Let $ R $ be a ring with nonzero identity. The unit graph of $ R $ is a simple graph whose vertex set is $ R $ itself and two distinct vertices are adjacent if and only if their sum is a unit of $ R $. In this paper, we study the radius of unit graphs of rings. We prove that there exists a ring $ R $ such that the radius of unit graph can be any given positive integer. We also prove that the radius of unit graphs of self-injective rings are 1, 2, 3, $ \infty $. We classify all self-injective rings via the radius of its unit graph. The radius of unit graphs of some ring extensions are also considered.
Citation: Zhiqun Li, Huadong Su. The radius of unit graphs of rings[J]. AIMS Mathematics, 2021, 6(10): 11508-11515. doi: 10.3934/math.2021667
Let $ R $ be a ring with nonzero identity. The unit graph of $ R $ is a simple graph whose vertex set is $ R $ itself and two distinct vertices are adjacent if and only if their sum is a unit of $ R $. In this paper, we study the radius of unit graphs of rings. We prove that there exists a ring $ R $ such that the radius of unit graph can be any given positive integer. We also prove that the radius of unit graphs of self-injective rings are 1, 2, 3, $ \infty $. We classify all self-injective rings via the radius of its unit graph. The radius of unit graphs of some ring extensions are also considered.
[1] | D. F. Anderson, On the diameter and girth of a zero-divisor graph, II, Houston J. Math., 34 (2008), 361–371. |
[2] | M. Alizadeh, A. K. Das, H. R. Maimani, M. R. Pournaki, S. Yassemi, On the diameter and girth of zero-divisor graphs of posets, Discrete Appl. Math., 160 (2012), 1319–1324. doi: 10.1016/j.dam.2012.01.011 |
[3] | S. Akbari, E. Estaji, M. R. Khorsandi, On the unit graph of a noncommutative ring, Algebr. Colloq., 22 (2015), 817–822. doi: 10.1142/S100538671500070X |
[4] | D. F. Anderson, P. S. Livingston, The zero-divisor graph of a commutative ring, J. Algebra, 217 (1999), 434–447. doi: 10.1006/jabr.1998.7840 |
[5] | M. Afkhami, F. Khosh-Ahang, Unit graphs of rings of polynomials and power series, Arabian J. Math., 2 (2013), 233–246. doi: 10.1007/s40065-013-0067-0 |
[6] | D. F. Anderson, S. B. Mulay, On the diameter and girth of a zero-divisor graph, J. Pure Appl. Algebra, 210 (2007), 543–550. doi: 10.1016/j.jpaa.2006.10.007 |
[7] | B. Allen, E. Martin, E. New, D. Skabelund, Diameter, girth and cut vertices of the graph of equivalence classes of zero-divisors, Involve, a Journal of Mathematics, 5 (2012), 51–60. doi: 10.2140/involve.2012.5.51 |
[8] | N. Ashrafi, H. R. Maimani, M. R. Pournaki, S. Yassemi, Unit graphs associated with rings, Comm. Algebra, 38 (2010), 2851–2871. doi: 10.1080/00927870903095574 |
[9] | I. Beck, Coloring of commutative rings, J. Algebra, 116 (1988), 208–226. doi: 10.1016/0021-8693(88)90202-5 |
[10] | R. P. Grimaldi, Graphs from rings, Proceedings of the Twentieth Southeastern Conference on Combinatorics, Graph Theory, and Computing (Boca Raton, FL, 1989), Congr. Numer., 71 (1990), 95–103. |
[11] | F. Heydari, M. J. Nikmehr, The unit graph of a left Artinian ring, Acta Math. Hungar. 139 (2013), 134–146. |
[12] | B. Herwig, M. Ziegler, A remark on sums of units, Arch. Math. (Basel), 79 (2002), 430–431. |
[13] | K. Khashyarmanesh, M. R. Khorsandi, A generalization of unit and unitary cayley graphs of a commutative ring, Acta Math. Hung., 137 (2012), 242–253. doi: 10.1007/s10474-012-0224-5 |
[14] | D. Khurana, A. K. Srivastava, Unit sum numbers of right self-injective rings, Bull. Austral. Math. Soc., 75 (2007), 355–360. doi: 10.1017/S0004972700039289 |
[15] | D. Khurana, A. K. Srivastava, Right self-injective rings in which every element is a sum of two units, J. Algebra Appl., 6 (2007), 281–286. doi: 10.1142/S0219498807002181 |
[16] | T. G. Lucas, The diameter of a zero divisor graph, J. Algebra, 301 (2006), 174–193. doi: 10.1016/j.jalgebra.2006.01.019 |
[17] | S. B. Mulay, Rings having zero-divisor graphs of small diameter or large girth, Bull. Austral. Math. Soc., 72 (2005), 481–490. doi: 10.1017/S0004972700035310 |
[18] | H. R. Maimani, M. R. Pournaki, S. Yassemi, Necessary and sufficient conditions for unit graphs to be Hamiltonian, Pacific J. Math., 249(2011), 419–429. doi: 10.2140/pjm.2011.249.419 |
[19] | H. Su, K. Noguchi, Y. Zhou, Finite commutative rings with higher genus unit graphs, J. Algebra Appl., 14 (2015), 1550002. doi: 10.1142/S0219498815500024 |
[20] | H. Su, G. Tang, Y. Zhou, Rings whose unit graphs are planar, Publ. Math. Debrecen, 86 (2015), 363–376. doi: 10.5486/PMD.2015.6096 |
[21] | H. Su, Y. Zhou, On the girth of the unit graph of a ring, J. Algebra Appl., 13 (2014), 1350082. doi: 10.1142/S0219498813500825 |
[22] | H. Su, Y. Wei, The dimaeter of unit graaphs of rings, Taiwan. J. Math., 23 (2019), 1–10. |
[23] | Y. Utumi, On continuous rings and self-injective rings, T. Am. Math. Soc., 118 (1965), 158–173. doi: 10.1090/S0002-9947-1965-0174592-8 |
[24] | P. Vámos, 2-good rings, Q. J. Math., 56 (2005), 417–430. |