Citation: Zahid Iqbal, Muhammad Ishaq. Depth and Stanley depth of edge ideals associated to some line graphs[J]. AIMS Mathematics, 2019, 4(3): 686-698. doi: 10.3934/math.2019.3.686
[1] | R. P. Stanley, Linear Diophantine equations and local cohomology, Invent. Math., 68 (1982), 175-193. doi: 10.1007/BF01394054 |
[2] | B. Ichim, L. Katthän, J. J. Moyano-Fernández, The behavior of Stanley depth under polarization, J. Combin. Theory, Ser. A, 135 (2015), 332-347. doi: 10.1016/j.jcta.2015.05.005 |
[3] | A. M. Duval, B. Goeckneker, C. J. Klivans, et al. A non-partitionable Cohen-Macaulay simplicial complex, Adv. Math., 299 (2016), 381-395. doi: 10.1016/j.aim.2016.05.011 |
[4] | J. Herzog, T. Hibi, The depth of powers of an ideal, J. Algebra, 291 (2005), 534-550. doi: 10.1016/j.jalgebra.2005.04.007 |
[5] | J. Herzog, M. Vladoiu, X. Zheng, How to compute the Stanley depth of a monomial ideal, J. Algebra, 322 (2009), 3151-3169. doi: 10.1016/j.jalgebra.2008.01.006 |
[6] | C. Biro, D. M. Howard, M. T. Keller, et al. Interval partitions and Stanley depth, J. Combin. Theory, Ser. A, 117 (2010), 475-482. doi: 10.1016/j.jcta.2009.07.008 |
[7] | M. Cimpoeas, Stanley depth of squarefree Veronese ideals, An. St. Univ. Ovidius Constanta, 21 (2013), 67-71. |
[8] | M. Ishaq, Upper bounds for the Stanley depth, Comm. Algebra, 40 (2012), 87-97. doi: 10.1080/00927872.2010.523642 |
[9] | M. Ishaq, M. I. Qureshi, Upper and lower bounds for the Stanley depth of certain classes of monomial ideals and their residue class rings, Comm. Algebra, 41 (2013), 1107-1116. doi: 10.1080/00927872.2011.630708 |
[10] | M. T. Keller, Y. Shen, N. Streib, et al. On the Stanley Depth of Squarefree Veronese Ideals, J. Algebr. Comb., 33 (2011), 313-324. doi: 10.1007/s10801-010-0249-1 |
[11] | B. Ichim, L. Katthän, J. J. Moyano-Fernández, How to compute the Stanley depth of a module, Math. Comput., 86 (2016), 455-472. doi: 10.1090/mcom/3106 |
[12] | B. Ichim, L. Katthän, J. J. Moyano-Fernández, LCM lattices and Stanley depth: a first computational approach, Exp. Math., 25 (2016), 46-53. doi: 10.1080/10586458.2015.1005257 |
[13] | B. Ichim, L. Katthän, J. J. Moyano-Fernández, Stanley depth and the lcm-lattice, J. Combin. Theory, Ser. A, 150 (2017), 295-322. doi: 10.1016/j.jcta.2017.03.005 |
[14] | Z. Iqbal, M. Ishaq, M. Aamir, Depth and Stanley depth of the edge ideals of square paths and square cycles, Comm. Algebra, 46 (2018), 1188-1198. doi: 10.1080/00927872.2017.1339068 |
[15] | Z. Iqbal, M. Ishaq, Depth and Stanley depth of the edge ideals of the powers of paths and cycles, An. St. Univ. Ovidius Constanta, In press. Available from: http://arxiv.org/pdf/1710.05996.pdf. |
[16] | M. R. Pournaki, S. A. Seyed Fakhari, S. Yassemi, Stanley depth of powers of the edge ideals of a forest, P. Am. Math. Soc., 141 (2013), 3327-3336. doi: 10.1090/S0002-9939-2013-11594-7 |
[17] | J. Herzog, T. Hibi, Monomial Ideals, Springer-Verlag London Limited, 2011. |
[18] | R. H. Villarreal, Monomial algebras, Monographs and Textbooks in Pure and Applied Mathematics 238, Marcel Dekker, New York, 2001. |
[19] | J. A. Bondy, U. S. R. Murty, Graph Theory with applications, Springer, 2008. |
[20] | F. Harary, Graph theory, Addison-Wesley, Reading, MA, 1969. |
[21] | A. Rauf, Depth and Stanley depth of multigraded modules, Comm. Algebra, 38 (2010), 773-784. doi: 10.1080/00927870902829056 |
[22] | M. Cimpoeas, Several inequalities regarding Stanley depth, Romanian Journal of Mathematics and Computer Science, 2 (2012), 28-40. |
[23] | S. Morey, Depths of powers of the edge ideal of a tree, Comm. Algebra, 38 (2010), 4042-4055. doi: 10.1080/00927870903286900 |
[24] | A. Stefan, Stanley depth of powers of path ideal}. Available from: http://arxiv.org/pdf/1409.6072.pdf. |
[25] | M. Cimpoeas, On the Stanley depth of edge ideals of line and cyclic graphs, Romanian Journal of Mathematics and Computer Science, 5 (2015), 70-75. |
[26] | L. Fouli, S. Morey, A lower bound for depths of powers of edge ideals, J. Algebr. Comb., 42 (2015), 829-848. doi: 10.1007/s10801-015-0604-3 |
[27] | G. Rinaldo, An algorithm to compute the Stanley depth of monomial ideals, Le Matematiche, 63 (2008), 243-256. |