In this article, we introduce and study the intersection graph of graded ideals of a graded ring. The intersection graph of $ G- $graded ideals of a graded ring $ R $, denoted by $ Gr_G(R) $, is undirected simple graph defined on the set of nontrivial graded left ideals of $ R $, such that two left ideals are adjacent if their intersection is not trivial. We study properties for these graphs such as connectivity, regularity, completeness, domination numbers, and girth. We also present several results on the intersection graphs related to faithful grading, strong grading, and graded idealization.
Citation: Tariq Alraqad, Hicham Saber, Rashid Abu-Dawwas. Intersection graphs of graded ideals of graded rings[J]. AIMS Mathematics, 2021, 6(10): 10355-10368. doi: 10.3934/math.2021600
In this article, we introduce and study the intersection graph of graded ideals of a graded ring. The intersection graph of $ G- $graded ideals of a graded ring $ R $, denoted by $ Gr_G(R) $, is undirected simple graph defined on the set of nontrivial graded left ideals of $ R $, such that two left ideals are adjacent if their intersection is not trivial. We study properties for these graphs such as connectivity, regularity, completeness, domination numbers, and girth. We also present several results on the intersection graphs related to faithful grading, strong grading, and graded idealization.
[1] | R. Abu-Dawwas, More on crossed product over the support of graded rings, Int. Math. Forum, 5 (2010), 3121–3126. |
[2] | R. Abu-Dawwas, Graded semiprime and graded weakly semiprime ideals, Ital. J. Pure Appl. Math., 36 (2016), 535–542. |
[3] | E. Abu Osba, The intersection graph of finite commutative principle ideal rings, Acta Math. Acad. Paedagogicae Nyiregyhaziensis, 32 (2016), 15–22 |
[4] | E. Abu Osba, S. Al-addasi, O. Abughneim, Some properties of the intersection graph for finite commutative principal ideal rings, Int. J. Comb., 2014 (2014), 1–6. |
[5] | S. Akbari, R. Nikadish, M. J. Nikmehr, Some results on the intersection graphs of ideals of rings, J. Algebra Appl., 12 (2013), 1–13. |
[6] | S. Akbari, R. Nikandish, Some results on the intersection graphs of ideals of matrix algebras, Linear Multilinear Algebra, 62 (2014), 195–206. doi: 10.1080/03081087.2013.769101 |
[7] | D. F. Anderson, A. Badawi, The total graph of a commutative ring, J. Algebra, 320 (2008), 2706–2719. doi: 10.1016/j.jalgebra.2008.06.028 |
[8] | D. D. Anderson, M. Winders, Idealization of a module, J. Commut. Algebra, 1 (2009), 3–56 |
[9] | N. Ashrafi, H. R. Maimani, M. R. Pournaki, S. Yassemi, Unit graphs associated with rings, Commun. Algebra, 38 (2010), 2851–2871. doi: 10.1080/00927870903095574 |
[10] | M. Bataineh, R. Abu-Dawwas, Graded almost 2-absorbing structures, JP J. Algebra, Number Theory Appl., 39 (2017), 63–75. |
[11] | I. Beck, Coloring of commutative rings, J. Algebra, 116 (1988), 208–226. doi: 10.1016/0021-8693(88)90202-5 |
[12] | M. Behboodi, Z. Rakeei, The annihilating ideal graph of commutative rings I, J. Algebra Appl., 10 (2011), 727–739. doi: 10.1142/S0219498811004896 |
[13] | J. A. Bondy, U. S. R. Murty, Graph theory with applications, New York: American Elsevier Publishing Co., Inc., 1976. |
[14] | I. Chakrabarty, S. Ghosh, T. K. Mukherjee, M. K. Sen, Intersection graphs of ideals of rings, Discrete Math., 309 (2009), 5381–5392. doi: 10.1016/j.disc.2008.11.034 |
[15] | M. Cohen, L. Rowen, Group graded rings, Commun. Algebra, 11 (1983), 1253–1270. |
[16] | F. Farzalipour, P. Ghiasvand, On the union of graded prime submodules, Thai J. Math., 9 (2011), 49–55. |
[17] | R. P. Grimaldi, Graphs from rings, Proceedings of the 20th Southeastern Conference on Combinatorics, Graph Theory, and Computing (Boca Raton, FL, 1989), Congr. Numer., 71 (1990), 95–103 |
[18] | S. H. Jafari, N. J. Rad, Planarity of intersection graphs of ideals of rings, Int. Electron. J. Algebra, 8 (2010), 161–166. |
[19] | S. H. Jafari, N. J. Rad, Domination in the intersection graphs of rings and modules, Ital. J. Pure Appl. Math., 28 (2011), 17–20. |
[20] | K. Khaksari, F. R. Jahromi, Multiplication graded modules, Int. J. Algebra, 7 (2013), 17–24. doi: 10.12988/ija.2013.13003 |
[21] | F. Khosh-Ahang, S. Nazari-Moghadam, An associated graph to a graded ring, Publ. Math. Debrecen, 88 (2016), 401–416. doi: 10.5486/PMD.2016.7393 |
[22] | S. C. Lee, R. Varmazyar, Semiprime submodules of graded multiplication modules, J. Korean Math. Soc., 49 (2012), 435–447. |
[23] | C. Nastasescu, F. Van Oystaeyen, On strongly graded rings and crossed products, Commun. Algebra, 10 (1982), 2085–2106. doi: 10.1080/00927878208822824 |
[24] | C. Nastasescu, F. Van Oystaeyen, Methods of graded rings, In: Lecture notes in mathematics, 1836, Springer-Verlag, Berlin, 2004. |
[25] | Z. S. Pucanović, On the genus of the intersection graph of ideals of a commutative ring, J. Algebra Appl., 13 (2014), 1–20. |
[26] | N. J. Rad, S. H. Jafari, S. Ghosh, On the intersection graphs of ideals of direct product of rings, Discussiones Math. Gen. Algebra Appl., 24 (2014), 191–201. |
[27] | K. K. Rajkhowa, H. K. Saikia, Prime intersection graph of ideals of a ring, Proc. Indian Acad. Sci. (Math. Sci.), 130 (2020). Available from: https://doi.org/10.1007/s12044-019-0541-5. |
[28] | M. Refai, K. Al-Zoubi, On graded primary ideals, Turk. J. Math., 28 (2004), 217–230. |
[29] | M. Refai, M. Obeidat, On a strongly-supported graded rings, Math. Jpn. J., 39 (1994), 519–522. |
[30] | H. Roshan-Shekalgourabi, D. Hassanzadeh-lelekaami, On a graph of homogenous submodules of graded modules, Math. Rep., 19 (2017), 55–68. |
[31] | S. Sajana, D. Bharathi, K. K. Srimitra, Signed intersection graph of ideals of a ring, Int. J. Pure Appl. Math., 113 (2017), 175–183. |
[32] | J. Van Geel, F. Van Oystaeyen, About graded fields, Indag. Math., 43 (1981), 273–286. |
[33] | F. Xu, D. Wong, F. Tian, Automorphism group of the intersection graph of ideals over a matrix ring, Linear Multilinear Algebra, 2020. DOI: 10.1080/03081087.2020.1723473. |