Research article

Simple-intersection graphs of rings

  • Received: 08 July 2022 Revised: 07 October 2022 Accepted: 08 October 2022 Published: 14 October 2022
  • MSC : 05C07, 05C25, 05C38, 05C40, 05C69

  • Let $ R $ be a ring with unity. In this paper, we introduce a new graph associated with $ R $ called the simple-intersection graph of $ R $, denoted by $ GS(R) $. The vertices of $ GS(R) $ are the nonzero ideals of $ R $, and two vertices are adjacent if and only if their intersection is a nonzero simple ideal. We study the interplay between the algebraic properties of $ R $, and the graph properties of $ GS(R) $ such as connectedness, bipartiteness, girth, dominating sets, etc. Moreover, we determine the precise values of the girth and diameter of $ GS(R) $, as well as give a formula to compute the clique and domination numbers of $ GS(R) $.

    Citation: Fida Moh'd, Mamoon Ahmed. Simple-intersection graphs of rings[J]. AIMS Mathematics, 2023, 8(1): 1040-1054. doi: 10.3934/math.2023051

    Related Papers:

  • Let $ R $ be a ring with unity. In this paper, we introduce a new graph associated with $ R $ called the simple-intersection graph of $ R $, denoted by $ GS(R) $. The vertices of $ GS(R) $ are the nonzero ideals of $ R $, and two vertices are adjacent if and only if their intersection is a nonzero simple ideal. We study the interplay between the algebraic properties of $ R $, and the graph properties of $ GS(R) $ such as connectedness, bipartiteness, girth, dominating sets, etc. Moreover, we determine the precise values of the girth and diameter of $ GS(R) $, as well as give a formula to compute the clique and domination numbers of $ GS(R) $.



    加载中


    [1] S. Akbari, R. Nikandish, Some results on the intersection graph of ideals of matrix algebras, Linear Multilinear A., 62 (2014), 195–206. https://doi.org/10.1080/03081087.2013.769101 doi: 10.1080/03081087.2013.769101
    [2] S. Akbari, R. Nikandish, M. J. Nikmehr, Some results on the intersection graphs of ideals of rings, J. Algebra Appl., 12 (2013). http://dx.doi.org/10.1142/S0219498812502003 doi: 10.1142/S0219498812502003
    [3] T. Alraqad, H. Saber, R. Abu-Dawwas, Intersection graphs of graded ideals of graded rings, AIMS Math., 6 (2021), 10355–10368. https://doi.org/10.3934/math.2021600 doi: 10.3934/math.2021600
    [4] D. F. Anderson, P. S. Livingston, The zero-divisor graph of a commutative ring, J. Algebra, 217 (1999), 434–447. https://doi.org/10.1006/jabr.1998.7840 doi: 10.1006/jabr.1998.7840
    [5] N. Ashrai, H. R. Maimani, M. R. Pournaki, S. Yassemi, Unit graphs associated with eings, Commun. Algebra, 38 (2010), 2851–2871. https://doi.org/10.1080/00927870903095574 doi: 10.1080/00927870903095574
    [6] J. A. Bondy, U. S. R. Murty, Graph theory, Springer-Verlag, London, 2011.
    [7] I. Chakrabarty, S. Ghosh, T. K. Mukherjee, M. K. Sen, Intersection graphs of ideals of rings, Discrete Math., 309 (2009), 5381–5392. https://doi.org/10.1016/j.disc.2008.11.034 doi: 10.1016/j.disc.2008.11.034
    [8] I. Chakrabarty, J. V. Kureethara, A survey on the intersection graphs of ideals of rings, Commun. Combin. Optim., 7 (2022), 121–167. https://dx.doi.org/10.22049/cco.2021.26990.1176 doi: 10.22049/cco.2021.26990.1176
    [9] P. M. Cohn, Introduction to ring theory, British Library Cataloguing in Publication Data, Springer-Verlag, London Berlin Heidelberg, 2000. https://doi.org/10.1007/978-1-4471-0475-9
    [10] S. H. Jafari, N. J. Rad, Planarity of intersection graphs of ideals of rings, Int. Electron. J. Algebra, 8 (2010), 161–166.
    [11] A. V. Kelarev, On undirected Cayley graphs, Australas. J. Combin., 25 (2002), 73–78.
    [12] L. A. Mahdavi, Y. Talebi, Co-intersection graph of submodules of a module, Algebra Discrete Math., 21 (2016), 128–143.
    [13] H. R. Maimani, M. Salimi, A. Sattari, S. Yassemi, Comaximal graph of commutative rings, J. Algebra, 319 (2008), 1801–1808. https://doi.org/10.1016/j.jalgebra.2007.02.003 doi: 10.1016/j.jalgebra.2007.02.003
    [14] J. Matczuk, A. Majidinya, Sum-essential graphs of modules, J. Algebra Appl., 20 (2021), 211–215. https://doi.org/10.1142/S021949882150211X doi: 10.1142/S021949882150211X
    [15] J. Matczuk, M. Nowakowska, E. R Puczy lowski, Intersection graphs of modules and rings, J. Algebra Appl., 17 (2018), 185–131. https://doi.org/10.1142/S0219498818501311 doi: 10.1142/S0219498818501311
    [16] E. A. Osba, The intersection graph for finite commutative principal ideal rings, Acta Math. Acad. Paedagog. Nyházi., 32 (2016), 15–22.
    [17] Z. S. Pucanović, Z. Z. Petrović, Toroidality of intersection graphs of ideals of commutative rings, Graph. Combinator., 30 (2014), 707–716. https://doi.org/10.1007/s00373-013-1292-1 doi: 10.1007/s00373-013-1292-1
    [18] N. J. Rad, S. H. Jafari, S. Ghosh, On the intersection graphs of ideals of direct product of rings, J. Discuss. Math.-Gen. Algebra Appl., 34 (2014), 191–201. https://doi.org/10.7151/dmgaa.1224 doi: 10.7151/dmgaa.1224
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1230) PDF downloads(111) Cited by(1)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog