(ε1δ,1,−δ1−δ;0+)[V(ȷ2)−u(l2,x(l))]|≤B(δ)1−δ|∫ȷ10{Eδ[−δ1−δ(ȷ1−θ)δ]−Eδ[−δ1−δ(ȷ2−θ)δ]}[V(ȷ)−x(ȷ,y(ȷ))]dθ|+B(δ)1−δ|∫ȷ2ȷ1Eδ[−δ1−δ(ȷ2−θ)δ][V(ȷ)−x(ȷ,y(ȷ))]dθ|≤B(δ)1−δ∞∑n=0|(−δ1−δ)n|1α(nδ+1)∫ȷ10|(ȷ1−θ)nδ−(ȷ2−θ)nδ||[V(ȷ)−x(ȷ,y(ȷ))]|dθ+B(δ)1−δ∞∑n=0|(−δ1−δ)n|1α(nδ+1)∫ȷ2ȷ1|(ȷ2−θ)nδ||[V(ȷ)−x(ȷ,y(ȷ))]|dθ≤LB(δ)1−δ∞∑n=0(δ1−δ)n1α(nδ+1)∫ȷ10(ȷ2−θ)nδ−(ȷ1−θ)nδdθ+LB(δ)1−δ∞∑n=0(δ1−δ)n1α(nδ+1)∫ȷ2ȷ1(ȷ2−θ)nδdθ≤RB(δ)1−δ∞∑n=0(δ1−δ)n1α(nδ+1){−(ȷ2−ȷ1)nδ+1+ȷnδ+12−ȷnδ+11+(ȷ2−ȷ1)nδ+1}≤RB(δ)1−δ∞∑n=0(δ1−δ)n1α(nδ+2){ȷnδ+12−ȷnδ+11}|(FV)(ȷ1)−(FV)(ȷ2)|≤RB(δ)1−δ∞∑n=0(δ1−δ)n1α(nδ+2){ȷnδ+12−ȷnδ+11}. | (3.6) |
Hence, if |ȷ1−ȷ2|→0 then |(FV)(ȷ1)−(FV)(ȷ2)|→0.
∴ (FV) is equicontinuous on I.
(D) By Lemmas 2.9 and 2.10, φ∈C(I), and we get
(ε1δ,1,−δ1−δ;0+)−1[V(ȷ)−x(ȷ,y(ȷ))]=(D1+β0+ε−1δ,β,−δ1−δ;0+)[V(ȷ)−x(ȷ,y(ȷ))],ȷ∈(m,n). | (3.7) |
By Eqs (3.4) and (3.5), we have
(F−1)[V(ȷ)−x(ȷ,y(ȷ))]=(B(δ)1−δε1δ,1,−δ1−δ;0+)−1[V(ȷ)−x(ȷ,y(ȷ))]=1−δB(δ)(D1+β0+ε−1δ,β,−δ1−δ;0+)[V(ȷ)−x(ȷ,y(ȷ))],ȷ∈(m,n), |
where β∈C with Re(β)>0. This shows F is invertible on C(I) and
(FV)[V(ȷ)−x(ȷ,y(ȷ))]=[V(ȷ)−x(ȷ,y(ȷ))],ȷ∈I, |
has the unique solution,
V(ȷ)=(F−1[V(ȷ)−x(ȷ,y(ȷ))])=1−δB(δ)(D1+β0+ε−1δ,β,−δ1−δ;0+)[V(ȷ)−x(ȷ)),y(ȷ))],ȷ∈(m,n). | (3.8) |
Theorem 4.1. Let φ∈C(I×R×R×R,R). Then, the ABR derivative ⋆0Dδȷ[V(ȷ)−x(ȷ,y(ȷ))]=φ(ȷ,V(ȷ),P1V(ȷ),P2V(ȷ)),ȷ∈I, is solvable in C(I), and the solution in C(I) is
V(ȷ)=1−δB(δ)(D1+β0+ε−1δ,β,−δ1−δ;0+)[V(ȷ)−x(ȷ,y(ȷ))],ȷ∈I, | (4.1) |
where β∈C,Re(β)>0, and ˆφ(ȷ)=∫ȷ0φ(θ,V(θ),P1V(θ),P2V(θ))dθ,ȷ∈I.
Proof. The corresponding fractional equation of the ABR derivative
⋆0Dδȷ[V(ȷ)−x(ȷ,y(ȷ))]=φ(ȷ,V(ȷ),P1V(ȷ),P2V(ȷ)),ȷ∈I, |
is given by
B(δ)1−δ∫ȷ0Eδ[−δ1−δ(ȷ−θ)δ][V(ȷ)−x(ȷ,y(ȷ))]dθ=∫ȷ0φ(θ,V(θ),P1V(θ),P2V(θ))dθ,ȷ∈I. |
Using operator F of Eq (3.4), we get
(FV)(s)=∫ȷ0φ(θ,V(θ),P1V(θ),P2V(θ))dθ=ˆφ(ȷ),ȷ∈I. | (4.2) |
Equations (3.7) and (4.2) are solvable, and we get
V(ȷ)=1−δB(δ)(D1+β0+ε−1δ,β,−δ1−δ;0+)[V(ȷ)−x(ȷ,y(ȷ))],ȷ∈I;β∈C,Re(β)>0. | (4.3) |
Theorem 4.2. Let φ∈C(I×R×R×R,R) satisfy (H1)–(H3) with L=supȷ∈Iω(ȷ), where ω(ȷ)=ζ(1+Cȷ+DT), if L=min{1,12T}. Then problem of (1.3) and (1.4) has a solution in C(I) provided
2B(δ)TEδ,2(δ1−δ)Tδ1−δ≤1. | (4.4) |
Proof. Define
R=‖V0‖+NφT1−LT−B(δ)TEδ,2(δ1−δ)Tδ1−δ, |
where Nφ=supȷ∈I‖φ(ȷ,0,0,0)‖. Let U={V∈C(I):‖V‖≤R}. Consider F1:X→A and F2:X→A given as
(F1V)(ȷ)=V0+∫ȷ0φ(θ,V(θ),P1V(θ),P2V(θ))dθ,ȷ∈I,(F2V)(ȷ)=−(F)[V(ȷ)−x(ȷ,y(ȷ))],ȷ∈I. |
Let V=F1V+F2V,V∈C(I) is the fractional Eq (3.1) to the problems (1.3) and (1.4).
Hence, the operators F1 and F2 satisfy the Krasnoselskii's fixed point theorem.
Step (ⅰ) F1 is a contraction.
By (H1)–(H3) on φ, ∀ V,φ∈C(I) and ȷ∈I,
|F1V(ȷ)−F2φ(ȷ)|≤ω(ȷ)|V(ȷ)−φ(ȷ)|≤R‖V−φ‖. | (4.5) |
This gives, ‖F1V−F2φ‖≤RT‖V−φ‖,V,φ∈C(I).
Step (ⅱ) F2 is completely continuous. By using Theorem 3.3 and Ascoli-Arzela theorem, F2=−F is completely continuous.
Step (ⅲ) F1V+F2φ∈U, for any V,φ∈U, using Theorem 3.3, we obtain
‖(F1V+F2φ)(ȷ)‖≤‖(F1V)(ȷ)‖+‖(F2φ)(ȷ)‖≤‖V0‖+∫ȷ0‖φ(θ,V(θ),P1V(θ),P2V(θ))‖dθ+‖ε1δ,1,−δ1−δ;0+φ‖≤‖V0‖+∫ȷ0‖φ(θ,V(θ),P1V(θ),P2V(θ))‖dθ+B(δ)1−δTEδ,2(δ1−δTδ)‖φ‖≤‖V0‖+∫ȷ0‖φ(θ,V(θ),P1V(θ),P2V(θ))−φ(θ,0,0,0)‖dθ+∫ȷ0‖φ(θ,0,0,0)‖dθ+B(δ)1−δTEδ,2(δ1−δTδ)L≤‖V0‖+∫ȷ0ζ(‖V‖+Cȷ‖V‖+DT‖V‖)dθ+Nφ∫ȷ0dθ+B(δ)1−δTEδ,2(δ1−δTδ)L≤‖V0‖+ζ(1+Cȷ+DT)∫ȷ0‖V‖dθ+Nφ∫ȷ0dθ+B(δ)1−δTEδ,2(δ1−δTδ)L≤‖V0‖+ω(ȷ)R∫ȷ0dθ+Nφ∫ȷ0dθ+B(δ)1−δTEδ,2(δ1−δTδ)L≤‖V0‖+LRT+NφT+B(δ)1−δTEδ,2(δ1−δTδ)L. | (4.6) |
By definition of R, we get
‖V0‖+NφT=L(1−RT+B(δ)TEδ,2(δ1−δTδ)1−δ). | (4.7) |
Using the Eq (4.5) in (4.7), we get condition of Eq (4.4).
‖(F1V+F2φ)(ȷ)‖≤L(2B(δ)TEδ,2(δ1−δ)Tδ1−δ),ȷ∈I. | (4.8) |
∴‖(F1V+F2φ)(ȷ)‖≤L,ȷ∈I. This gives, F1V+F2φ∈U, ∀V,φ∈X.
From Steps (ⅰ)–(ⅲ), all the conditions of Lemma 2.11 follow.
Theorem 4.3. By Theorem 4.2, the Eqs (1.3) and (1.4) have a unique solution in C(I).
Proof. (1) The problems (1.3) and (1.4) have an operator equation form as:
(ε1δ,1,−δ1−δ;0+)[V(ȷ)−x(ȷ,y(ȷ))]=ˆφ(ȷ),ȷ∈I, | (4.9) |
where,
ˆφ(ȷ)=1−δB(δ)(V0−V(ȷ)+∫ȷ0φ(θ,V(θ),P1V(θ),P2V(θ))dθ),ȷ∈I. |
By Theorem 4.2, Eq (4.7) is solvable in C(I), by Lemma 2.10 we get a unique solution of Eqs (1.3) and (1.4),
V(ȷ)=(D1+β0+ε−1δ,β,−δ1−δ;0+)[V(ȷ)−x(ȷ,y(ȷ))],V∈C(I). |
Proof. (2) Let V,φ be solutions of Eqs (1.3) and (1.4). By fractional integral operators and (H1)–(H3), we find, for any ȷ∈I,
|V(ȷ)−φ(ȷ)|≤|B(δ)1−δ(ε1δ,1,−δ1−δ;0+(V−φ))[V(ȷ)−x(ȷ,y(ȷ))]|+∫ȷ0|φ(θ,V(θ),P1V(θ),P2V(θ))−φ(θ,φ(θ),P1φ(θ),P2φ(θ))|dθ≤|B(δ)1−δ∫ȷ0Eδ[−δ1−δ(ȷ−θ)δ](V(θ)−φ(θ))dθ|+∫ȷ0ζ(|V(θ)−φ(θ)|+C|V(θ)−φ(θ)|+D|V(θ)−φ(θ)|)dθ≤B(δ)1−δ∫ȷ0Eδ(|−δ1−δTδ|)|V(θ)−φ(θ)|dθ+∫ȷ0ζ(1+C+D)|V(θ)−φ(θ)|dθ≤B(δ)1−δ∫ȷ0Eδ(δ1−δTδ)|V(θ)−φ(θ)|dθ+∫ȷ0[V(ȷ)−x(ȷ,y(ȷ))]|V(θ)−φ(θ)|dθ≤∫ȷ0[B(δ)1−δEδ(δ1−δTδ)+[V(ȷ)−x(ȷ,y(ȷ))]]|V(θ)−φ(θ)|dθ|V(ȷ)−φ(ȷ)|≤∫ȷ0[B(δ)1−δEδ(δ1−δTδ)+[V(ȷ)−x(ȷ,y(ȷ))]]|V(θ)−φ(θ)|dθ. | (4.10) |
Theorem 5.1. By Theorem 4.2, if V(ȷ) is a solution of Eqs (1.3) and (1.4), then
|V(ȷ)|≤{|V0|+NφT}exp(∫ȷ0[B(δ)1−δEδ(δ1−δTδ)+[V(ȷ)−x(ȷ,y(ȷ))]]dθ),ȷ∈I, | (5.1) |
where, Nφ=supȷ∈I|φ(ȷ,0,0,0)|.
Proof. If V(ȷ) is a solution of Eqs (1.3) and (1.4), for all ȷ∈I,
|V(ȷ)|≤|V0|−B(δ)1−δ∫ȷ0Eδ(|−δ1−δ(ȷ−θ)δ|)|V(θ)|dθ+∫ȷ0|φ(θ,V(θ),P1V(θ),P2V(θ))|dθ |
≤|V0|−B(δ)1−δ∫ȷ0Eδ(δ1−δ(ȷ−θ)δ)|V(θ)|dθ+∫ȷ0|φ(θ,V(θ),P1V(θ),P2V(θ))−φ(θ,0,0,0)|dθ+∫ȷ0|φ(θ,0,0,0)|dθ≤|V0|−B(δ)1−δ∫ȷ0Eδ(δ1−δTδ)|V(θ)|dθ+∫ȷ0ζ(|V(θ)|+C|V(θ)|+D|V(θ)|)dθ+Nφȷ≤|V0|−B(δ)1−δ∫ȷ0Eδ(δ1−δTδ)|V(θ)|dθ+∫ȷ0ζ(1+C+D)|V(ȷ)|dθ+NφT≤|V0|−B(δ)1−δ∫ȷ0Eδ(δ1−δTδ)|V(θ)|dθ+∫ȷ0[V(ȷ)−x(ȷ,y(ȷ))]|V(θ)|dθ+NφT≤{|V0|+NφT}+∫ȷ0[B(δ)1−δEδ(δ1−δTδ)+[V(ȷ)−x(ȷ,y(ȷ))]]|V(θ)|dθ. |
By Lemma 2.12, we get
|V(ȷ)|≤{|V0|+NφT}exp(∫ȷ0[B(δ)1−δEδ(δ1−δTδ)+[V(ȷ)−x(ȷ,y(ȷ))]]dθ),ȷ∈I. | (5.2) |
We discuss data dependence results for the problem
dφdȷ+⋆0Dδȷ[V(ȷ)−x(ȷ,y(ȷ))]=˜φ(ȷ,φ(ȷ),P1φ(ȷ),P2φ(ȷ)),ȷ∈I, | (6.1) |
φ(0)=φ0∈R. | (6.2) |
Theorem 6.1. Equation (4.2) holds, and ξk>0, where k=1,2 are real numbers such that,
|V0−φ0|≤ξ1,|φ(ȷ,V(ȷ),P1V(ȷ),P2V(ȷ))−˜φ(ȷ,φ(ȷ),P1φ(ȷ),P2φ(ȷ))|≤ξ2,ȷ∈I. | (6.3) |
φ(ȷ) is a solution of ABR fractional derivative Eqs (6.1) and (6.2), and V(ȷ) is a solution of Eqs (1.3) and (1.4).
Proof. Let V,φ are the solution of Eqs (1.3) and (1.4), (6.1) and (6.2) respectively. We find for any
|V(ȷ)−φ(ȷ)|≤|V0−φ0|+B(δ)1−δ∫ȷ0Eδ(|−δ1−δ(ȷ−θ)δ|)|V(θ)−φ(θ)|dθ+∫ȷ0|φ(θ,V(θ),P1V(θ),P2V(θ))−˜φ(s,φ(θ),P1φ(θ),P2φ(θ))|dθ≤|V0−φ0|+B(δ)1−δ∫ȷ0Eδ(|−δ1−δ(ȷ−θ)δ|)|V(θ)−φ(s)|dθ+∫ȷ0|φ(θ,V(θ),P1V(θ),P2V(θ))−φ(θ,φ(θ),P1φ(θ),P2φ(θ))|dθ+∫ȷ0|φ(θ,V(θ),P1V(θ),P2V(θ))−˜φ(θ,φ(θ),P1φ(θ),P2φ(θ))|dθ≤ξ1+B(δ)1−δ∫ȷ0Eδ(δ1−δTδ)|V(θ)−φ(θ)|dθ+∫ȷ0ζ(|V(θ)−φ(θ)|+C|V(θ)−φ(θ)|+D|V(θ)−φ(θ)|)dθ+ξ2∫ȷ0dθ≤ξ1+B(δ)1−δ∫ȷ0Eδ(δ1−δTδ)|V(θ)−φ(θ)|dθ+∫ȷ0ζ(1+C+D)|V(θ)−φ(θ)|dθ+ξ2ȷ≤ξ1+B(δ)1−δ∫ȷ0Eδ(δ1−δTδ)|V(θ)−φ(θ)|dθ+∫ȷ0[V(ȷ)−x(ȷ,y(ȷ))]|V(θ)−φ(θ)|dθ+ξ2T|V(ȷ)−φ(ȷ)|≤ξ1+ξ2T+∫ȷ0[B(δ)1−δEδ(δ1−δTδ)+[V(ȷ)−x(ȷ,y(ȷ))]]|V(ȷ)−φ(θ)|dθ. |
By Lemma 2.12, we get
|V(ȷ)−φ(ȷ)|≤(ξ1+ξ2T)exp(∫ȷ0[B(δ)1−δEδ(δ1−δTδ)+[V(ȷ)−x(ȷ,y(ȷ))]]dθ),ȷ∈I. | (6.4) |
Let any λ,λ0∈R and
dVdȷ+⋆0Dδȷ[V(ȷ)−x(ȷ,y(ȷ))]=Θ(ȷ,V(ȷ),P1V(ȷ),P2V(ȷ),λ),ȷ∈I, | (7.1) |
V(0)=V0∈R. | (7.2) |
dVdȷ+⋆0Dδȷ[V(ȷ)−x(ȷ,y(ȷ)]=Θ(ȷ,V(ȷ),P1V(ȷ),P2V(ȷ),λ0),ȷ∈I, | (7.3) |
V(0)=V0∈R. | (7.4) |
Theorem 7.1. Let the function Θ satisfy Theorem 4.2. Suppose there exists ω,u∈C(I,R+) such that,
|Θ(ȷ,V,P1V,P2V,λ)−Θ(ȷ,φ,P1φ,P2φ,λ)|≤ω(ȷ)|V−φ|,|Θ(ȷ,V,P1V,P2V,λ)−Θ(ȷ,V,P1V,P2V,λ0)|≤u(ȷ)|λ−λ0|. |
If V1,V2 are the solutions of Eqs (7.1) and (7.3), then
|V1(ȷ)−V2(ȷ)|≤PT|λ−λ0|exp(∫ȷ0[B(δ)1−δEδ(−δ1−δTδ)+[V(ȷ)−x(ȷ,y(ȷ))]]dθ),ȷ∈I, | (7.5) |
where P=supȷ∈Iu(ȷ).
Proof. Let, for any ȷ∈I,
|V1(ȷ)−V2(ȷ)|≤B(δ)1−δ|∫ȷ0Eδ[−δ1−δ(ȷ−θ)δ](V2(θ)−V1(θ)dθ)|+∫ȷ0|Θ(θ,V1(θ),P1V1(θ),P2V1(θ),λ)−Θ(θ,V2(θ),P1V2(θ),P2V2(θ),λ0)|dθ≤B(δ)1−δ∫ȷ0Eδ(|−δ1−δ(ȷ−θ)δ|)|V1(θ)−V2(θ)|dθ+∫ȷ0|Θ(θ,V1(θ),P1V1(θ),P2V1(θ),λ)−Θ(θ,V2(θ),P1V2(θ),P2V2(θ),λ)|dθ+∫ȷ0|Θ(θ,V2(θ),P1V2(θ),P2V2(θ),λ)−Θ(θ,V2(θ),P1V2(θ),P2V2(θ),λ0)|dθ≤B(δ)1−δ∫ȷ0Eδ(δ1−δ(ȷ−θ)δ)|V1(θ)−V2(θ)|dθ+∫ȷ0ζ(|V1(θ)−V2(θ)|+C|V1(θ)−V2(θ)|+D|V1(θ)−V2(θ)|)dθ+∫ȷ0u(θ)|λ−λ0|dθ≤B(δ)1−δ∫ȷ0Eδ(δ1−δTδ)|V1(θ)−V2(θ)|dθ+∫ȷ0ζ(1+C+D)|V1(θ)−V2(θ)|dθ+Pȷ|λ−λ0|≤B(δ)1−δ∫ȷ0Eδ(δ1−δTδ)|V1(θ)−V2(θ)|dθ+∫ȷ0[V(ȷ)−x(ȷ,y(ȷ))]|V1(θ)−V2(θ)|dθ+PT|λ−λ0|≤∫ȷ0[B(δ)1−δEδ(δ1−δTδ)+[V(ȷ)−x(ȷ,y(ȷ))]]|V1(θ)−V2(θ)|dθ+PT|λ−λ0|. |
By Lemma 2.12,
|V1(ȷ)−V2(ȷ)|≤PT|λ−λ0|exp(∫ȷ0[B(δ)1−δEδ(δ1−δTδ)+[V(ȷ)−x(ȷ,y(ȷ))]]dθ),ȷ∈I. | (7.6) |
Consider a nonlinear ABR fractional derivative with neutral integro-differential equations of the form:
dVdȷ+⋆0D12ȷ[V(ȷ)−x(ȷ,y(ȷ))]=φ(ȷ,V(ȷ),P1V(ȷ),P2V(ȷ)),ȷ∈I=[0,2], | (8.1) |
V(0)=1∈R. | (8.2) |
φ:(I×R×R×R)→R is a continuous nonlinear function such that,
φ(ȷ,V(ȷ),P1V(ȷ),P2V(ȷ))=|V(ȷ)|+13+M(ȷ)+N(ȷ),ȷ∈I, |
and
M(ȷ)=B(12){ȷE12,2(−ȷ12)+E12(−ȷ12)−ȷ−1},N(ȷ)=B(12){E12,2(−ȷ12)+ȷE12(−ȷ12)−1}. |
We observe that for all V,φ∈R and ȷ∈I,
|φ(ȷ,V,P1V,P2V)−φ(ȷ,φ,P1φ,P2φ)|=|(|V(ȷ)|+13+M(ȷ)+N(ȷ))−(|φ(ȷ)|+13+M(ȷ)+N(ȷ))|≤13|V−φ|. | (8.3) |
The function φ satisfies (H1)–(H4) with constant 13. From Theorem 4.2, we have δ=12 and T = 2 which is substitute in Eq (4.2), and we get
B(12)<18E12,2(212). | (8.4) |
If the function B(δ) satisfies Eq (8.4), then Eqs (8.1) and (8.2) have a unique solution.
V(ȷ)=ȷ3+1,ȷ∈[0,2]. | (8.5) |
In this research article, we explored multi-derivative nonlinear neutral fractional integro-differential equations involving the ABR fractional derivative. The elementary results of the existence, uniqueness and dependence solution on various data are based on the Prabhakar fractional integral operator εαδ,η,V;c+ involving a generalized ML function. The existence results are obtained by Krasnoselskii's fixed point theorem, and the uniqueness and data dependence results are obtained by the Gronwall-Bellman inequality with continuous functions.
The research on Existence and data dependence results for neutral fractional order integro-differential equations by Khon Kaen University has received funding support from the National Science, Research and Innovation Fund.
The authors declare no conflict of interest.
[1] |
T. Abdeljawad, Fractional operators with generalized Mittag-Leffler kernels and their iterated differintegrals, Chaos, 29 (2019), 023102. https://doi.org/10.1063/1.5085726 doi: 10.1063/1.5085726
![]() |
[2] |
T. Abdeljawad, D. Baleanu, On fractional derivatives with generalized Mittag-Leffler kernels, Adv. Differ. Equ., 2018 (2018), 468. https://doi.org/10.1186/s13662-018-1914-2 doi: 10.1186/s13662-018-1914-2
![]() |
[3] |
A. A. Hamoud, Existence and uniqueness of solutions for fractional neutral Volterra-Fredholm integro-diffrential equations, Adv. Theor. Nonlinear Anal. Appl., 4 (2020), 321–331. https://doi.org/10.31197/atnaa.799854 doi: 10.31197/atnaa.799854
![]() |
[4] |
A. Atangana, D. Baleanu, New fractional derivatives with nonlocal and non-singular kernel: Theory and application to heat transfer model, Therm. Sci., 20 (2016), 763–769. https://doi.org/10.48550/arXiv.1602.03408 doi: 10.48550/arXiv.1602.03408
![]() |
[5] |
A. Atangana, S. I. Araz, Modeling and forecasting the spread of COVID-19 with stochastic and deterministic approaches: Africa and Europe, Adv. Differ. Equ., 2021 (2021), 57. https://doi.org/10.1186/s13662-021-03213-2 doi: 10.1186/s13662-021-03213-2
![]() |
[6] |
A. Atangana, S. I. Araz, Rhythmic behaviors of the human heart with piecewise derivative, Math. Biosci. Eng., 19 (2022), 3091–3109. https://doi.org/10.3934/mbe.2022143 doi: 10.3934/mbe.2022143
![]() |
[7] |
R. P. Agarwal, Y. Zhou, Y. He, Existence of fractional neutral functional differential equations, Comput. Math. Appl., 59 (2010), 1095–1100. https://doi.org/10.1016/j.camwa.2009.05.010 doi: 10.1016/j.camwa.2009.05.010
![]() |
[8] |
N. H. Aljahdaly, R. Shah, R. P. Agarwal, T. Botmart, The analysis of the fractional-order system of third-order KdV equation within different operators, Alex. Eng. J., 61 (2022), 11825–11834. https://doi.org/10.1016/j.aej.2022.05.032 doi: 10.1016/j.aej.2022.05.032
![]() |
[9] |
M. Alshammari, N. Iqbal, W. W. Mohammed, T. Botmart, The solution of fractional-order system of KdV equations with exponential-decay kernel, Results Phys., 38 (2022), 105615. https://doi.org/10.1016/j.rinp.2022.105615 doi: 10.1016/j.rinp.2022.105615
![]() |
[10] |
E. Bonyah, R. Zarin Fatmawati, Mathematical modeling of cancer and hepatitis co-dynamics with non-local and non-singular kernel, Commun. Math. Biol. Neu., 2022 (2022). http://doi.org/10.28919/cmbn/5029 doi: 10.28919/cmbn/5029
![]() |
[11] | A. Erdelyi, W. Magnus, F. Oberhettinger, F. G. Tricomi, Higher transcendental functions, McGraw-Hill, New York, 1953. |
[12] |
A. Fernandez, T. Abdeljawad, D. Baleanu, Relations between fractional models with three-parameter Mittag-Leffler kernels, Adv. Differ. Equ., 2020 (2020), 186. https://doi.org/10.1186/s13662-020-02638-5 doi: 10.1186/s13662-020-02638-5
![]() |
[13] |
N. Iqbal, T. Botmart, W. W. Mohammed, A. Ali, Numerical investigation of fractional-order Kersten-Krasil'shchik coupled KdV-mKdV system with Atangana-Baleanu derivative, Adv. Cont. Dis. Model., 2022 (2022), 37. https://doi.org/10.1186/s13662-022-03709-5 doi: 10.1186/s13662-022-03709-5
![]() |
[14] |
F. Jarad, T. Abdeljawad, Z. Hammouch, On a class of ordinary differential equations in the frame of Atangana-Baleanu fractional derivative, Chaos Soliton. Fract., 117 (2018), 16–20. https://doi.org/10.1016/j.chaos.2018.10.006 doi: 10.1016/j.chaos.2018.10.006
![]() |
[15] |
F. Mainardi, R. Garrappa, On complete monotonicity of the Prabhakar function and non-Debye relaxation in dielectrics, J. Comput. Phys., 293 (2015), 70–80. https://doi.org/10.1016/j.jcp.2014.08.006 doi: 10.1016/j.jcp.2014.08.006
![]() |
[16] |
K. Kumar, R. Patel, V. Vijayakumar, A. Shukla, C. Ravichandran, A discussion on boundary controllability of nonlocal impulsive neutral integrodifferential evolution equations, Math. Meth. Appl. Sci., 45 (2022), 8193–8215. https://doi.org/10.1002/mma.8117 doi: 10.1002/mma.8117
![]() |
[17] |
A. A. Kilbas, M. Saigo, K. Saxena, Generalized Mittag-Leffler function and generalized fractional calculus operators, Integr. Transf. Spec. F., 15 (2004), 31–49. https://doi.org/10.1080/10652460310001600717 doi: 10.1080/10652460310001600717
![]() |
[18] |
K. S. Nisar, K. Jothimani, K. Kaliraj, C. Ravichandran, An analysis of controllability results for nonlinear Hilfer neutral fractional derivatives with non-dense domain, Chaos Soliton. Fract., 146 (2021), 110915. https://doi.org/10.1016/j.chaos.2021.110915 doi: 10.1016/j.chaos.2021.110915
![]() |
[19] |
K. D. Kucche, S. T. Sutar, Analysis of nonlinear fractional diferential equations involving AB Caputo derivative, Chaos Soliton. Fract., 143 (2021), 110556. https://doi.org/10.1016/j.chaos.2020.110556 doi: 10.1016/j.chaos.2020.110556
![]() |
[20] |
K. D. Kucche, J. J. Trujillo, Theory of system of nonlinear fractional diferential equations, Prog. Fract. Differ. Appl., 3 (2017), 7–18. http://doi.org/10.18576/pfda/030102 doi: 10.18576/pfda/030102
![]() |
[21] |
K. D. Kucche, J. J. Nieto, V. Venktesh, Theory of nonlinear implicit fractional diferential equations, Differ. Equat. Dyn. Sys., 28 (2020), 1–17. http://doi.org/10.1007/s12591-016-0297-7 doi: 10.1007/s12591-016-0297-7
![]() |
[22] |
K. Logeswari, C. Ravichandran, K. S. Nisar, Mathematical model for spreading of COVID-19 virus with the Mittag-Leffler kernel, Numer. Meth. Part. D. E., 2020, 1–16. http://doi.org/10.1002/num.22652 doi: 10.1002/num.22652
![]() |
[23] | K. S. Miller, B. Ross, An introduction to the fractional calculus and fractional differential equations, John Wiley and Sons, New York, 1993. |
[24] |
M. S. Abdo, S. K. Panchal, Existence and continuous dependence for fractional neutral functional differential equations, J. Math. Model., 5 (2017), 153–170. https://dx.doi.org/10.22124/jmm.2017.2535 doi: 10.22124/jmm.2017.2535
![]() |
[25] |
A. S. Mohamed, R. A. Mahmoud, Picard, Adomian and perdictor-corrector methods for an initial value problem of arbitrary (fractional) prders differential equation, J. Egyptian Math. Soc., 24 (2016), 165–170. https://doi.org/10.1016/J.JOEMS.2015.01.001 doi: 10.1016/J.JOEMS.2015.01.001
![]() |
[26] | I. Podlubny, Fractional differential equations, Academic Press, San Diego, 1999. |
[27] | T. R. Prabhakar, A singular integral equation with a generalized Mittag-Leffler function in the kernel, Yokohama. Math. J., 19 (1971), 7–15. |
[28] | B. G. Pachpatte, Inequalities for differential and integral equations, Academic Press, San Diago, 1998. |
[29] |
C. Ravichandran, V. Sowbakiya, K. S. Nisar, Study on existence and data dependence results for fractional order differential equations, Chaos Soliton. Fract., 160 (2022), 112232. https://doi.org/10.1016/j.chaos.2022.112232 doi: 10.1016/j.chaos.2022.112232
![]() |
[30] |
C. Ravichandran, D. Baleanu, On the controllability of fractional functional integro-differential systems with an infinite delay in Banach spaces, Adv. Differ. Equ., 2013 (2013), 291. https://doi.org/10.1186/1687-1847-2013-291 doi: 10.1186/1687-1847-2013-291
![]() |
[31] |
S. K. Verma, R. K. Vats, A. Kumar, V. Vijayakumar, A. Shukla, A discussion on the existence and uniqueness analysis for the coupled two-term fractional differential equations, Turkish J. Math., 46 (2022), 516–532. https://doi.org/10.3906/mat-2107-30 doi: 10.3906/mat-2107-30
![]() |
[32] |
S. T. Sutar, K. D. Kucche, Existence and data dependence results for fractional differential equations involving Atangana-Baleanu derivative, Rend. Circ. Mat. Palerm., 71 (2022), 647–663. https://doi.org/10.1007/s12215-021-00622-w doi: 10.1007/s12215-021-00622-w
![]() |
[33] |
S. T. Sutar, K. D. Kucche, On nonlinear hybrid fractional diferential equations with AB-Caputo derivative, Chaos Soliton. Fract., 143 (2021), 110557. https://doi.org/10.1016/j.chaos.2020.110557 doi: 10.1016/j.chaos.2020.110557
![]() |
[34] |
J. V. C. Sousa, , K. D. Kucche, E. C. Oliveira, Stability of mild solutions of the fractional nonlinear abstract Cauchy problem, Electronic Research Archive, 30 (2022), 272–288. http://doi.org/10.3934/era.2022015 doi: 10.3934/era.2022015
![]() |
[35] |
X. B. Shu, Y. J. Shi, A study on the mild solution of impulsive fractional evolution equations, Appl. Math. Comput., 273 (2016), 465–476. https://doi.org/10.1016/j.amc.2015.10.020 doi: 10.1016/j.amc.2015.10.020
![]() |
[36] |
Y. Guo, M. Q. Chen, X. B. Shu, F. Xu, The existence and Hyers-Ulam stability of solution for almost periodical fractional stochastic differential equation with fBm, Stoch. Anal. Appl., 39 (2021), 643–666. https://doi.org/10.1080/07362994.2020.1824677 doi: 10.1080/07362994.2020.1824677
![]() |
[37] |
Y. Guo, X. B. Shu, Y. J. Li, F. Xu, The existence and Hyers-Ulam stability of solution for an impulsive Riemann-Liouville fractional neutral functional stochastic differential equation with infinite delay of order 1<β<2, Boundary Value Probl., 2019 (2019), 59. https://doi.org/10.1186/s13661-019-1172-6 doi: 10.1186/s13661-019-1172-6
![]() |
1. | H Yépez-Martínez, J F Gómez-Aguilar, Mustafa Inc, New modied Atangana-Baleanu fractional derivative applied to solve nonlinear fractional dierential equations, 2023, 98, 0031-8949, 035202, 10.1088/1402-4896/acb591 | |
2. | Ritika Pandey, Chandan Shukla, Anurag Shukla, Ashwini Upadhyay, Arun Kumar Singh, A new approach on approximate controllability of Sobolev-type Hilfer fractional differential equations, 2023, 13, 2146-5703, 130, 10.11121/ijocta.2023.1256 | |
3. | M. Manjula, K. Kaliraj, Thongchai Botmart, Kottakkaran Sooppy Nisar, C. Ravichandran, Existence, uniqueness and approximation of nonlocal fractional differential equation of sobolev type with impulses, 2023, 8, 2473-6988, 4645, 10.3934/math.2023229 | |
4. | M. Sivashankar, S. Sabarinathan, Kottakkaran Sooppy Nisar, C. Ravichandran, B.V. Senthil Kumar, Some properties and stability of Helmholtz model involved with nonlinear fractional difference equations and its relevance with quadcopter, 2023, 168, 09600779, 113161, 10.1016/j.chaos.2023.113161 | |
5. | Kottakkaran Sooppy Nisar, Kalimuthu Kaliraj, Mohan Manjula, Chokkalingam Ravichandran, Suliman Alsaeed, Shankar Rao Munjam, Existence of a mild solution for a fractional impulsive differential equation of the Sobolev type including deviating argument, 2024, 16, 26667207, 100451, 10.1016/j.rico.2024.100451 | |
6. | Kottakkaran Sooppy Nisar, Muhannad Ibrahim Al-Shartab, Fahad Sameer Alshammari, Existence analysis on multi-derivative nonlinear fractional neutral impulsive integro-differential equations, 2024, 11, 26668181, 100839, 10.1016/j.padiff.2024.100839 | |
7. | Kottakkaran Sooppy Nisar, K. Munusamy, C. Ravichandran, Results on existence of solutions in nonlocal partial functional integrodifferential equations with finite delay in nondense domain, 2023, 73, 11100168, 377, 10.1016/j.aej.2023.04.050 | |
8. | Kottakkaran Sooppy Nisar, C. Anusha, C. Ravichandran, A non-linear fractional neutral dynamic equations: existence and stability results on time scales, 2023, 9, 2473-6988, 1911, 10.3934/math.2024094 | |
9. | K. Munusamy, C. Ravichandran, Kottakkaran Sooppy Nisar, Shankar Rao Munjam, Investigation on continuous dependence and regularity solutions of functional integrodifferential equations, 2024, 14, 26667207, 100376, 10.1016/j.rico.2024.100376 | |
10. | Kottakkaran Sooppy Nisar, Kasilingam Munusamy, Chokkalingam Ravichandran, Sriramulu Sabarinathan, Interpretation on nonlocal neutral functional differential equations with delay, 2023, 8, 2473-6988, 25611, 10.3934/math.20231307 | |
11. | N. Valliammal, K. Jothimani, Sumati Kumari Panda, V. Vijayakumar, An investigation on the existence and approximate controllability of neutral stochastic hemivariational inequalities, 2024, 73, 0009-725X, 941, 10.1007/s12215-023-00967-4 | |
12. | K. Kaliraj, M. Manjula, E. Thilakraj, C. Ravichandran, Kottakkaran Sooppy Nisar, Yousef A. Baker El-Ebiary, Ahmad O. Hourani, Discussions on Sobolev type Neutral Nonlocal fractional differential equation, 2024, 26668181, 101018, 10.1016/j.padiff.2024.101018 |