Research article

The radius of unit graphs of rings

  • Received: 28 April 2021 Accepted: 04 August 2021 Published: 09 August 2021
  • MSC : 16U60, 05C25

  • Let $ R $ be a ring with nonzero identity. The unit graph of $ R $ is a simple graph whose vertex set is $ R $ itself and two distinct vertices are adjacent if and only if their sum is a unit of $ R $. In this paper, we study the radius of unit graphs of rings. We prove that there exists a ring $ R $ such that the radius of unit graph can be any given positive integer. We also prove that the radius of unit graphs of self-injective rings are 1, 2, 3, $ \infty $. We classify all self-injective rings via the radius of its unit graph. The radius of unit graphs of some ring extensions are also considered.

    Citation: Zhiqun Li, Huadong Su. The radius of unit graphs of rings[J]. AIMS Mathematics, 2021, 6(10): 11508-11515. doi: 10.3934/math.2021667

    Related Papers:

  • Let $ R $ be a ring with nonzero identity. The unit graph of $ R $ is a simple graph whose vertex set is $ R $ itself and two distinct vertices are adjacent if and only if their sum is a unit of $ R $. In this paper, we study the radius of unit graphs of rings. We prove that there exists a ring $ R $ such that the radius of unit graph can be any given positive integer. We also prove that the radius of unit graphs of self-injective rings are 1, 2, 3, $ \infty $. We classify all self-injective rings via the radius of its unit graph. The radius of unit graphs of some ring extensions are also considered.



    加载中


    [1] D. F. Anderson, On the diameter and girth of a zero-divisor graph, II, Houston J. Math., 34 (2008), 361–371.
    [2] M. Alizadeh, A. K. Das, H. R. Maimani, M. R. Pournaki, S. Yassemi, On the diameter and girth of zero-divisor graphs of posets, Discrete Appl. Math., 160 (2012), 1319–1324. doi: 10.1016/j.dam.2012.01.011
    [3] S. Akbari, E. Estaji, M. R. Khorsandi, On the unit graph of a noncommutative ring, Algebr. Colloq., 22 (2015), 817–822. doi: 10.1142/S100538671500070X
    [4] D. F. Anderson, P. S. Livingston, The zero-divisor graph of a commutative ring, J. Algebra, 217 (1999), 434–447. doi: 10.1006/jabr.1998.7840
    [5] M. Afkhami, F. Khosh-Ahang, Unit graphs of rings of polynomials and power series, Arabian J. Math., 2 (2013), 233–246. doi: 10.1007/s40065-013-0067-0
    [6] D. F. Anderson, S. B. Mulay, On the diameter and girth of a zero-divisor graph, J. Pure Appl. Algebra, 210 (2007), 543–550. doi: 10.1016/j.jpaa.2006.10.007
    [7] B. Allen, E. Martin, E. New, D. Skabelund, Diameter, girth and cut vertices of the graph of equivalence classes of zero-divisors, Involve, a Journal of Mathematics, 5 (2012), 51–60. doi: 10.2140/involve.2012.5.51
    [8] N. Ashrafi, H. R. Maimani, M. R. Pournaki, S. Yassemi, Unit graphs associated with rings, Comm. Algebra, 38 (2010), 2851–2871. doi: 10.1080/00927870903095574
    [9] I. Beck, Coloring of commutative rings, J. Algebra, 116 (1988), 208–226. doi: 10.1016/0021-8693(88)90202-5
    [10] R. P. Grimaldi, Graphs from rings, Proceedings of the Twentieth Southeastern Conference on Combinatorics, Graph Theory, and Computing (Boca Raton, FL, 1989), Congr. Numer., 71 (1990), 95–103.
    [11] F. Heydari, M. J. Nikmehr, The unit graph of a left Artinian ring, Acta Math. Hungar. 139 (2013), 134–146.
    [12] B. Herwig, M. Ziegler, A remark on sums of units, Arch. Math. (Basel), 79 (2002), 430–431.
    [13] K. Khashyarmanesh, M. R. Khorsandi, A generalization of unit and unitary cayley graphs of a commutative ring, Acta Math. Hung., 137 (2012), 242–253. doi: 10.1007/s10474-012-0224-5
    [14] D. Khurana, A. K. Srivastava, Unit sum numbers of right self-injective rings, Bull. Austral. Math. Soc., 75 (2007), 355–360. doi: 10.1017/S0004972700039289
    [15] D. Khurana, A. K. Srivastava, Right self-injective rings in which every element is a sum of two units, J. Algebra Appl., 6 (2007), 281–286. doi: 10.1142/S0219498807002181
    [16] T. G. Lucas, The diameter of a zero divisor graph, J. Algebra, 301 (2006), 174–193. doi: 10.1016/j.jalgebra.2006.01.019
    [17] S. B. Mulay, Rings having zero-divisor graphs of small diameter or large girth, Bull. Austral. Math. Soc., 72 (2005), 481–490. doi: 10.1017/S0004972700035310
    [18] H. R. Maimani, M. R. Pournaki, S. Yassemi, Necessary and sufficient conditions for unit graphs to be Hamiltonian, Pacific J. Math., 249(2011), 419–429. doi: 10.2140/pjm.2011.249.419
    [19] H. Su, K. Noguchi, Y. Zhou, Finite commutative rings with higher genus unit graphs, J. Algebra Appl., 14 (2015), 1550002. doi: 10.1142/S0219498815500024
    [20] H. Su, G. Tang, Y. Zhou, Rings whose unit graphs are planar, Publ. Math. Debrecen, 86 (2015), 363–376. doi: 10.5486/PMD.2015.6096
    [21] H. Su, Y. Zhou, On the girth of the unit graph of a ring, J. Algebra Appl., 13 (2014), 1350082. doi: 10.1142/S0219498813500825
    [22] H. Su, Y. Wei, The dimaeter of unit graaphs of rings, Taiwan. J. Math., 23 (2019), 1–10.
    [23] Y. Utumi, On continuous rings and self-injective rings, T. Am. Math. Soc., 118 (1965), 158–173. doi: 10.1090/S0002-9947-1965-0174592-8
    [24] P. Vámos, 2-good rings, Q. J. Math., 56 (2005), 417–430.
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2383) PDF downloads(169) Cited by(1)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog