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1. Introduction

One of the active research fields of algebraic graph theory is the association of a graph to an
algebraic structure. The significance of this topic has led many authors to study the interplay between
the graph theoretic properties, such as diameter, girth, cliques, connectedness, dominating sets, etc,
and the algebraic properties of the underlined algebraic structure. A significant amount of research
has been devoted to the study of algebraic structures and their associated graphs. We mention here,
Cayley graph of a commutative ring [11], a zero-divisor graph for a commutative ring [4], unit graphs
associated with rings [5], and comaximal graphs associated with rings [13].

The intersection graph of ideals of a ring [7] is another important graph associated to a ring. The
intersection graph of ideals of a ring R is a graph having the set of all nonzero ideals of R as its vertex
set and two distinct vertices I and J are adjacent if and only if I ∩ J is non-trivial (non-zero). The
intersection-graph of ideals was studied by a large number of mathematicians, in which they obtained
many of its properties and linked them to the properties of rings as demonstrated in [1–3, 10, 16–
18]. The intersection-graph of ideals of rings gave birth to many graphs associated to rings and other
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algebraic structures as one can see in [12–15]. For more information about this topic, we recommend
the survey on the intersection-graph of ideals of rings [8]. In this paper, we define the following graph.

Definition 1. Let R be a ring with unity 1 , 0. The simple-intersection graph of R, denoted by GS (R),
is defined to be a simple graph whose vertices are the nonzero ideals of R, and two vertices I and J are
adjacent, and we write I ↔ J, if and only if I ∩ J is a nonzero simple ideal.

For example, consider the ring Z4. The nonzero ideals of Z4 are Z4 and 2Z4 � Z2. Obviously,
GS (Z4) is Z4 ↔ 2Z4. Clearly, the simple-intersection graph is a subgraph of the intersection graph of
ideals of R. We study several properties of this graph such as connectedness, Euler circuits, regularity,
girth, cliques, the “bipartite” property, dominating sets. Moreover, we relate these concepts with
various algebraic properties of the ring R. For instance, we show that the girth of GS (R) equals one
of the three values 3, 4, or ∞. We also show that the diameter of GS (R) does not exceed 4 and never
equals 3. Furthermore, we give explicit formulas to compute the clique and domination numbers of
GS (R). Besides, a necessary and sufficient conditions for GS (R) to be bipartite are provided. We give
many examples to illustrate the concepts discussed here, and provide counterexamples for expected
results. This work is exhibited in Sections 3 through 7. Some preliminaries from ring theory and graph
theory are listed in Section 2.

We shall apply our results in algebra to develop new theories in graph theory and vise versa. Also,
we will utilize our results to solve some coloring and optimization problems, which will be our next
project.

2. Preliminaries

This section presents a quick review of rings and graphs that are important in this paper. All notions
presented here could be found in [6, 9]. In this paper, all rings are assumed to be nonzero rings with
unity 1 , 0 and are not necessarily commutative. Also, the ideals are considered to be left ideals. We
first start with some preliminaries from Ring Theory.

Definition 2. An ideal I of a ring R is said to be simple (or minimal) if I and {0} are the only ideals
included in I.

Definition 3. The direct sum of simple ideals of a ring R is called a semisimple ideal. We call each
simple ideal in the decomposition of a semisimple ideal, a component.

Obviously, a simple ideal is semisimple with one component. On the other hand, every ideal of a
semisimple ideal is semisimple.

Definition 4. The socle of R, denoted by S oc(R), is defined to be the sum (precisely, the direct sum) of
all nonzero simple ideals of R. If R = S oc(R), we call R a semisimple ring.

Definition 5. A proper ideal I of a ring R is said to be maximal if I is not contained in another proper
ideal of R.

Definition 6. A ring R is said to be Artinian if it satisfies the descending chain condition on ideals.

Theorem 7. A ring R is Artinian if and only if Every nonzero ideal contains a nonzero simple ideal.
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As a direct corollary from Theorem 7, semisimple rings are Artinian.
Next, we turn to preliminaries from Graph Theory concerning undirected graphs. In what follows,

G denotes an undirected graph. The number of vertices of G is called the order the graph G. The set of
vertices of G is denoted by Ver[G]. If two vertices u and v are adjacent, we express that symbolically
by u↔ v.

Definition 8. Let v be a vertex in G. The neighborhood N(v) of v is the set of all vertices adjacent to v,
i.e., the set of all vertices each of which is linked to v by an edge.

If G is a simple undirected graph, then v < N(v). If N(v) = ∅, then v is an isolated vertex.

Definition 9. The degree of a vertex v of G is the number of edges incident to v, i.e., going out of v.
The degree of v is denoted by degG(v) (or deg(v) if there is no confusion with the underlined graph).
The minimum of the degrees of the vertices is denoted by δ(G), while the maximum of the degrees of
the vertices is called the degree of the graph and is denoted by ∆(G).

When G is a simple graph, then deg(v) = |N(v)|, where |N(v)| means the cardinality of N(v). Hence,
v is isolated if and only if deg(v) = 0.

Definition 10. A graph whose vertices have equal degrees is called a regular graph.

It is obvious to see that a graph G is regular if and only if ∆(G) = δ(G).

Definition 11. Let v and u be two vertices of G. The length of a path between v and u is the number of
edges forming the path. The distance d(u, v) between v and u is the length of a shortest path between
them. The diameter of G, denoted by diam(G), is defined to be the supremum of the set {d(u, v) : u, v ∈
Ver[G]}.

Definition 12. A graph G is path connected if there is a path between any two vertices of G.

Definition 13. A graph is said to be complete if it is a simple graph and every pair of vertices are
adjacent. The complete graph on n vertices is denoted by Kn.

Definition 14. A subgraph of G which is a complete graph is called a clique of G. The order of a
largest clique (i.e., a clique with the largest number of vertices) is called the clique number of G and it
is denoted by ω(G).

Definition 15. By the girth of G, we mean the length of a shortest cycle in G. The girth of G is denoted
by g(G). If G has no cycles, then we write g(G) = ∞.

Definition 16. An Euler path of G is a path consisting of all edges of G without repetition. If an Euler
path is closed, then it is called an Euler circuit.

Theorem 17. A graph has an Euler path if and only if every vertex has an even degree. However, a
graph has an Euler circuit if and only if exactly two vertices has an odd degree.

Definition 18. A dominating set D of G is a nonempty subset of Ver[G] such that each vertex of G is
either in D or adjacent to a vertex in D. The infimum of the set {|D| : D is a dominating set of G} is
called the domination number of G and is denoted by γ(G).
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Definition 19. A simple graph G is called bipartite if we can partition Ver[G] into two disjoint
nonempty subsets (each subset is called a part) such that the vertices belonging to the same subset
are not adjacent to each other. A complete bipartite graph is a bipartite graph where each vertex in
one part is adjacent to each vertex in the other part. A complete bipartite graph is denoted by Km,n or
Kn,m, where m is the cardinality of one part and n is the cardinality of the other part.

The “bipartite” problem is one of the coloring problems, which investigates the possibility to color
the vertices of a simple undirected graph using two colors such that no adjacent vertices have the same
color. This is possible for a simple undirected graph if and only if it is bipartite.

More preliminaries will be added in the next sections as needed.

3. Cycles and girth of GS (R)

In this section, we study the cycles and girth of GS (R). Some parts of this section have the same
flow of similar results of other associated graphs found earlier in the literature, while other parts have
new approaches.

Recall that a null graph is a graph whose vertices are not adjacent to each other (i.e., edgeless graph).

Theorem 20. The graph GS (R) is a null graph if and only if R is a simple ring or R has no nonzero
simple ideals.

Proof. Assume GS (R) is a null graph. Suppose for contrary that R is not simple and it contains a
nonzero simple ideal I. Then R ↔ I and hence GS (R) is not null, which is a contradiction to the
hypothesis “GS (R) is a null graph”. The converse is easy. �

Example 21. GS (Z) and GS (Z2) are null.

Remark 22. In GS (R), I ↔ R if and only if I is a nonzero simple ideal of R. So the subgraph consisting
of R with all nonzero simple ideals of R is a star graph with center R, and hence deg(R) equals the
number of nonzero simple ideals of R. Thus, if R is semisimple with n components, then deg(R) = n.
On the other hand, if I is a nonzero simple ideal of R and J is an ideal of R, then I ↔ J if and only
if I ( J. Moreover, every pair of different nonzero simple ideals is not adjacent, or equivalently, the
subgraph of GS (R) consisting of nonzero simple ideals is a null graph.

Next, we study the cycles of GS (R). We show that the cycles with length at least 4 has only two
special patterns. Afterward, we demonstrate that the girth of GS (R) is either∞, 3, or 4.

Theorem 23. The graph GS (R) has a cycle of length 3 if and only if GS (R) contains at least two
adjacent non-simple ideals.

Proof. Assume that the graph GS (R) has a cycle of length 3, say I ↔ J ↔ K ↔ I. By Remark 22, at
most one of the vertices is simple. So, at least two of the vertices in this cycle are adjacent non-simple
ideals of R. For the converse, let I and J be two different nonzero non-simple ideals such that I ∩ J is
nonzero simple. Then we have the cycle I ↔ J ↔ I ∩ J ↔ I. �

Theorem 24. If the graph GS (R) has a cycle, then either g(GS (R)) = 3 or g(GS (R)) is even.
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Proof. Assume that GS (R) has the cycle I1 ↔ I2 ↔ . . . ↔ In ↔ I1, and n > 3, with the least length.
By Remark 22 and Theorem 23, if two vertices in the cycle are adjacent, then one of them is nonzero
simple and the other is non-simple. In other words, the vertices of the cycle alternate between simple
and non-simple ideals. Without loss of generality, assume I1 is simple. Then I2 is not simple, I3 is
simple, I4 is not simple, and so on. Thus, for each 1 ≤ k ≤ n, Ik is simple if k is odd, and Ik is
not simple if k is even. If n is odd, then In is simple and this implies In+1 = I1 is not simple which
contradicts the assumption that I1 is simple. We conclude that n is even. Since the length of a cycle
equals n, the number of its vertices, we get that the length of the cycle is even. As a result, any cycle
in GS (R) has either a length of 3 or has an even length. Consequently, g(GS (R)) = 3 or g(GS (R)) is
even. �

Corollary 25. Let R be a semisimple ring. If R has more than two components, then g(GS (R)) = 3.
Otherwise, g(GS (R)) = ∞.

Proof. Assume R has at least three components. Let I⊕J⊕K be a semisimple ideal of R. Then I⊕J and
J⊕K are nonzero different non-simple ideals whose intersection is the simple ideal J. By Theorem 23,
GS (R) has a cycle of length 3, and hence g(GS (R)) = 3. The rest of the proof is easy. �

Remark 26. The proof of Theorem 24 displays a technique to build a cycle of a shortest length more
than 3 as illustrated in the next example.

Example 27. Let R = I⊕J⊕K⊕T be a semisimple ring with 4 components. Then P1 : I ↔ I⊕J⊕K ↔
J ↔ I ⊕ J ↔ I and P2 : I ⊕ T ↔ J ⊕ T ↔ I ⊕ J ↔ I ⊕ T are two different cycles of length 4. Notice
that P1 was constructed using the technique applied in the proof of Theorem 24; that is the vertices of
P1 alternate between simple and non-simple ideals. However, P2 was built in different way where all
its vertices are not simple ideals.

Example 28. Given the ring Z4 ⊕ Z2, the cycle Z4 ⊕ Z2 ↔ 0 ⊕ Z2 ↔ Z2 ⊕ Z2 ↔ Z2 ⊕ 0↔ Z4 ⊕ Z2 is a
shortest cycle in GS (Z4 ⊕ Z2). Therefore, g(GS (Z4 ⊕ Z2)) = 4.

The following theorem is a natural extension of the previous work.

Theorem 29. The girth of GS (R) equals∞, 3, or 4.

Proof. According to Theorem 23, if R has no nonzero simple ideals, or R is simple, then g(GS (R)) = ∞.
Assume now that R includes exactly one nonzero simple ideal I. If I is a maximal ideal (which is
possible if all elements of R outside I are units), then GS (R) is just R ↔ I and hence g(GS (R)) = ∞.
If I is not a maximal ideal, then I is included in proper non-simple ideals. At this point, if I is included
in a unique proper non-simple ideal J, then R ↔ I and J ↔ I are the only paths in GS (R) and hence
g(GS (R)) = ∞. However, if I is included in more than one proper non-simple ideal, then either there
are two proper non-simple ideals intersect at I, which implies by Theorem 23 that g(GS (R)) = 3, or
no two proper non-simple ideals intersect at I, which implies GS (R) is a star graph with center I and
hence g(GS (R)) = ∞. Next, assume that R has at least two different nonzero simple ideals. Let I and
J be two different nonzero simple ideals. We distinguish between two cases. In the first case, assume
R = I ⊕ J. By Corollary 25, g(GS (R)) = ∞. In the second case, assume that R , I ⊕ J. Then, the
cycle R ↔ I ↔ I ⊕ J ↔ J ↔ R is a cycle of length 4. The latter cycle has the least length unless R
possesses two different non-simple ideals whose intersection is a nonzero simple ideal, which yields
by Theorem 23 the existence of a cycle of length 3. �
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4. Paths, connectedness, and completeness

The work in this part of the paper describes the paths of GS (R) and gives the necessary and sufficient
conditions for a ring to have a path connected simple-intersection graph. In addition, we give the
necessary and sufficient conditions for GS (R) to be a complete graph.

Lemma 30. The distance between two nonzero simple ideals in GS (R) is 2.

Proof. Let I and J be two nonzero simple ideals of R. Then I and J are not adjacent, however, they are
connected by the path I ↔ R↔ J which is a shortest path between I and J. Therefore, d(I, J) = 2. �

Theorem 31. The graph GS (R) is path connected if and only if R is an Artinian ring.

Proof. Suppose GS (R) is path connected and R is not simple. Let I be a nonzero ideal of R. Then,
there is a path from I to R. If the path has a length equal to 1, then I ↔ R and hence I is a simple ideal.
If the path has a length of at least 2, then there exists an ideal J , R such that J ↔ I. Thus, I ∩ J is
a nonzero simple ideal contained in I. Since every nonzero ideal contains a nonzero simple ideal, we
conclude that R is Artinian.
For the converse, assume R is an Artinian ring. Let I and J be two nonzero ideals. Then, there exist
nonzero simple ideals K and L such that K ⊆ I and L ⊆ J. The path I ↔ K ↔ K ⊕ L ↔ L ↔ J
connects I and J. Consequently, GS (R) is path connected. �

Corollary 32. If R is Artinian, and I and J are nonzero ideals, then 1 ≤ d(I, J) ≤ 4.

Proof. Suppose R is Artinian, and I and J are nonzero ideals. By Theorem 31, d(I, J) ≥ 1. We consider
different cases. In the first case, assume that both ideals are simple, by Lemma 30, we have d(I, J) = 2.
In the second case, assume exactly one of them, say I, is simple. If I ⊂ J, then I ↔ J and hence
d(I, J) = 1. However, if I * J, then I ∩ J = 0. Let 0 , K ( J be a simple ideal. Then, I ↔ I ⊕ K ↔ J
is the shortest path between I and J. So, d(I, J) = 2. In the third case, assume neither of I and J is
simple. If I ∩ J is nonzero simple, then I ↔ J and hence d(I, J) = 1. If I ∩ J is not simple, then it
contains a nonzero simple ideal K. The path I ↔ K ↔ J is the shortest path between I and J and hence
d(I, J) = 2. If I ∩ J = 0, then the path I ↔ K ↔ K ⊕ L↔ L↔ J is the shortest path between I and J,
where K and L are nonzero simple ideals of R contained in I and J, respectively. Hence d(I, J) = 4. �

Recall that a path component of a graph is the largest path connected subgraph (i.e., a connected
subgraph that is not a subgraph of another connected subgraph). A graph may have more than one
path component. A graph is connected if and only if the path component is unique. Furthermore, the
diameter of a graph equals the supremum of the diameter of its path components.

Theorem 33. In GS (R), all the vertices with positive degree lie in one path component which is the
path component containing R. The rest of components are isolated vertices.

Proof. A discussion resembling that in the proof of Corollary 32 leads us to the fact that any vertex of
positive degree is connected to R by a path of length less than 3. �

Definition 34. The component of R mentioned in Theorem 33 is called the R-component of GS (R).

According to Theorem 33, we can , in many situations, identify GS (R) with its R-component, since we
can carry the discussion of a disconnected GS (R) to its R-component.

The proof of the next corollary follows easily from Corollary 32 and Theorem 33.
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Corollary 35. 1 ≤ diam(GS (R)) ≤ 4. Moreover, diam(GS (R)) = 1 if and only if the R-component of
GS (R) is a complete graph consisting of at least two vertices.

Theorem 36. The graph GS (R) is complete if and only if R has a unique proper nonzero ideal. Actually,
GS (R) is K2.

Proof. Suppose for contrary that R has at least two nonzero proper ideals. Let I and J be such ideals.
If both of them are simple, then I is not adjacent to J, and this contradicts that GS (R) is complete. If
either I or J is not simple, say I, then R is not adjacent to I, and again this contradicts that GS (R) is
complete. For the converse, suppose R has a unique nonzero proper ideal I. Then Ver[GS (R)] = {R, I}.
Since I is simple, we have I ↔ R and hence GS (R) is complete and GS (R) is K2. �

The following corollary is a straight forward result from Theorem 36.

Corollary 37. If R is a semisimple ring, then GS (R) is not complete.

Example 38. GS (Z4) is K2, while GS (Z2 ⊕ Z2) is not complete.

We have seen so far that if GS (R) is not a null graph, then 1 ≤ diam(GS (R)) ≤ 4. Surprisingly,
diam(GS (R)) never reaches 3 as demonstrated in the next theorem.

Theorem 39. We have diam(GS (R)) , 3.

Proof. Without loss of generality, suppose GS (R) is not a null graph. The proof is carried out by
contradiction. Assume there exist two nonzero ideals of R such that d(I, J) = 3. This is interpreted
by saying that the shortest path connecting I and J has a length equal to 3. Let I ↔ K ↔ L ↔ J be
such a shortest path. Thus we have I is not adjacent to J, J is not adjacent to K, I is not adjacent to L,
and at least one of K and L is not simple. We have I ∩ K and J ∩ L are nonzero simple ideals. Also,
I∩ J∩L = 0 (because if not, then the simplicity of J∩L implies I∩ J∩L = J∩L, which in turn implies
J ∩ L ⊆ I, which yields that I and J are connected by the path I ↔ (J ∩ L) ↔ J of length 2. This
contradicts that d(I, J) = 3). Similarly, we obtain that J ∩ I ∩ K = 0. Now, let T = (I ∩ K) ⊕ (J ∩ L).
Then I∩T = I∩K and J∩T = J∩L which are nonzero simple ideals. So, we have the path I ↔ T ↔ J
is a path connecting I and J of length equal to 2, which is a contradiction to the assumption d(I, J) = 3.
In conclusion, we obtain that d(I, J) , 3. �

5. The “bipartite” property

This section studies the conditions which make GS (R) bipartite. Since the null graph is obviously
bipartite, the importance here in our consideration is the non-null GS (R). Recall that GS (R) is not null
if and only if R possesses a proper nonzero simple ideal. We start with the following corollary which
is an outcome of Section 3.

Corollary 40. If 3 < g(GS (R)) < ∞, then GS (R) is bipartite.

Proof. Suppose 3 < g(GS (R)) < ∞. Following the same argument of the proof of Theorem 24, we
obtain that no nonzero simple ideals are adjacent to each other and no non-simple ideals are adjacent
to each other. Thus, the graph GS (R) is bipartite with parts W1 consisting of all nonzero simple ideals
of R, and W2 consisting of all non-simple ideals of R. �
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Example 41. In Example 28, GS (Z4 ⊕ Z2) is bipartite by Corollary 40.

Definition 42. Let I , 0 be an ideal of R. By GS (R, I), we mean the subgraph of GS (R) whose vertices
are I and all vertices adjacent to I along with the edges incident to these vertices. We call GS (R, I) the
local simple-intersection graph of I.

Theorem 43. The graph GS (R) is bipartite if and only if GS (R, I) is a star graph with center I, for
every nonzero simple ideal I of R.

Proof. Assume GS (R) is a bipartite graph. Without lose of generality, assume GS (R) is not a null
graph. Let V and W be a bipartition. Let I be a nonzero simple ideal of R. Suppose that I ∈ V . Then
none the vertices of N(I) belongs to V and therefore they belong to W. Thus, all vertices of N(I) are
pairwise nonadjacent. This means, that GS (R, I) is a star graph with center I.

For the converse, assume that GS (R, I) is a star graph with center I, for every nonzero simple ideal
I ⊆ R. Let V be the set of all nonzero simple ideals of R, and W be the set of the remaining (non-
simple) ideals of R. By Remark 22, we have the vertices of V are not adjacent to each other. On the
other hand, let J,K ∈ W. Assume, for contrary, that J ↔ K. Then, J ∩ K is a nonzero simple ideal.
Hence, J,K ∈ Ver[GS (R, J ∩K)] = N(J ∩K), which contradicts that GS (R, J ∩K) is a star graph with
center J ∩ K. Thus, we obtain that any two vertices of W are not adjacent. Consequently, GS (R) is
bipartite with bipartition V and W. �

In General, a bipartite graph may have more than one bipartition. However, the existence of the
(V,W)-bipartition of GS (R), where V is the set of all nonzero simple ideals of R, and W is the set of all
non-simple ideals of R, is necessary and sufficient for GS (R) to be bipartite. We prove this in the next
corollary, but before we do that we need to draw the attention of the reader to the fact that if an ideal
does not include any simple ideal, then it is an isolated vertex which can be freely added to any part
of a bipartition of GS (R). So, what maters when considering by partitions is the nonzero simple ideals
and ideals containing anyone of them.

Corollary 44. Assume GS (R) is not null. Then, GS (R) is bipartite if and only if the (V,W)-bipartition
of GS (R) exists, where V is the set of all nonzero simple ideals of R, and W is the set of all non-simple
ideals of R.

Proof. Assume GS (R) is bipartite. Let X and Y be a bipartition. Since GS (R) is not null, then R
contains at least one nonzero simple ideal. Without loss of generality, assume R ∈ Y . Since R is
adjacent to every nonzero simple ideal as Remark 22 states, then all nonzero simple ideals belong to
X. Thus, all non-simple ideals containing simple ideals must belong to Y . The isolated vertices are
distributed randomly to X and Y . Now if we move all isolated vertices from X to Y , the new bipartition
is the (V,W)-bipartition with V is X after deleting the isolated vertices and W is Y plus all the isolated
vertices. The proof of the converse is quite obvious. �

Recall that an ideal I of a ring R is essential (or large) if I ∩ J , 0, for every nonzero ideal J of R.
In what follows, when we assume GS (R) is bipartite, we consider the (V,W)-bipartition.

Theorem 45. Assume GS (R) is not null and bipartite. Then the following statements are equivalent:

(1) GS (R) is complete bipartite.
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(2) The intersection of all nonsimple ideals is S oc(R).

(3) S oc(R) is an essential ideal.

(4) R is Artinian and diam(GS (R)) ≤ 2.

(5) GS (R) is path connected and diam(GS (R)) ≤ 2.

Proof. The proof is easy when R contains only one nonzero simple ideal because GS (R) is a star graph
and then (1) to (5) hold directly. Therefore, we assume that GS (R) contains more than one nonzero
simple ideal. By Corollary 44, there exists the (V,W)-bipartition consisting of the set V of all nonzero
simple ideals and the set W consisting of all non-simple ideals.
1 ⇒ 2 : Suppose GS (R) is complete bipartite. Then every non-simple ideal is adjacent to every
simple ideal. Hence, every non-simple ideal contains the socle of R. Thus, S oc(R) is included in the
intersection of all non-simple ideals. Now, S oc(R) is not simple and hence it includes the intersection
of all non-simple ideals. At this point, we conclude that S oc(R) is equal to the intersection of all non-
simple ideals.
2⇒ 3 : The proof is trivial.
3 ⇒ 4 : Assume that S oc(R) is an essential ideal of R. The proof that R is Artinian is quite easy and
well known in the literature. We only need to show that diam(GS (R)) ≤ 2. By Lemma 30, the distance
between any two nonzero simple ideals is 2. Let I ∈ V and J ∈ W. If I $ J, then I ↔ J and d(I, J) = 1.
Assume now I * J. Since S oc(R) is essential, then S oc(R) ∩ J , 0, which means that J contains a
nonzero simple ideal K , I. Then I ↔ I ⊕ K ↔ J is a path between I and J of length 2. Next, assume
I, J ∈ W. We have I ∩ J is not simple. Since S oc(R) is essential, the ideal I ∩ J contains a nonzero
simple ideal K. Now the path I ↔ K ↔ J between I and J has length 2.
4⇒ 5 : Apply Theorem 31.
5 ⇒ 1 : Assume GS (R) is path connected such that diam(GS (R)) ≤ 2 . Let I ∈ V and J ∈ W. Then,
there exists a path connecting I and J. By assumption, the length of the shortest path connecting I and
J equals 1 or 2. However, if the length of this shortest path is 2, then we get a contradiction to the
hypothesis that says “GS (R) is bipartite”. So, the length of this shortest path is 1. That is, I is adjacent
to J. This completes the proof. �

As an outcome of Theorem 45, if GS (R) is complete bipartite, then GS (R) = Km,n = Kn,m, where
m = |V | and n = |W |.

6. Cliques of GS (R)

In this part, we study the cliques of GS (R) and identify the clique number.

Definition 46. Let I be a nonzero simple ideal of R. We say that the nonzero ideals J and K are
adjacent through I if J ∩ K = I.

Proposition 47. Every clique of GS (R) contains at most one nonzero simple ideal.

Proof. The proof is straightforward from Remark 22. �

It follows from Proposition 47 that there are two types of cliques in GS (R). The first type of cliques
contains no simple ideals, while the second type of cliques contains exactly one nonzero simple ideal.
The next example exhibits these types of cliques.
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Example 48. Let R = I⊕J⊕K be a semisimple ring. Then, the subgraph I⊕J ↔ J⊕K ↔ I⊕K ↔ I⊕J
is a clique whose vertices are not simple ideals. However, the subgraph I ⊕ J ↔ I ↔ I ⊕ K ↔ I ⊕ J is
a clique with one simple nonzero ideal as Proposition 47 emphasizes.

In the next work, we are going to study each type of cliques in order to discover the clique number of
GS (R). The next theorem states that a clique containing a unique nonzero simple ideal I is a subgraph
of GS (R, I) whose vertices are adjacent through I.

Theorem 49. Let Λ be a clique containing one nonzero simple ideal I. Then Λ consists, beside the
vertex I, vertices in N(I) that are adjacent to each other through I.

Proof. Let J and K be two vertices in Λ. Then J ∩ K is nonzero simple. Since I ↔ J and I ↔ K, we
get J,K ∈ N(I) and I ⊆ J ∩ K. Thus, I = J ∩ K. The converse is obvious. �

Corollary 50. Let Λ be a clique containing one nonzero simple ideal I. Then |Ver[Λ]| > 2 if and only
if R < Ver[Λ] and Ver[Λ] has at least two proper non-simple ideals (that are adjacent through I).

Proof. Suppose Ver[Λ] contains at least 3 vertices. Since I must be among the vertices of Λ, by
Theorem 49, the other vertices are non-simple ideals that are adjacent to each other through I. By
Remark 22, neither of the non-simple vertices equals R. The converse is trivial. �

Definition 51. Let I be a nonzero simple ideal of R. Then, the largest clique of GS (R) containing I is
called the maximal clique induced by I.

Let I be a nonzero simple ideal of R. Then the clique I ↔ R is always a maximal clique induced by I,
which we call the trivial maximal clique induced by I. It is not difficult to see from Corollary 50 that
if |N(I)| = 1, then the trivial maximal clique induced by I is the only maximal clique induced by I.
However, if |N(I)| > 1, Then there is another maximal clique induced by I which consists, in addition
to I, of all proper non-simple ideals in N(I) that are adjacent to each other through I. We denote this
non-trivial maximal clique by Λ(I). Notice that |Ver[Λ(I)]| ≥ 2.

Example 52. In GS (Z4), the maximal cliques induced by the ideal 2Z4 are only the trivial maximal
clique 2Z4 ↔ Z4.

Example 53. In Example 48, Λ(I) is I ↔ I ⊕ J ↔ I ⊕ K ↔ I. Therefore |Λ(I)| = 3.

In the next work we study the second type of cliques which does not contain nonzero simple ideals.
The following definition will be handy.

Definition 54. Let S be a nonempty set of nonzero simple ideals. By a clique of GS (R) induced by S ,
we mean a clique of GS (R) such that any two of its vertices are adjacent through a member of S , and
every member of S is the intersection of two vertices of this clique.

Example 55. In Example 48, the subgraph Λ : I ⊕ K ↔ I ⊕ J ↔ J ⊕ K ↔ I ⊕ K is the unique clique
induced by S = {I, J,K}. However, the subgraphs Λ1 : I ↔ R, Λ2 : I ⊕ K ↔ I, Λ3 : I ↔ I ⊕ K ↔
I ⊕ J ↔ I are some cliques induced by S = {I}. On the other hand, there is no clique in GS (R) induced
by S = {I, J}.

As displayed in the previous example, the set of all cliques induced by a nonempty set S of nonzero
simple ideals may be empty, singleton, or contain more than one clique.
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Remark 56. If S contains at least two nonzero simple ideals, then all vertices of a clique induced by
S are non-simple ideals. We leave it to the reader to check out that the last statement is true.

Next, we show that if a nonempty set S of nonzero simple ideals induces cliques, then there is a
maximum clique induced by S , i.e., a clique induced by S that is not a subgraph of another clique
induced by S .

Theorem 57. Let S be a nonempty set of nonzero simple ideals of R which induces cliques in GS (R).
Then there is a maximal clique induced by S .

Proof. Let L be the set of all cliques induced by S . By hypothesis, L , ∅. Let Λ1 ⊆ Λ2 ⊆ . . . be a

chain of members of L. Then
∞⋃

n=1

Λn, the union of the graphs Λ1,Λ2, . . ., is a member of L and it is an

upper bound of the chain. By Zorn’s Lemma, L has a maximal element. �

Notation 58. A maximal clique of GS (R) induced by a nonempty set S of nonzero simple ideals of R
is denoted by Λ(S ).

If S = {I}, where I is a nonzero simple ideal of R, then either Λ(S ) is the trivial maximal clique
R↔ I or Λ(S ) = Λ(I). In general, a maximal clique of GS (R) induced by S is not necessarily unique,
as we shall see in the next example.

Example 59. In Example 48, there is a unique maximal clique induced by S = {I, J,K} given by
Λ(S ) : I ⊕ K ↔ I ⊕ J ↔ J ⊕ K ↔ I ⊕ K. Also, Λ1 : I ↔ R, and Λ3 : I ↔ I ⊕ K ↔ I ⊕ J ↔ I are two
maximal cliques induced by S = {I}. Notice that Λ2 : I ⊕ K ↔ I is not a maximal clique induced by
S = {I} in GS (R) since it is a subgraph of Λ3.

Theorem 60. If Λ is a clique of GS (R), then there is a unique nonempty set S of nonzero simple ideals
of R inducing Λ.

Proof. Suppose Λ is a clique of GS (R). Let S be the set of all possible intersections of the vertices of
Λ. Then Λ is induced by S . The uniqueness of S follows from Definition 54. �

Remark 61. In GS (R), the following statements are true:

(1) ω(GS (R)) equals the supremum of the set

{|Ver[Λ(S )]| : S is a non empty set of nonzero simple ideals of R}.

(2) ω(GS (R)) ≥ 2.

(3) If the order of GS (R) is finite, then 2 ≤ ω(GS (R)) ≤ |Ver[GS (R)]|.

Example 62. We have

(1) ω(GS (Z4)) = 2.

(2) Let R be a semisimple ring with 2 components. A direct analysis leads to that ω(GS (R)) = 2.

(3) Let R be a semisimple ring with 3 components. A direct analysis leads to that ω(GS (R)) = 3.
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(4) Consider R = Z2 ⊕ Z2 ⊕ Z2 ⊕ Z2, a semisimple ring with 4 components. Let I = Z2 ⊕ 0 ⊕ 0 ⊕ 0.
Then Ver[Λ(I)] = {I,Z2 ⊕ Z2 ⊕ 0 ⊕ 0,Z2 ⊕ 0 ⊕ Z2 ⊕ 0,Z2 ⊕ 0 ⊕ 0 ⊕ Z2}. Thus, 4 ≤ ω(GS (R)) ≤ 15,
where 15 is the order of GS (R) which is equal to the number of nonzero ideals of R. As a matter
of fact, taking all possible cliques of R, it can be shown that the maximal clique with the largest
number of vertices has an order of 4. That is ω(GS (R)) = 4.

(5) Let R = Z2 ⊕ Z2 ⊕ . . . be a semisimple ring with infinitely many components. For every n ∈ N, let
In = 0 ⊕ 0 ⊕ . . . ⊕ Z2 ⊕ 0 ⊕ . . ., where Z2 is located in the component number n. Then Ver[Λ(I1)] =

{I1, I1 ⊕ I2, I1 ⊕ I3, . . .}. Thus, ω(GS (R)) = ∞.

7. Dominating sets and domination number of GS (R)

In this section, we consider the dominating sets of GS (R), and give a formula which help compute
the domination number of GS (R).

Definition 63. A dominating set X is non-shrinkable, if removing a vertex from X makes X a non-
dominating set.

Theorem 64. Let D be the set consisting of all nonzero simple ideals of R and all non-simple ideals
empty of nonzero simple ideals. Then D is a non-shrinkable dominating set of GS (R).

Proof. Let J be vertex not in D, then J contains a nonzero simple ideal I. Now J ↔ I. �

Corollary 65. Let D be the set consisting of all nonzero simple ideals of R and all non-simple ideals
empty of nonzero simple ideals. Then

(1) γ(GS (R)) ≤ |D|.

(2) If GS (R) is connected, then D consists only of nonzero simple ideals.

Proof. The proof is easy. �

Notice that D is not the only type of dominating sets of GS (R). However, we shall show, in the next
work, that every dominating set can be reduced to a non-shrinkable set whose vertices are the isolated
vertices of GS (R) along with some semisimple ideals. Before we do that, we need the following
notation.

Notation 66. Let B be a dominating set of GS (R). Denote b B̃ the set consisting of the following
vertices:

(1) all non-simple ideals empty of nonzero simple ideals,

(2) S oc(V) for each V ∈ B, and

(3) V for each V ∈ B such that V , S oc(V) and S oc(V) ∈ B.

Lemma 67. If B is a dominating set of GS (R), then B̃ is also a dominating set such that |B̃| ≤ |B|.
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Proof. Assume B is a dominating set of GS (R). Then B contains all non-simple ideals empty of
nonzero simple ideals. Let V be a non isolated vertex of GS (R). We study different cases. In the
first case, assume that V < B. Then V ↔ I, where I ∈ B. Thus, V ↔ S oc(I). In the second case,
assume that V ∈ B. If V = S oc(V), then V ∈ B̃. However, if V , S oc(V) and S oc(V) ∈ B, then
by (3) in Notation 66, we have V ∈ B̃. Finally, if V , S oc(V), S oc(V) < B, and S oc(V) is simple,
then V ↔ S oc(V). However, if V , S oc(V), S oc(V) < B, and S oc(V) is not simple. Since B is a
dominating set, there exists J ∈ B such that S oc(V) ↔ J which implies S oc(V) ↔ S oc(J) which in
turn implies V ↔ S oc(J). From the discussion above, we conclude that B̃ is a dominating set. Now,
define the function f : B→ B̃ by

f (V) =


S oc(V) : if S oc(V) = V
S oc(V) : if S oc(V) , V and S oc(V) < B

V : if S oc(V) , V and S oc(V) ∈ B
V : if V is a non-simple ideal empty of nonzero simple.

Then f is an onto function. Therefore, |B̃| ≤ |B|. �

Lemma 68. Assume R is not simple and B a non-shrinkable dominating set of GS (R). Then GS (R)
does not contain R and S oc(R) simultaneously, unless R is semisimple. Moreover, if R < B, then B
contains a nonzero simple ideal.

Proof. Suppose R , S oc(R). Then R and S oc(R) cannot be inside B at the same time, otherwise B is
shrinkable and this is a contradiction. The rest is trivial. �

Notice that B̃ may be shrinkable as indicated in the following example.

Example 69. Let R = I ⊕ J be a semisimple ring. Consider the dominating sets B1 = {I,R} and
B2 = {I, J}. We have B̃1 = B1 and B̃2 = B2. Also, B1 is shrinkable to {R} while B2 is not shrinkable.

Remark 70. In GS (R), if V ↔ U, then V ↔ S oc(U), S oc(V) ↔ U, and S oc(V) ↔ S oc(U).
Conversely, If S oc(V) ↔ S oc(U), then V ↔ S oc(U) and S oc(V) ↔ U, but it’s not necessary that
V ↔ U. To see this, Let R = Z2 ⊕ Z2 ⊕ Z ⊕ Z, V = Z2 ⊕ Z2 ⊕ Z ⊕ 0 and U = Z2 ⊕ 0 ⊕ Z ⊕ Z. We have
S oc(V) = Z2 ⊕ Z2 ⊕ 0 ⊕ 0 is adjacent to S oc(U) = Z2 ⊕ 0 ⊕ 0 ⊕ 0 in GS (R), but V is not adjacent to U
because V ∩U = Z2 ⊕ 0⊕ Z⊕ 0 which is not simple. Also, if V ↔ S oc(U), then it’s not necessary that
V ↔ U as shown in the same example.

In the next theorem, we show that any dominating set can be replaced with a non-shrinkable
dominating set whose elements are semisimple ideals of R.

Theorem 71. Let B a dominating set of GS (R). Then, there exists a non-shrinkable dominating set
Y such that |Y | ≤ |B| and Y consists, in addition to the isolated vertices, of semisimple ideals of R.
Moreover, If R is not semisimple, then Y contains at least one nonzero simple ideal.

Proof. By Lemma 67, we can replace B with B̃. We have |B̃| ≤ |B| and all elements of B̃ are semisimple
except perhaps for V ∈ B such that V , S oc(V) and S oc(V) ∈ B. We know that according to
Notation 66, such V and S oc(V) are elements in B̃. Now, we replace such V with any nonzero simple
ideal (we denote it by TV) contained in V . We call the new set B◦. It’s easy to see that B◦ consists of only
semisimple ideals and |B◦| ≤ |B̃| ≤ |B|. To demonstrate that B◦ is a dominating set, let U be a vertex not
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in B◦. If U < B̃, then U is adjacent to some vertex V ∈ B̃. We need only to worry about the case when
V , S oc(V) and both V, S oc(V) ∈ B. By Remark 70, U ↔ S oc(V) and S oc(V) ∈ B◦. Next, assume
U ∈ B̃. Again, we need only to worry about the case when U , S oc(U) and both U, S oc(U) ∈ B. By
the definition of B◦, we get that U ↔ TU and TU ∈ B◦. From the previous argument we obtain that B◦
is a dominating set. Since B◦ may be shrinkable, then B◦ contains a non-shrinkable dominating set Y .
The rest follows from Lemma 68. �

The proof of the next corollary is direct from Theorem 71.

Corollary 72. If R is semisimple, then

γ(GS (R)) = inf{|Y | : Y is a non-shrinkable dominating set consisting of the isolated

vertices and semisimple ideals of R such that R ∈ Y or Y contains at least

a nonzero simple ideal}.

If R is not semisimple, then

γ(GS (R)) = inf{|Y | : Y is a non-shrinkable dominating set consisting of the isolated

vertices, semisimple ideals of R, and at least one nonzero simple ideal}.

Example 73. Let R = I ⊕ J be a semisimple ring. Then Y = {R} is a non-shrinkable dominating set of
GS (R) : I ↔ R↔ J with the least cardinality. Thus, γ(GS (R)) = 1.

Example 74. Let R = I⊕ J⊕K be semisimple ring. Then Y = {I⊕ J,K} is a non-shrinkable dominating
set of GS (R) with the least cardinality. Thus, γ(GS (R)) = 2.

Example 75. Consider the ring R = Z2 ⊕ Z2 ⊕ Z ⊕ Z. Then Y = {0 ⊕ 0 ⊕ 0 ⊕ Z, 0 ⊕ 0 ⊕ Z ⊕ 0,Z2 ⊕

0 ⊕ 0 ⊕ 0, 0 ⊕ Z2 ⊕ 0 ⊕ 0} is a non-shrinkable dominating set of GS (R) with the least cardinality. Thus,
γ(GS (R)) = 4.

8. Conclusions

The association of a graph to an algebraic structure has attracted many authors to study the
interplay between the graph theoretic properties and the algebraic properties of the underlined algebraic
structure. In this article, we defined the simple-intersection graph GS (R) of a ring R with unity. Then
we studied the interplay between the algebraic properties of R, and the graph properties of GS (R) such
as connectedness, bipartiteness, girth and dominating sets.

Moreover, we determined precisely the girth, the domination number and the diameter of GS (R).
Furthermore, we developed a formula to compute the clique number of GS (R).

Our results are interesting since they can be used to solve some coloring and optimization problems
as well as develop more properties of GS (R).
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