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1. Introduction

Throughout this article, all rings are associative with unity 1 , 0. Let G be a multiplicative group
with identity e. A ring R is said to be G−graded if there exist additive subgroups {Rσ | σ ∈ G} such
that R = ⊕σ∈GRσ and RσRτ ⊆ Rστ for all σ, τ ∈ G. When R is G−graded we denote that by (R,G).
The support of (R,G) is defined as supp(R,G) = {σ ∈ G : Rσ , 0}. The elements of Rσ are called
homogeneous of degree σ. The set of all homogeneous elements is denoted by h(R). If x ∈ R, then x
can be written uniquely as

∑
σ∈G xσ, where xσ is the component of x in Rσ. It is well known that Re is a

subring of R with 1 ∈ Re. A left ideal I of R is called G−graded left ideal provided that I = ⊕σ∈G(I∩Rσ).
In the last two decades, the theory of graded rings and modules has been receiving an increasing

interest. Many authors introduced and studied, in a parallel way, the graded version of a wide range of
concepts see [2, 10, 15–17, 20, 22, 23, 28, 29, 32]. Another area of research that developed remarkably
in recent years is studying graphs associated to algebraic structures. These studies usually aim to
investigate ring properties using graph theory concepts. Since Beck [11] introduced the concept of
zero divisor graph in 1988, this approach became very popular. Other interesting examples of graphs
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associated to rings are total graphs, annihilating-ideal graph, and unit graphs (see [7, 9, 12, 17]). For
studies on graphs associated with graded rings and graded modules, in particular, see [21, 30].

In 2009, Chakrabarty et al. [14] introduced the intersection graph of ideals of a ring. Denote by
I∗(R) the family of all nontrivial left ideals of a ring R. The intersection graph of ideals of R, denoted
by G(R), is the simple graph whose set of vertices is I∗(R), such that two vertices I and J are adjacent if
I ∩ J , {0}. Chakrabarty et al. [14] studied the connectivity of G(R) and investigated several properties
of G(Zn). Akbari et al. [5] studied these graphs more deeply. Among many results, they characterize
all rings R for which G(R) is disconnected. For other interesting studies of intersection graphs of ideals
of rings the reader is referred to [3, 4, 6, 18, 19, 25–27, 31, 33].

The main theme of this work is the study of a graded version of the intersection graph of left ideals.
We introduce the intersection graph of the G−graded left ideals of a G−graded ring R denoted by
GrG(R).

Definition 1.1. Let R be a G−graded ring. The intersection graph of the G−graded left ideals of R,
denoted by GrG(R), is the simple graph whose set of vertices consists of all nontrivial G−graded left
ideals of R, such that two vertices I and J are adjacent only if I ∩ J , {0}.

Sections 2 and 3 focus on the graph theory properties of GrG(R). In particular, we discuss
connectivity, diameter, regularity, completeness, domination numbers, and girth. Among many
results, Theorem 2.6 gives necessary and sufficient conditions for the disconnectivity of GrG(R). In
Theorem 2.13, we describe the regularity of GrG(R), and Theorem 3.5 classifies all gradings (R,G) for
which g(GrG(R)) = ∞. Many of these results are analogue to the nongraded case. Section 4 is devoted
to the relationship between GrG(R) and G(Re) when the grading is faithful, strong, or first strong. In
case of left e−faithful, we obtain an equivalence relation ≈ on vertices GrG(R) by I ≈ J if and only if
I∩Re = J∩Re. Then we are able to show that the quotient graph of GrG(R) over the equivalence classes
of ≈ is isomorphic to G(Re). This isomorphism allows us to extent many of the graphical properties
of G(Re) to GrG(R). Concerning strong grading, we prove that if (R,G) is first strong grading then
GrG(R) � G(Re). In this section also we study the the relationship between GrG(R) and G(R) when the
grading group G is an ordered group. The last section is devoted to the intersection graph of graded
ideals of Z2−graded idealizations.

For standard terminology and notion in graph theory, we refer the reader to the text-book [13]. Let Γ
be a simple graph with vertex set V(Γ) and set of edges E(Γ). Then |V(Γ)| is the order of Γ. If x, y ∈ V(Γ)
are adjacent we write that as x ∼ y. The neighborhood of a vertex x is N(x) = {y ∈ V(Γ) | y ∼ x} and
the degree of x is deg(x) = |N(x)|. The graph Γ is said to be regular if all of its vertices have the same
degree. A graph is called complete (resp. null) if any pair of its vertices are adjacent (res. not adjacent).
A complete (resp. null) graph with n vertices is denoted by Kn (resp. Nn). A graph is called start graph
if it has no cycles and has one vertex (the center) that is adjacent to all other vertices. A graph is said
to be connected if any pair of its vertices is connected by a path. For any pair of vertices x, y in Γ,
the distance d(x, y) is the length of the shortest path between them and diam(Γ) is the supremum of
{d(x, y) | x, y ∈ V(Γ)}. The girth of a Γ, denoted by g(Γ) is the length of its shortest cycle. If Γ has no
cycles then g(Γ) = ∞. A graph Υ is a subgraph of Γ if V(Υ) ⊆ V(Γ) and E(Υ) ⊆ E(Γ). Υ is called
induced subgraph if any edge in Γ that joins two vertices in Υ is in Υ. A complete subgraph of Γ is
called a clique, and the order of the largest clique in Γ, denoted by ω(Γ), is the clique number of Γ. A
dominating set in Γ is a subset D of V(Γ) such that every vertex of Γ is in D or adjacent to a vertex in
D. The domination number of Γ, denoted by γ(Γ), is the minimum cardinality of a dominating set in Γ.
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2. Connectivity, regularity and diameter of GrG(R)

Let R be a G−graded ring. Denote by hI∗(R) the set of all nontrivial G−graded left ideals of R.
A G−graded left ideal is called G−graded maximal (resp. minimal) if it is maximal (resp. minimal)
among the G−graded left ideals of R. A left (resp. G−graded left) ideal of R is called left (resp.
G−graded left) essential if I ∩ J , {0} for all J ∈ I∗(R) (resp. J ∈ hI∗(R)). We call R G−graded
left Noetherian (resp. Artinian) if R satisfies the ascending (resp. descending) chain condition for the
G−graded left ideals. Analogously, we say R is G−graded local if it has a unique G−graded maximal
left ideal. The ring R is called G−graded domain if it is commutative and has no homogeneous nonzero
zero-divisors. Similarly, we call R a G−graded division ring if every nonzero homogeneous element is
a unit. A G−graded field is a commutative G−graded division ring. Next we state a well known lemma
regarding graded ideals, which will be used frequently throughout the paper.

Lemma 2.1. ( [16, Lemma2.1]) Let R be a G-graded ring. If I and J are G−graded left ideals of R,
then so are I + J and I ∩ J.

The following lemma is straightforward so we omit the proof.

Lemma 2.2. Let R be a G−graded ring and let I be G−graded left ideal of R.

1. I is G−graded minimal if and only if N(I) = {A ∈ hI∗(R) | I ⊂ A}.

2. I in isolated vertex in GrG(R) if and only if it is G−graded minimal as well as G−graded maximal.

3. I is G−graded essential if and only if N(I) = hI∗(R) \ {I}.

The following is a well known results about Z−graded fields (see [32]).

Theorem 2.3. Let R be a commutative Z−graded ring. Then R is a Z−graded field if and only if R0 is
a field and either R = R0 with trivial grading or R � R0[x, x−1] with Z−grading Rk = R0xk.

Theorem 2.6 gives a necessary and sufficient condition for the intersection graph of graded ideals
to be disconnected. We will see that this result is analogue to the nongraded case . First we state the
result in nongraded case.

Theorem 2.4. ( [14, Corollary 2.5]) Let R be a graded ring. Then G(R) is disconnected if and only if
it is null graph with at least two vertices.

Theorem 2.5. ( [14, Corollary 2.8]) Let R be a commutative ring. Then G(R) is disconnected if and
only if R is a direct product of two fields.

Theorem 2.6. Let R be a G−graded ring. Then GrG(R) is disconnected if and only if GrG(R) � Nn for
some n ≥ 2.

Proof. Suppose that GrG(R) is disconnected. For a contradiction, assume I and J are two adjacent
vertices. So I, J, and I ∩ J belong to the same component of GrG(R). Since GrG(R) is disconnected,
there is a vertex K that is not connected to anyone of the vertices I, J, and I ∩ J. If (I ∩ J) + K , R
then (I ∩ J) ∼ ((I ∩ J) + K) ∼ K is a path connecting I ∩ J and K, a contradiction. So (I ∩ J) + K = R.
Now let a ∈ I. Then a = t + c for some t ∈ I ∩ J and c ∈ K. So a − t = c ∈ I ∩ K = {0}, consequently
a = t ∈ I ∩ J. This implies that I = I ∩ J. Similarly, we get J = I ∩ J. Hence we have I = J a
contradiction. Therefore GrG(R) contains no edges, and hence it is a null graph. □
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The following result is a direct consequence of Theorem 2.6.

Corollary 2.7. Let R be a G−graded ring. If GrG(R) is disconnected then R contains at least two
G−graded minimal left ideals and every G−graded left ideal of R is principal, graded minimal, and
graded maximal.

It is known that if R1 and R2 are G−graded rings then R = R1 × R2 is G−graded ring by Rσ =
(R1)σ × (R2)σ, σ ∈ G (see [24, Remark 1.2.3]).

Theorem 2.8. Let R be a commutative G−graded ring. Then GrG(R) is disconnected if and only if
R � R1 × R2 where R1 and R2 are G−graded fields.

Proof. Assume GrG(R) is disconnected. Then by Theorem 2.6 and Corollary 2.7, R has two G−graded
maximal as well as G−graded minimal ideals I and J such that I + J = R and I ∩ J = {0}. Hence R/I
and R/J are G−graded fields and R � R/I × R/J. For the converse, assume that R � R1 × R2 where R1

and R2 are G−graded fields. Then R1 × 0 and 0 × R2 are the only G−graded ideals of R. Hence GrG(R)
is disconnected. □

Corollary 2.9. Let R be a commutative G−graded ring. If GrG(R) is connected, then every pair of
G−graded maximal left ideals have non-trivial intersection.

Let R be a G−graded ring with at least two distinct nontrivial G−graded ideals. Since GrG(R) is a
subgraph of G(R), it follows that if GrG(R) is connected then so is G(R). However, the converse of this
statement need not be true. Indeed, Take a field K and let R = R1 ×R2 where R1 = R2 = K[x, x−1], with
Z−grading (Ri)n = Kxn, i = 1, 2. Since R1 and R2 are Z−graded fields, GrZ(R) is disconnected.
However, R1 and R2 are not fields, and hence G(R) is connected. In fact, from Theorem 2.3,
Theorem 2.5, and Corollary 2.8 we get the following result.

Corollary 2.10. Let R be a commutative Z−graded ring such that GrZ(R) is disconnected. Then R �
R1 × R2 such that one of the following is true:

1. R1 and R2 are fields, and hence G(R) is disconnected.

2. Either R1 or R2 is isomorphic to K[x, x−1] for some field(s) K. Consequently G(R) is connected.

Theorem 2.11. Let R be a G−graded ring. If GrG(R) is connected then diam(GrG(R)) ≤ 2.

Proof. Let I, J be two vertices in GrG(R). If I ∩ J , {0} then d(I, J) = 1. Suppose I ∩ J = {0}. If there
exits a G−graded left ideal K ⊆ I such that K + J , R, then I ∼ (K + J) ∼ J is a path, and hence
d(I, J) = 2. So we may assume K + J = R for every G−graded left ideal K ⊆ I. Now we show that I is
G−graded minimal. Let K ⊆ I be a G−graded left ideal, and let x ∈ I. Then x = y + b for some y ∈ I
and b ∈ J. So we have x − y = b ∈ I ∩ J = {0}, and hence x = y ∈ K. Consequently I = K. Therefore I
is G−graded minimal. Since GrG(R) is connected, by Lemma 2.2, I is not G−graded maximal, and so
I ⊊ Y for some Y ∈ hI∗(R). Assume Y ∩ J = {0}. Let y ∈ Y then y = a + b for some a ∈ I and b ∈ J.
Hence y − a = b ∈ Y ∩ J = {0}, which yields y = a, and hence Y = I, a contradiction. So Y ∩ J , {0}.
Hence I ∼ Y ∼ J is a path. Therefore d(I, J) ≤ 2. This completes the proof. □

Theorem 2.12. Let R be a commutative G−graded ring. Then R is G−graded domain if and only if R
is G−graded reduced and GrG(R) is complete.
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Proof. Suppose R is G−graded domain. Then clearly R is G−graded reduced. Now, let I, J ∈ hI∗(R),
and take 0 , a ∈ I ∩ h(R) and 0 , b ∈ J ∩ h(R). Then 0 , ab ∈ I ∩ J, and hence I and J are
adjacent. Therefore GrG(R) is complete. Conversely, suppose that R is G−graded reduced and GrG(R)
is complete. Assume that there are a, b ∈ h(R) \ {0} such that ab = 0. Since GrG(R) is complete, there
exists 0 , c ∈ ⟨a⟩ ∩ ⟨b⟩ ∩ h(R). Hence c2 ∈ ⟨a⟩ ⟨b⟩ = {0}. This implies that c2 = 0, a contradiction.
Therefore R is G−graded domain. □

Theorem 2.13. If R is a left G−graded Artinian ring such that GrG(R) is not null graph, then the
followings are equivalent:

1. GrG(R) is regular.

2. R contains a unique G−graded minimal left ideal.

3. GrG(R) is complete.

Proof. (1)⇒(2) Suppose GrG(R) is regular. Seeking a contradiction, assume that R contains two distinct
G−graded minimal left ideals I and J. Then I and J are nonadjacent. Since d(I, J) ≤ 2, there is a
G−graded left ideal K that adjacent to both I and J. Hence by minimality of I, we get I ⊆ K. This
implies that N(I) ⊂ N(K), consequently deg(K) > deg(I), a contradiction. Hence R contains a unique
G−graded minimal left ideal.
(2)⇒(3) Suppose R contains a unique G−graded minimal left ideal, say I. Let J and K be two
G−graded left ideals in R. Since R is a left G−graded Artinian, we have I ⊆ J and I ⊆ K, and so
J and K are adjacent. Therefore Gr(R) is complete.
(3)⇒(1) Straightforward □

3. Domination, clique and girth of GrG(R)

A commutative G−graded ring R is called G−graded decomposable if there is a pair of nontrivial
G−graded ideals S and T of R, such that R � S × T . If R is not G−graded decomposable then it is
called G−graded indecomposable.

Theorem 3.1. Let R be commutative G−graded ring. Then γ(GrG(R)) ≤ 2. Furthermore the followings
are true.

1. If R is G−graded indecomposable then γ(GrG(R)) = 1.

2. If R � S × T for some nontrivial graded ideals S ,T of R then γ(GrG(R)) = 2 if and only if
γ(GrG(S )) = γ(GrG(T )) = 2.

Proof. Suppose that R is G−graded indecomposable. Let M be a G−graded maximal left ideal of R. If
there exists J ∈ hI∗(R) such that M ∩ J = {0}, then M + J = R, and hence R � M × J, a contradiction.
So M ∩ J , {0} for all J ∈ hI∗(R). Consequently {M} is a dominating set, and hence γ(GrG(R)) = 1.
This proves part (1). Now suppose R � S × T for some nontrivial G−graded ideals S and T . Then the
set {S × {0}, {0} × T } is a dominating set, and hence γ(GrG(R)) ≤ 2. Moreover, it is straightforward to
show that {I × J} is a dominating set in GrG(R) if and only if {I} is dominating set in GrG(S ) or {J} is
dominating set in GrG(T ). This completes the proof of pert (2). □
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Lemma 3.2. Let R be a G−graded ring. If ω(GrG(R)) < ∞, then R is left G−graded Artinian.

Proof. Let I1 ⊇ I2 ⊇ · · · In · · · be a descending chain of G−graded left ideals. Then {Ik}
∞
k=1 is a clique

in GrG(R), and hence it is finite. □

Theorem 3.3. Let R be a commutative G−graded ring. Then

1. ω(GrG(R)) = 1 if and only if GrG(R) = N1 or N2,

2. If 1 < ω(GrG(R)) < ∞ then the number of G−graded maximal left ideals of R is finite.

Proof. (1) Suppose ω(GrG(R)) = 1. Assume |GrG(R)| ≥ 2. Then GrG(R) is disconnected. So, by
Corollary 2.8, R is a direct product of two G−graded fields, consequently GrG(R) = N2. The converse
is clear.

(2) Suppose 1 < ω(GrG(R)) < ∞. So GrG(R) is connected. Then, by Corollary 2.9, the set of
G−graded maximal left ideals of R forms a clique, and hence it is finite. □

Theorem 3.4. If R is a G−graded ring then gr(GrG(R)) = {3,∞}.

Proof. Assume gr(GrG(R)) is finite and let I0 ∼ I1 ∼ · · · ∼ In be a cycle. If I0 ∩ I1 = I0 then In ∼ I0 ∼ I1

is a 3−cycle. Similarly, if I0 ∩ I1 = I1 then I0 ∼ I1 ∼ I2 is a 3−cycle. The remaining case is that
I0 ∩ I1 , I0 or I1. In this case we obtain the 3−cycle I0 ∼ I1 ∼ (I0 ∩ I1). Hence gr(GrG(R)) = 3. □

The next theorem give a characterization of G−graded rings R such that g(GrG(R)) = ∞. In fact,
this result can be refer to as the graded version of [5, Theorem 17].

Theorem 3.5. Let R be a G−graded ring such that GrG(R) is not a null graph. If gr(GrG(R)) = ∞ then
R is a G−graded local ring and GrG(R) is a star whose center is the unique G−graded maximal left
ideal of R, say M. Moreover, one of the followings hold:

1. M is principal. In this case GrG(R) = K1 or K2.

2. The minimal generating set of homogeneous elements of M has size 2. In this case M2 = {0}.

Proof. Suppose M1 and M2 are two distinct G−graded maximal left ideals of R. Then by Theorem 2.11,
d(M1,M2) ≤ 2. If M1 ∩ M2 , {0} then M1 ∼ (M1 ∩ M2) ∼ M2 is a 3−cycle, a contradiction. So
M1 ∩ M2 = {0}. Then by Theorem 2.11, there exists a G−graded left ideal I that is adjacent to both
M1 and M2. Since M1 ∩ M2 = {0}, I ⊈ M1 and I ⊈ M2. So I ∼ M1 ∼ M2 is a 3−cycle in GrG(R),
a contradiction. Hence R has a unique G−graded maximal ideal, and hence it is G−graded local ring.
Let M be the G−graded maximal left ideal If M ∩ J = {0} for some J ∈ hI∗(R), then M ⊊ M + J,
and hence M + J = R. So M is G−graded maximal as well as G−graded minimal, which implies
GrG(R) is null graph, a contradiction. So M ∩ J , {0} for all J ∈ hI∗(R). Moreover, since GrG(R)
has no cycles then J ⊆ M for all J ∈ hI∗(R). So fare we proved that GrG(R) is a star whose center is
M. Now we proceed to prove parts (1) and (2). Since R is left G−graded Artinian, by [24, Corollary
2.9.7] R is left G−graded Noetherian. So M is generated by a finite set of homogeneous elements. If
a minimal set of homogeneous generators has at least three elements, containing say a, b, c, ..., then
M ∼ (Ra+Rb) ∼ (Rb+Rc) is a 3−cycle in GrG(R), a contradiction. So a minimal set of homogeneous
generators of M has at most two elements. Moreover, since M is finitely generated and Jg(R) = M
(where Jg(R) is the graded Jacobson radical of R, which is the intersection of all G−graded maximal
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left ideals), by [24, Corollary 2.9.2], M ⊋ M2 ⊋ M3 ⊋ · · · . In addition, since GrG(R) has no 3−cycles,
we get M3 = 0.
Case 1: Suppose M = Ra for some a ∈ h(R). Let I ∈ hI∗(R) and let x ∈ I ∩ h(R). Then x = ya for
some y ∈ R. Since x, a ∈ h(R), it results that y ∈ h(R). If y < M, then Ry = R, because M is the only
G−graded maximal left ideal. So y is a unit, and hence I = M. Assume y ∈ M. Then, we get x = wa2

for some w ∈ h(R). If w ∈ M, then x ∈ Ra3 = {0}, a contradiction. So w < M, and hence I = Ra2.
Therefore we have that if Ra2 = 0 then GrG(R) = K1, otherwise GrG(R) = K2.
Case 2: Assume the minimal set of homogeneous generators of M has two elements say a, b,
consequently M = Ra + Rb. Since GrG(R) has no 3−cycles, Ra and Rb are G−graded minimal.
Moreover, we have Ra and Rb are left subideals of Jg(R). By [24, Corollary 2.9.2] it results that
(Ra)2 = RaRb = RbRa = (Rb)2 = 0, and hence M2 = 0. □

4. Intersections graph of types of gradings

In this section we focus on the relationship between G(Re) and GrG(R). Note that if Ie is left ideal
of Re then RIe is a G−graded left ideal of R. Moreover, RIe ∩ Re = Ie.

Theorem 4.1. Let R be a G−graded ring such that Re contains at least two nontrivial left ideals. If
G(Re) is connected then GrG(R) is connected, and hence G(R) is connected.

Proof. Since G(Re) is connected then it must contain an edge. Let Ie , Je be two adjacent vertices of
G(Re). Then RIe and RJe are vertices in GrG(R). Moreover RIe ∩ Re = Ie and RJe ∩ Re = Je, and so
RIe , RJe. Additionally, we have {0} , Ie ∩ Je ⊆ RIe ∩ RJe. Therefore GrG(R) is not null, and hence it
is connected. □

The converse of Theorem 4.1 need not be true. Indeed, let Re = Zpq, where p and q are distinct
primes, and Take R = Re[x] with Z−grading Rk = Rexk, k ≥ 0 and Rk = 0, k < 0. The ideals Rx and
Rx2 are adjacent in GrG(R) and so GrG(R) is connected, while G(Re) is disconnected because it has two
minimal ideals.

A grading (R,G) is called left σ−faithful for some σ ∈ G, if Rστ−1 xτ , {0} for every τ ∈ G, and
every nonzero xτ ∈ Rτ. If (R,G) is left σ−faithful for all σ ∈ G then it is called left faithful.

Lemma 4.2. A grading (R,G) is left σ−faithful for some σ ∈ G if and only if I ∩ Rσ , {0} for all
I ∈ hI∗(R).

Proof. Suppose (R,G) is left σ−faithful for some σ ∈ G. Let I ∈ hI∗(R) and take a nonzero element
xτ ∈ I∩Rτ for some τ ∈ G. Then Rστ−1 xτ , {0}. So we have {0} , Rστ−1 xτ ⊆ Rστ−1Rτ ⊆ Rστ−1τ = Rσ. On
the other hand Rστ−1 xτ ⊆ I. Thus I ∩Rσ , {0}. Conversely, assume I ∩Rσ , {0} for all I ∈ hI∗(R). If xτ
is a nonzero homogenous element of degree τ, for some τ ∈ G, then Rxτ ∈ hI∗(R). So by assumption,
Rxτ ∩ Rσ , {0}. Since Rρxτ ⊆ Rρτ for each ρ ∈ G, we get Rρxτ ∩ Rσ = {0} for all ρ ∈ G \ {στ−1}. This
implies that Rστ−1 xτ ∩ Rσ , {0}, consequently Rστ−1 xτ , {0}. Therefore (R,G) is left σ−faithful. □

Let (R,G) be a left e−faithful grading. By Lemma 4.2, we have I ∩ Re , {0} for all I ∈ hI∗(R).
Define a relation ≈ on the vertices of GrG(R) by I ≈ J if and only if I ∩ Re = J ∩ Re. Clearly ≈ is
an equivalence relation on hI∗(R). The classes of ≈ are {[RIe] | Ie ∈ I∗(Re)}. These classes satisfy the
followings assertions.
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1. For each Ie ∈ I∗(Re), [RIe] is a clique in GrG(R).

2. If K ∈ [RIe] and L ∈ [RJe] then K ∩ L , {0} if and only if Ie ∩ Je , {0}. To see this, note that by
Lemma 4.2, K ∩ L , 0 if and only if K ∩ L ∩ Re , {0}. Since K ∩ Re = Ie and L ∩ Re , {0}, we
get K ∩ L , {0} if and only if Ie ∩ Je , {0}.

Define a graph Gre(R) on the classes of ≈ where [K] and [L] are adjacent only if K ∩ L , {0}. This
adjacency operation is well defined by (2) above. In fact, Gre(R) is the quotient graph of GrG(R) over
the classes of ≈.

Theorem 4.3. Let (R,G) be a left e−faithful grading. Then the map ϕ : G(Re) −→ Gre(R) defined by
ϕ(Ie) = [RIe] is a graph isomorphism.

Proof. Let Ie, Je ∈ I∗(Re). Since Ie = RIe ∩ Re and Je = RJe ∩ Re, it follows that Ie , Je if and only
if [RIe] , [RJe]. Hence ϕ is a set bijection. Additionally, from (2) above we have Ie ∩ Je , {0} if and
only if RIe ∩ RJe , {0}. Therefore ϕ is a graph isomorphism. □

Theorem 4.4. Let (R,G) be a left e−faithful. Then G(Re) is connected if and only if GrG(R) is
connected.

Proof. The “if” part is Theorem 4.1. For the “only if” part, assume GrG(R) is connected and let Ie, Je

be two distinct vertices in G(Re). If RIe ∩ RJe , {0}, then by Theorem 4.3, Ie ∩ Je , {0}, and hence
Ie ∼ Je is a path. Assume RIe∩RJe = {0}. By Theorem 2.11, there is K ∈ hI∗(R) such that RIe∩K , {0}
and RIe ∩ K , {0}. Then RIe ∩ K ∩ Re , {0} and RIe ∩ K ∩ Re , {0}, consequently Ie ∩ (K ∩ Re) and
Je ∩ (K ∩ Re) are nontrivial. Hence we obtain a path connecting Ie and Je in G(R). Therefore G(R) is
connected. □

Corollary 4.5. Let (R,G) be a left e−faithful grading where R is a commutative. Then Re is direct
product of two fields if and only if R is direct product of two G−graded fields.

Proof. The proof follows directly from Theorem 2.5 and Corollary 2.8. □

Theorem 4.6. Let (R,G) be a left e−faithful grading. Then γ(G(Re)) = γ(GrG(R)).

Proof. Let S ⊆ I∗(Re) be a minimal dominating set in G(Re), and let S = {RIe | Ie ∈ S }. By
Theorem 4.3, we have |S | = |S |, and since [RIe] is a clique in GrG(R), we get S is a dominating set in
GrG(R). Hence γ(G(Re)) ≥ γ(GrG(R)). Now assume S is a minimal dominating set in GrG(R), and let
S = {I∩Re | I ∈ S }. So S is a dominating set in G(Re). If [I] = [J] for some I, J ∈ S with I , J, then
S \ {I} is a dominating set in GrG(R), a contradiction. Hence |S | = |S |. So γ(G(Re)) ≤ γ(GrG(R)). □

Corollary 4.7. Let (R,G) be a left e−faithful grading. Then ω(GrG(R)) < ∞ if and only if
ω(G(Re)) < ∞ and |[RIe]| ≤ ∞ for all Ie ∈ I∗(Re). Moreover, if ω(GrG(R)) < ∞ then ω(GrG(R)) =
Max

{∑
Ie∈C |[RIe]| | C is a clique in G(Re)

}
.

Proof. It is clear that C is a clique in G(R) if and only if
⋃

Ie∈C[Ie] is a clique in GrG(R). Hence
the result. □

A grading (R,G) is called strong (resp. first strong) if 1 ∈ RσRσ−1 for all σ ∈ G (resp. σ ∈
supp(R,G)) (see [1, 23, 29]). It is know that (R,G) is strong if and only if RτRσ = Rτσ for all τ, σ ∈ G.
In [23, Corollary 1.4] it is proven that if (R,G) is a strong grading and I is a left G−graded ideal of R,
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then I = RIe, where Ie = I∩Re. In fact this result is still true in case H = supp(R,G) is a subgroup of G
and R = ⊕σ∈HRσ is a strongly H−graded ring. Fact 2.5 in [29] states that (R,G) is first strong if and only
if H = supp(R,G) ≤ G and (R,H) is strong. So next we state a weaker version of [23, Corollary 1.4].

Lemma 4.8. Let (R,G) be first strong grading. Then for every I ∈ hI∗(R), I = RIe, where Ie = I ∩ Re.

Theorem 4.9. Let (R,G) be first strong grading. Then G(Re) � GrG(R).

Proof. Since (R,G) is first strong , so by Lemma 4.8, we have hI∗(R) = {RIe | Ie ∈ I∗(Re)}. Moreover
(R,G) is left e-faithful, because if for some τ ∈ supp(R,G) and xτ ∈ Rτ, we have Rτ−1 xτ = {0}, then
Rexτ = RτRτ−1 xτ = {0}, and hence xτ = 0. Now the result follows by Theorem 4.3. □

Example 4.10. Let R be a ring and G be a finite group then the group ring R[G] is strongly G−graded
ring by (R[G])σ = Rσ. Hence by Theorem 4.9, GrG(R[G]) � G(R).

The rest of this section is devoted to study the relationship between GrG(R) and G(R) when the
grading group is an ordered group. An ordered group is a group G together with a subset S such that

1. e < S ,

2. If σ ∈ G, then σ ∈ S , σ = e, or σ−1 ∈ S ,

3. If σ, τ ∈ S the στ ∈ S ,

4. σSσ−1 ⊆ S , for all σ ∈ G.

For σ, τ ∈ G we write σ < τ if and only if σ−1τ ∈ S (equivalently τσ−1 ∈ S ). Suppose that
R is G−graded ring where G is an ordered group. Then any r ∈ R can be written uniquely as r =
rσ1 + rσ2 + . . . + rσn , with σ1 < σ2 < · · · < σn. For each left ideal I of R, denote by I⋄ the graded
ideal generated by the homogeneous components of highest degrees of all elements of I. From [24,
Lemma 5.3.1, Corollary 5.3.3] we have the following result:

Lemma 4.11. Let R be a G−graded ring where G is ordered group. Then

1. I = I⋄ if and only if I is G−graded left ideal.

2. I⋄ = {0} if and only if I = {0}.

3. If I ⊆ J, then I⋄ ⊆ J⋄.

4. If supp(R,G) is well ordered subset of G and I ⊆ J are left ideals, then I = J if and only if
I⋄ = J⋄.

Theorem 4.12. Let R be a G−graded ring where G is an ordered group. If supp(R,G) is well ordered
subset of G then GrG(R) is connected if and only if G(R) is connected.

Proof. If GrG(R) is connected then G(R) is not null graph and therefore it is also connected. For the
converse, assume that G(R) is connected and let I and J be adjacent vertices of G(R). Hence I∩J , {0}.
Let K = I ∩ J. Since I , J then either K ⊊ I or K ⊊ J. Without loss of generality assume K ⊊ I.
Then by parts (2)–(4) of Lemma 4.11, we have {0} , K⋄ ⊊ I⋄. So Gr(R) is not null and hence it is
connected. □
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Theorem 4.13. Let R be a G−graded where G is an ordered group. If supp(R,G) is well ordered
subset of G and R is local ring then g(GrG(R)) = g(G(R)).

Proof. Clearly If g(G(R)) = ∞ then g(GrG(R)) = ∞. Assume that g(G(R)) < ∞, it follows from
Theorem 3.4 that g(G(R)) = 3. If R is not left Noetherian, then we can find three nontrivial left ideals
I1, I2, and I3 such that I1 ⊊ I2 ⊊ I3. Then, by part (4) of Lemma 4.11, we get that I⋄1 ⊊ I⋄2 ⊊ I⋄3 . Hence
I⋄1 ∼ I⋄2 ∼ I⋄3 is a 3−cycle in GrG(R). Now assume that R is left Noetherian. This implies that J ⊆ M for
all J ∈ I∗(R). Since G(R) is not a star graph, there are two distinct left ideals I, J ∈ I∗(R)\ {M} such that
I∩ J , {0}. Without loss of generality, we may assume that I∩ J ⊊ I. So we have {0} , I∩ J ⊊ I ⊊ M.
Again by part (4) of Lemma 4.11, we obtain the 3−cycle (I ∩ J)⋄ ∼ I⋄ ∼ M⋄ in GrG(R). Therefore,
g(GrG(R)) = 3. This completes the proof. □

Remark 4.14. Take R and G as described in Theorem 4.13, except for the condition “R is local”. We
know from theorem 3.5 that if g(GrG(R)) = ∞, then R is G−graded local. In this case, if g(G(R)) = 3,
then the followings hold:

1. The unique G−graded maximal left ideal (Say M) is maximal among all proper left ideals.

2. K⋄ = M for every maximal ideal K of R.

3. The length of every acceding chain of left ideals is exactly three.

5. Intersection graph of graded ideals of idealization

Let R be a commutative ring and M be an R−module. Then the idealization R(+)M is the ring whose
elements are those of R × M equipped with addition and multiplication defined by (r,m) + (r′,m′) =
(r + r′,m + m′) and (r,m)(r′,m′) = (rr′, rm′ + r′m) respectively. The idealization R(+)M is Z2−graded
by the gradation (R(+)M)0 = R ⊕ 0 and (R(+)M)1 = 0 ⊕ M. This grading is neither first-strong nor
left e−faithful because (0 ⊕ M)2 = 0 ⊕ 0 , R ⊕ 0. Throughout this section we assume that M , 0
and R(+)M have the Z2−grading (R(+)M)0 = R ⊕ 0 and (R(+)M)1 = 0 ⊕ M. The next lemma gives a
characterization of the Z2−graded ideals of R(+)M.

Lemma 5.1. ( [8, Theorem 3.3]) Let R be a commutative ring and M be an R−module. Then

1. The Z2−graded ideals of (R(+)M) have the form I(+)N weher I is an ideal of R, N is a submodule
of M and IM ⊂ N.

2. If I1(+)N1 and I2(+)N2 are Z2−graded ideals of R(+)M then (I1(+)N1) ∩ (I2(+)N2) = (I1 ∩

I2)(+)(N1 ∩ N2).

Theorem 5.2. Let R be a commutative ring and M be an R−module. Then

1. GrZ2(R(+)M) is disconnected if and only if R is a field and M is a simple module.

2. If one of the followings holds then g(GrZ2(R(+)M)) = 3.

(a) R and M are both not simple.

(b) |G(R)| ≥ 2.

(c) RM , M.
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Proof. (1) Suppose GrZ2(R(+)M) is disconnected. If I is a nontrivial ideal of R then I(+)M and 0(+)M
are adjacent in GrZ2(R(+)M), a contradiction. So R is simple. Similarly, if N is a nontrivial submodule
of M then 0(+)M and 0(+)N are adjacent in GrZ2(R(+)M), a contradiction. So M is simple. Conversely,
assume R and M are simple. Then the Z2−graded proper ideals of R(+)M are 0(+)M and possibly R(+)0
(if AnnR(M) = 0). In either case GrZ2(R(+)M) is disconnected.
(2a) Let I be a nontrivial proper ideal of R and N be a nontrivial proper submodule of M. Then
I(+)M ∼ 0(+)M ∼ 0(+)N is a 3−cycle in GrZ2(R(+)M). Hence g(GrZ2(R(+)M)) = 3.
(2b) If I and J be distinct nontrivial proper ideal of R, then I(+)M ∼ J(+)M ∼ 0(+)M is a 3−cycle.
Hence the result.
(2c) Suppose RM , 0. Then (R(+)RM) ∼ (0(+)RM) ∼ (0(+)M) is a 3−cycle. □

From Theorem 5.2 we have the following result.

Corollary 5.3. Let R be a commutative ring. Then GrZ2(R(+)R) is connected if and only if R is not
simple if and only if g(GrZ2(R(+)R)) = 3.

Next we give a lower bound on the clique number of GrZ2(R(+)R) using the clique number of R.

Theorem 5.4. Let R be a commutative ring.

1. If |G(R)| is infinite then so is ω(GrZ2(R(+)R)).

2. If |G(R)| is finite, then ω(GrZ2(R(+)R)) ≥ 1 + 2ω(G(R)) + |G(R)| with equality holds if and only if
G(R) is null graph.

Proof. Let C be a clique of maximal size in G(R) and let

H1 = {0(+)I | I ∈ C}

H2 = {I(+)I | I ∈ C}

H3 = {J(+)R | J ∈ I∗(R)}.

ThenH1 ∪H2 ∪H3 ∪ {0(+)R} is a clique in GrZ2(R(+)R).
(1) If |G(R)| is infinite then ω(GrZ2(R(+)R) is infinite because |G(R)| = |H3|.
(2) Assume |G(R)| is finite. Then |H1| = |H2| = ω(G(R)) and |H3| = |G(R)|. Consequently
ω(GrZ2(R(+)R) ≥ 1 + 2ω(G(R)) + |G(R)|. It is remaining to show the last part of (2). Assume
G(R) is not null graph. Then |C| ≥ 2. So we can pick I, J ∈ C such that {0} , I ∩ J ⊊ I.
This implies that H1 ∪ H2 ∪ H3 ∪ {0(+)R} ∪ {(I ∩ J)(+)I} is a clique in GrZ2(R(+)R), and so
ω(GrZ2(R(+)R) ≥ 2 + 2ω(G(R)) + |G(R)|. Conversely, assume G(R) is a null graph. Then g(G(R)) = 1
and every ideal of R is minimal as well as maximal. If I(+)J is Z2−graded ideal of R(+)R then RI ⊆ J,
and so RI = 0, I = RI = J, or J = R. Moreover, if I and J are distinct proper ideals in R then
(I(+)I) ∩ (J(+)J) = {(0, 0)}. So for each proper ideal I of R, {0(+)I, I(+)I, 0(+)R} ∪ H3 is maximal
clique in R(+)R. Hence equality holds. □

Corollary 5.5. Let R be a commutative ring. Then GrZ2(R(+)R) is planar if and only if R contains at
most one proper nontrivial ideal.

Proof. If |G(R)| ≥ 2. By Theorem 5.4, it follows that K5 is a subgraph of GrZ2(R(+)R). So by
Kuratowski’s Theorem [13, Theorem 9.10], GrZ2(R(+)R) is not planar. Conversely, assume R contains
at most one proper nontrivial ideal. Then |GrZ2(R(+)R)| ≤ 4, and so it is planar. □
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6. Conclusions

In this study, we introduced the notions of intersection graph of graded left ideals of graded rings,
namely GrG(R). Several properties of these graphs such as connectivity, regularity, completeness,
and girth have been discussed. In addition, we investigated the relationship between GrG(R) and the
intersection graph of left ideals of the identity component, G(Re), when the grading is faithful, strong,
or first strong. We also studied the relationship between GrG(R) and G(R) when the grading group is an
ordered group. As a proposal of further work, one may study the graded case of other types of graphs
associated to rings such as zero-divisor graphs, annihilating-ideal graph, and unit graphs.
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