In this paper, we investigate the following tropical climate model with fractional diffusion
$ \begin{eqnarray} \left\{\begin{array}{ll} u_t+u\cdot\nabla u+\nabla p+\Lambda^{2\alpha}u+{\rm div}(v\otimes v) = 0,\\[1ex] v_t+u\cdot\nabla v+\nabla\theta+\Lambda^{2\beta}v+v\cdot\nabla u = 0,\\[1ex] \theta_t+u\cdot\nabla\theta+\Lambda^{2\gamma}\theta+{\rm div} v = 0,\\[1ex] {\rm div} u = 0,\\[1ex] ( u, v, \theta)(x,0) = ( u_0, v_0, \theta_0), \end{array} \right. \end{eqnarray} $
where $ (u_0, v_0, \theta_0) \in H^s(R^n) $ with $ s\geq 1, n\geq 3 $ and $ {\rm div} u_0 = 0 $. When the nonnegative constants $ \alpha, \beta $ and $ \gamma $ satisfy $ \alpha\geq\frac{1}{2}+\frac{n}{4}, \ \alpha+\beta\geq 1+\frac{n}{2}, \ \alpha+\gamma\geq1+\frac{n}{2} $, by using the energy methods, we obtain the global existence and uniqueness of solution for the system. In the special case $ \theta = 0 $, we could obtain the global solution provide that $ \alpha\geq\frac{1}{2}+\frac{n}{4}, \alpha+\beta\geq1+\frac{n}{2} $ and $ (u_0, v_0)\in H^s(s\geq1) $, which generalizes the existing result.
Citation: Jing Yang, Xuemei Deng, Qunyi Bie. Global regularity for the tropical climate model with fractional diffusion[J]. AIMS Mathematics, 2021, 6(10): 10369-10382. doi: 10.3934/math.2021601
In this paper, we investigate the following tropical climate model with fractional diffusion
$ \begin{eqnarray} \left\{\begin{array}{ll} u_t+u\cdot\nabla u+\nabla p+\Lambda^{2\alpha}u+{\rm div}(v\otimes v) = 0,\\[1ex] v_t+u\cdot\nabla v+\nabla\theta+\Lambda^{2\beta}v+v\cdot\nabla u = 0,\\[1ex] \theta_t+u\cdot\nabla\theta+\Lambda^{2\gamma}\theta+{\rm div} v = 0,\\[1ex] {\rm div} u = 0,\\[1ex] ( u, v, \theta)(x,0) = ( u_0, v_0, \theta_0), \end{array} \right. \end{eqnarray} $
where $ (u_0, v_0, \theta_0) \in H^s(R^n) $ with $ s\geq 1, n\geq 3 $ and $ {\rm div} u_0 = 0 $. When the nonnegative constants $ \alpha, \beta $ and $ \gamma $ satisfy $ \alpha\geq\frac{1}{2}+\frac{n}{4}, \ \alpha+\beta\geq 1+\frac{n}{2}, \ \alpha+\gamma\geq1+\frac{n}{2} $, by using the energy methods, we obtain the global existence and uniqueness of solution for the system. In the special case $ \theta = 0 $, we could obtain the global solution provide that $ \alpha\geq\frac{1}{2}+\frac{n}{4}, \alpha+\beta\geq1+\frac{n}{2} $ and $ (u_0, v_0)\in H^s(s\geq1) $, which generalizes the existing result.
[1] | D. M. W. Frierson, A. J. Majda, O. M. Pauluis, Large scale dynamics of precipitation fronts in the tropical atmosphere: A novel relaxation limit, Commun. Math. Sci., 2 (2004), 591–626. doi: 10.4310/CMS.2004.v2.n4.a3 |
[2] | C. C. Ma, Z. H. Jiang, R. H. Wan, Local well-posedness for the tropical climate model with fractional velocity diffusion, Kinet. Relat. Mod., 9 (2016), 551–570. doi: 10.3934/krm.2016006 |
[3] | J. K. Li, E. Titi, Global well-posedness of strong solutions to a tropical climate model, DCDS, 36 (2016), 4495–4516. doi: 10.3934/dcds.2016.36.4495 |
[4] | B. Q. Dong, W. J. Wang, J. H. Wu, H. Zhang, Global regularity results for the climate model with fractional dissipation, DCDS-B, 24 (2019), 211–229. doi: 10.3934/dcdsb.2018102 |
[5] | Z. Ye, Global regularity for a class of 2D tropical climate model, J. Math. Anal. Appl., 446 (2017), 307–321. doi: 10.1016/j.jmaa.2016.08.053 |
[6] | R. H. Wan, Global small solutions to a tropical climate model without thermal diffusion, J. Math. Phys., 57 (2016), 021507. doi: 10.1063/1.4941039 |
[7] | C. C. Ma, R. H. Wan, Spectral analysis and global well-posedness for a viscous tropical climate model with only a damp term, Nonlinear Anal.-Real., 39 (2018), 554–567. doi: 10.1016/j.nonrwa.2017.08.004 |
[8] | B. Q. Dong, J. H. Wu, Z. Ye, 2D tropical climate model with fractional dissipation and without thermal diffusion, Commun. Math. Sci., 18 (2020), 259–292. doi: 10.4310/CMS.2020.v18.n1.a11 |
[9] | X. Ye, M. X. Zhu, Global strong solutions of the tropical climate model with temperature-dependent diffusion on the barotropic mode, Appl. Math. Lett., 89 (2019), 8–14. doi: 10.1016/j.aml.2018.09.009 |
[10] | X. Ye, M. X. Zhu, Global strong solutions of the 2D tropical climate system with temperature-dependent viscosity, Z. Angew. Math. Phys., 71 (2020), 97. doi: 10.1007/s00033-020-01321-9 |
[11] | F. Wu, Regularity criteria for the 3D tropical climate model in Morrey-Campanato space, Electron. J. Qual. Theo., 48 (2019), 1–11. |
[12] | Y. Wang, S. Zhang, N. Pan, Regularity and global existence on the 3D tropical climate model, Bull. Malays. Math. Sci. Soc., 43 (2020), 641–650. doi: 10.1007/s40840-018-00707-3 |
[13] | M. X. Zhu, Global regularity for the tropical climate model with fractional diffusion on barotropic mode, Appl. Math. Lett., 81 (2018), 99–104. doi: 10.1016/j.aml.2018.02.003 |
[14] | Z. Ye, Global regularity of 2D tropical climate model with zero thermal diffusion, Z. Angew. Math. Mech. 100 (2020), e201900132. |
[15] | Z. X. Li, L. H. Deng, H. F. Shang, Global well-posedness and large time decay for the d-dimensional tropical climate model, AIMS Mathematics, 6 (2021), 5581–5595. doi: 10.3934/math.2021330 |
[16] | C. V. Tran, X. W. Yu, Z. C. Zhai, On global regularity of 2D generalized magnetohydrodynamic equation, J. Differ. Equ., 254 (2013), 4194–4216. doi: 10.1016/j.jde.2013.02.016 |
[17] | Q. S. Jiu, D. J. Niu, Mathematical results related to a two-dimensional magneto-hydrodynamic equations, Acta Math. Sci., 26 (2006), 744–756. doi: 10.1016/S0252-9602(06)60101-X |
[18] | Y. Zhou, J. S. Fan, A regularity criterion for the 2D MHD system with zero magnetic diffusivity, J. Math. Anal. Appl., 378 (2011), 169–172. doi: 10.1016/j.jmaa.2011.01.014 |
[19] | Z. H. Jiang, Y. N. Wang, Y. Zhou, On regularity criteria for the 2D generalized MHD system, J. Math. Fluid Mech., 18 (2016), 331–341. doi: 10.1007/s00021-015-0235-4 |
[20] | W. H. Wang, T. G. Qin, Q. Y. Bie, Global well-posedness and analyticity results to 3-D generalized magnetohydrodynamic equations, Appl. Math. Lett., 59 (2016), 65–70. doi: 10.1016/j.aml.2016.03.009 |
[21] | Y. Z. Wang, K. Y. Wang, Global well-posedness of the three dimensional magnetohydrodynamics equations, Nonlinear Anal.-Real., 17 (2014), 245–251. doi: 10.1016/j.nonrwa.2013.12.002 |
[22] | Q. Y. Bie, Q. R. Wang, Z. A. Yao, Regularity criteria for the 3D MHD equations in term of velocity, Math. Methods Appl. Sci., 38 (2015), 2506–2516. doi: 10.1002/mma.3237 |
[23] | K. Yamazaki, Global regularity of logarithmically supercritical MHD system with zero diffusivity, Appl. Math. Lett., 29 (2014), 46–51. doi: 10.1016/j.aml.2013.10.014 |
[24] | J. H. Wu, Global regularity for a class of generalized Magnetohydrodynamic equations, J. Math. Fluid Mech., 13 (2011), 295–305. doi: 10.1007/s00021-009-0017-y |
[25] | J. H. Wu, Generalized MHD equations, J. Differ. Equ., 195 (2003), 284–312. |
[26] | J. Singh, D. Kumar, D. Baleanu, A new analysis of fractional fish farm model associated with Mittag-Leffler-type kernel, Int. J. Biomath., 13 (2020), 2050010. doi: 10.1142/S1793524520500102 |
[27] | J. Singh, Analysis of fractional blood alcohol model with composite fractional derivative, Chaos Soliton. Fract., 140 (2020), 110127. doi: 10.1016/j.chaos.2020.110127 |
[28] | H. Singh, D. Baleanu, J. Singh, H. Dutta, Computational study of fractional order smoking model, Chaos Soliton. Fract., 142 (2021), 110440. doi: 10.1016/j.chaos.2020.110440 |
[29] | F. Souna, S. Djilali, A. Lakmeche, Spatiotemporal behavior in a predator-prey model with herd behavior and cross-diffusion and fear effect, Eur. Phys. J. Plus, 136 (2021), 474. doi: 10.1140/epjp/s13360-021-01489-7 |
[30] | S. Djilali, S. Bentout, B. Ghanbari, S. Kumar, Spatial patterns in a vegetation model with internal competition and feedback regulation, Eur. Phys. J. Plus, 136 (2021), 256. doi: 10.1140/epjp/s13360-021-01251-z |
[31] | L. Guin, S. Pal, S. Chakravarty, S. Djilali, Pattern dynamics of a reaction-diffusion predator-prey system with both refuge and harvesting, Int. J. Biomath., 14 (2021), 2050084. doi: 10.1142/S1793524520500849 |
[32] | C. E. Kenig, G. Ponce, L. Vega, Well-posedness of the initial value problem for the Korteweg-de Vries equation, J. Amer. Math. Soc., 4 (1991), 323–347. doi: 10.1090/S0894-0347-1991-1086966-0 |