This paper proposes a new definition of the nonlinear Fredholm integro-differential equation of the second kind with continuous kernel in two-dimensional (NT-DFIDE). Furthermore, the work is concerned to study this new equation numerically. The existence of a unique solution of the equation is proved. In addition, the approximate solutions of NT-DFIDE are obtained by two powerful methods Adomian Decomposition Method (ADM) and Homotopy Analysis Method (HAM). The given numerical examples showed the efficiency and accuracy of the introduced methods.
Citation: A. M. Al-Bugami. Nonlinear Fredholm integro-differential equation in two-dimensional and its numerical solutions[J]. AIMS Mathematics, 2021, 6(10): 10383-10394. doi: 10.3934/math.2021602
This paper proposes a new definition of the nonlinear Fredholm integro-differential equation of the second kind with continuous kernel in two-dimensional (NT-DFIDE). Furthermore, the work is concerned to study this new equation numerically. The existence of a unique solution of the equation is proved. In addition, the approximate solutions of NT-DFIDE are obtained by two powerful methods Adomian Decomposition Method (ADM) and Homotopy Analysis Method (HAM). The given numerical examples showed the efficiency and accuracy of the introduced methods.
[1] | D. Zeidan, E. Romenski, A. Slaouti, E. F. Toro, Numerical study of wave propagation in compressible two-phase flow, Int. J. Numer. Methods Fluids, 54 (2007), 393-417. doi: 10.1002/fld.1404 |
[2] | F. Zarmehi, A. Tavakoli, A simple scheme to solve Saint-Venant equations by finite element method, Int. J. Comput. Methods, 13 (2016), 1650001. doi: 10.1142/S0219876216500018 |
[3] | H. Mandal, B. Bira, D. Zeidan, Power series solution of time-fractional Majda-Biello system using Lie group analysis, Proceedings International Conference on Fractional Differentiation and its Applications (ICFDA), 2018. Available from: https://ssrn.com/abstract=3284751. |
[4] | M. Kazemi, H. M. Golshan, R. Ezzati, M. Sadatrasoul, New approach to solve two-dimensional Fredholm integral equations, J. Comput. Appl. Math., 354 (2019), 66-79. doi: 10.1016/j.cam.2018.12.029 |
[5] | F. Fattahzadeh, Approximate solution of two-dimensional Fredholm integral equation of the first kind using wavelet base method, Int. J. Appl. Comput. Math., 5 (2019), 138. doi: 10.1007/s40819-019-0717-9 |
[6] | S. M. Torabi, A. Tari, Numerical solution of two-dimensional IE of the first kind by multi-step method, Comput. Method Differ. Equations, 4 (2016), 128-138. |
[7] | Z. P. Atabakan, A. K. Nasab, A. Kılıç man, On solution of Fredholm integro differential equations using composite Chebyshev finite difference method, Abstr. Appl. Anal., 2013 (2013), 694043. |
[8] | M. Rabbani, B. Zarali, Solution of Fredholm integro-differential equations system by modified decomposition method, J. Math. Comput. Sci., 5 (2012), 258-264. doi: 10.22436/jmcs.05.04.02 |
[9] | O. A. Arqub, M. Al-Smadi, N. Shawagfeh, Solving Fredholm integro-differential equations using reproducing kernel Hilbert space method, Appl. Math. Comput., 219 (2013), 8938-8948. |
[10] | P. K. Pandey, Numerical solution of linear Fredholm integro-differential equations by non-standard finite difference method, Int. J. Math. Model Comput., 5 (2015), 259-266. |
[11] | M. Erfanian, H. Zeidabadi, Solving of nonlinear Fredholm integro-differential equation in a complex plane with rationalized Haar wavelet bases, Asian-European J. Math., 12 (2019), 1950055. doi: 10.1142/S1793557119500554 |
[12] | A. Saadatmandi, M. Dehghanb, Numerical solution of the higher-order linear Fredholm integro-differential-difference equation with variable coefficients, Comput. Math. Appl. 59 (2010), 2996-3004. |
[13] | S. H. Behiry, H. Hashish, I. L. El-Kalla, A new algorithm for the decomposition solution of nonlinear differential equations, Comput. Math. Appl., 54 (2007), 459-466. |
[14] | I. L. El-Kalla, Error analysis of Adomian series solution to a class of nonlinear differential equations, Appl. Math. E-Notes, 7 (2007), 214-221. |
[15] | I. L. El-Kalla, Convergence of the Adomian method applied to a class of nonlinear integral equations, Appl. Math. Lett., 21 (2008), 372-376. |
[16] | G. M. Attia, I. L. El-Kalla, S. E. Madkour, Convergence of Adomian's method applied second kind nonlinear Fredholm integral equations, Int. J. Appl. Math., 18 (2005), 417-428. |
[17] | I. L. El-Kalla, Convergence of Adomian's method applied to a class of Volterra type integro-differential equations, Int. J. Differ. Equations Appl., 10 (2011), 225-234. |
[18] | P. Sargolzaei, M. Safinezhad, M. H. Rostami, Solution of Fredholm integral-differential equations systems by Adomian decomposition method, J. Modern Math. Stat., 2 (2008), 98-101. |
[19] | M. A. Abdou, I. L. El-Kalla, A. M. Al-Bugami, New approach for convergence of the series solution to a class of Hammerstein integral equations, Int. J. Appl. Math. Comput., 3 (2011), 261-269. |
[20] | D. Zeidan, C. K. Chau, T. T. Lu, W. Q. Zheng, Mathematical studies of the solution of Burgers' equations by Adomian decomposition method, Math. Methods Appl. Sci., 43 (2020), 2171-2188. doi: 10.1002/mma.5982 |
[21] | L. M. Delves, J. L. Mohamed, Computational methods for integral equations, Cambridge University Press, 1985. |
[22] | K. E. Atkinson, The numerical solution of integral equation of the second kind, Cambridge University Press, 1997. |
[23] | A. M. AL-Bugami, Two dimensional Fredholm integral equation with time, J. Mod. Methods Numer. Math., 3 (2012), 66-78. |
[24] | M. A. Abdou, A. M. AL-Bugami, Nonlinear Fredholm-Volterra integral equation and its numerical solutions with quadrature methods, J. Adv. Math., 4 (2013), 415-422. |
[25] | A. K. Khamis, M. A. H. Ismail, M. A. Abdou, A. M. Al-Bugami, Mixed integral equation with Cauchy kernel and contact problem, Life Sci. J., 10 (2013), 1208-1215. |
[26] | A. M. Al-Bugami, M. M. Al-Wagdani, Runge-Kutta and Block by Block methods to solve linear two-dimensional Volterra integral equation with continuous kernel, J. Adv. Math., 11 (2016), 5705-5714. |
[27] | A. M. Al-Bugami, M. M. Al-Wagdani, Some numerical methods for solving linear two-dimensional Volterra integral equation, J. Prog. Res. Math., 11 (2017), 1674-1684. |
[28] | A. M. Al-Bugami, J. G. Al-Juaid, Some numerical techniques for solve nonlinear Fredholm-Volterra integral equation, J. Prog. Res. Math., 13 (2018), 2296-2310. |
[29] | A. M. Al-Bugami, Some techniques for solving Fredholm-Volterra integral equation of the second kind, IJRRAS, 40 (2019), 40-51. |
[30] | A. M. Al-Bugami, J. G. Al-Juaid, Runge-Kutta method and Bolck by Block method to solve nonlinear Fredholm-Volterra integral equation with continuous kernel, J. Appl. Math. Phys., 8 (2020), 2043-2054. |
[31] | A. M. Al-Bugami, Singular Hammerstein-Volterra integral equation and its numerical processing, J. Appl. Math. Phys., 9 (2021), 379-390. |
[32] | E. Kreyszig, Introduction to functional analysis with applications, University of Windsor, 1978. |
[33] | K. E. Atkinson, A survey of numerical method for the solution of Fredholm integral equation of the second kind, Philadelphia: Society for Industrial and Applied Mathematics, 1976. |
[34] | E. Az-Zo'bi, M. O. Al-Amr, A. Yildirim, W. A. AlZoubi, Revised reduced differential transform method using Adomianʼs polynomials with convergence analysis, Math. Eng., Sci. Aerosp. (MESA), 11 (2020), 827-840. |
[35] | E. A. Az-Zo'bi, K. Al-Khaled, A. Darweesh, Numeric-analytic solutions for nonlinear oscillators via the modified multi-stage decomposition method, Mathematics, 7 (2019), 550. |
[36] | S. F. Javan, S. Abbasbandy, M. A. F. Araghi, Application of reproducing kernel Hilbert space method for solving a class of nonlinear integral equations, Math. Prob. Eng., (2017), 7498136. |
[37] | H. Du, G. L. Zhao, C. Y. Zhao, Reproducing kernel method for solving Fredholm integro-differential equations with weakly singularity, J. Comput. Appl. Math., 255 (2014), 122-132. doi: 10.1016/j.cam.2013.04.006 |
[38] | E. Babolian, S. Javadi, E. Moradi, Error analysis of reproducing kernel Hilbert space method for solving functional integral equations, J. Comput. Appl. Math., 300 (2016), 300-311. doi: 10.1016/j.cam.2016.01.008 |