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Abstract: Let R be a ring with nonzero identity. The unit graph of R is a simple graph whose vertex set
is R itself and two distinct vertices are adjacent if and only if their sum is a unit of R. In this paper, we
study the radius of unit graphs of rings. We prove that there exists a ring R such that the radius of unit
graph can be any given positive integer. We also prove that the radius of unit graphs of self-injective
rings are 1, 2, 3, ∞. We classify all self-injective rings via the radius of its unit graph. The radius of
unit graphs of some ring extensions are also considered.
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1. Introduction

In the last decades, there is an active research topic named rings and graphs. That is, one may
associate a graph with a ring and then study their interaction. It has attracted considerable attention
both in ring theory and graph theory. The first concept is the zero-divisor graph of a commutative ring.
Beck [9] introduced the definition and studied the coloring of a ring in 1988 and later Anderson and
Livingston [4] modified the definition such that illustrated better the structure of rings. We know that
an element in a finite ring is either a zero divisor or a unit. So one can associate with a graph using units
of a ring and study the interaction between the properties of the ring and the resulting graph structure.
The unit graph of a ring is such a graph and the topic of this paper.

Let R be a ring with identity. The unit graph of R, denoted G(R), is the simple graph whose vertex
set is R itself, and two distinct vertices x and y are adjacent if and only if x + y is a unit of R. The unit
graph was first investigated in 1990 by Grimaldi for the ring Zn in [10] where the author considered
the degree of a vertex, the Hamilton cycles, the covering number, the independence number and the
chromatic polynomial of the graph G(Zn). In 2010, Ashrafi, et al. [8] generalized the unit graph G(Zn)
to G(R) for an arbitrary ring R and obtained various characterization results regarding connectedness,
chromatic index, diameter, girth, and planarity of G(R). In [21], Su and Zhou proved that the girth of
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G(R) for an arbitrary ring R is 3, 4, 6, or ∞ using the method of combination. Recently, Su and Wei
[22] investigated the diameter of G(R) and gave the complete characterization of diameter of G(R) for
a self-injective ring R. Many papers are devoted to this topic, see, for example, [3], [5], [11], [13], [18],
[19] and [20].

Diameter is one of important invariants of a graph. Many papers are devoted to the diameter of
resulting graph in this research area, see, for example, [1], [2], [6], [7], [16] and [17]. For the unit
graph of a ring, Heydari and Nikmehr [11] proved that the diameter of the unit graph of an Artinian
ring only has four possibilities: 1, 2, 3,∞ and classified all Artinian rings via its diameter of unit graphs.
In 2019, Su and Wei generalized the results to self-injective rings in [22]. They also proved that there is
a ring such that its diameter of unit graph is over than 3. Radius is also an important invariant in graph
theory. However, there are few results about the algebraic graph structure. For the the radius of unit
graphs, we prove that for any positive integer n, there is a ring R such that G(R) has radius n. We also
prove that the radius of unit graphs of self-injective rings are 1, 2, 3 and∞ and classify all self-injective
rings via its radius of unit graphs. We consider some ring extensions of a ring R and study their radius
via the radius of G(R).

2. Preliminaries

Let us recall some basic definitions in graph theory. All graphs are simple, that is, no loops and no
multiedges. Let G be a graph. A walk of length k in G is an alternating sequence of vertices and edges,
v0, e0, v1, e1, v2, . . . , vk−1, ek−1, vk, which begins and ends with vertices. A path of length k in G is a walk
with all vertices are distinct. The distance of two vertices x, y in G, denoted d(x, y), is the number
of edges in a shortest path between x and y. If there is no path connecting the two vertices, then the
distance is defined as infinite. Let x be a vertex of a graph G. The eccentricity of the vertex x, denoted
ε(x), is the maximum distance from x to any vertex. That is, ε(x) = max{d(x, y)|y ∈ V(G)}. The radius
of G is the minimum eccentricity among the vertices of G, i.e., rad(G) = min{ε(x)|x ∈ V(G)}. The
diameter of G is the maximum eccentricity among the vertices of G. Thus, diam(G) = max{ε(x)|x ∈
V(G)}. For any connected graph G, rad(G) ≤ diam(G) ≤ 2rad(G).

Throughout, rings are associative with identity. A subring of a ring shares the same multiplicative
identity. We use J(R), U(R) and char(R) to denote the Jacobson radical, the group of units, and the
characteristic of a ring R, respectively. A ring R is called a division ring if each nonzero element of R
is a unit. A ring R is called a local ring if R has a unique maximal ideal. We write R = R/J(R) and
ā = a + J(R) ∈ R for a ∈ R. We denote by Zn the ring of integers modulo n and by Fp the field of p
elements. The polynomial ring over a ring R in the indeterminate x is denoted by R[x]. Recall that a
ring R is called right self-injective if, for any (principal) right ideal I of R, every homomorphism from
IR to RR extends to a homomorphism from RR to RR. Note that R is right self-injective implies that
R/J(R) is right self-injective (see [23]).

If a graph is disconnected, then its radius is clearly infinite. To find the radius of unit graphs of
rings, we mainly consider connected graph. As shown in [8], the connectedness of G(R) is relative to
whether the ring R is generated additively by its units. So we first recall the following definitions. Let
R be a ring and k be a positive integer. An element r ∈ R is said to be k-good if r = u1 + · · · + uk with
ui ∈ U(R) for each 1 ≤ i ≤ k. A ring is said to be k-good if every element of R is k-good. The unit sum
number of a ring R, denoted by u(R), is defined to be

AIMS Mathematics Volume 6, Issue 10, 11508–11515.



11510

(1) min{k ∈ N| R is a k-good }, if R is k-good for some k ≥ 1;
(2) ω, if R is not k-good for every k ≥ 1, but each element of R is k-good for some k;
(3)∞, some element of R is not k-good for any k ≥ 1.
For example, u(Z3) = 2, u(Z4) = ω and u(Z[t]) = ∞. It is clear that if 2 ∈ U(R), then r ∈ R being

k-good implies that r is l-good for all l ≥ k. For the unit sum number of rings, we refer the reader
to [14], [15] and [24]. We note that, however, in the previous example, every element in Z4 can be
expressed as a sum of at most two units. So we recall another slightly different definition which was
introduced in [12]. Let usn(R) be the smallest number n such that every element can be written as the
sum of at most n units. If some element of R is not k-good for any k ≥ 1, then usn(R) is defined to be
∞. Note that usn(R) and u(R) are different. For example, u(Z4) = ω and usn(Z4) = 2.

3. The radius of unit graphs

In this section, we focus on the radius of the unit graph of a ring. It is easy to see that rad(G(Z3)) = 1,
rad(G(Z4)) = 2, rad(G(Z6)) = 3 and rad(G(Z2 × Z2)) = ∞. So, the radius of unit graphs of rings has at
least four possibilities. We first determine when the radius of the unit graph of a ring meets one of the
unit graph of its factor ring. We begin with an obvious result.

Lemma 3.1. Let R be a ring. Then rad(G(R)) = 1 if and only if R is a division ring.

Proof. (⇒). Suppose that rad(G(R)) = 1. There exists an element a ∈ R such that ε(a) = 1, that
is, for any x ∈ R, d(a, x) = 1. Now for a nonzero element r ∈ R, we have d(a, r − a) = 1. So
r = a + (r − a) ∈ U(R). Thus, R is a division ring.

(⇐). Suppose that R is a division ring. Since ε(0) = 1, we have rad(G(R)) = 1. �

Lemma 3.2. Let R be a ring and R = R/J(R). If rad(G(R)) ≥ 3, then rad(G(R)) = rad(G(R)).

Proof. We first prove that rad(G(R)) ≤ rad(G(R)). If rad(G(R)) = ∞, there is nothing to prove. Suppose
that rad(G(R)) = n < ∞, then there exists a ∈ R such that ε(a) = n. For any x ∈ R, a path from a to x
deduces a walk from a to x, so d(a, x) ≤ d(a, x) ≤ n, this implies ε(a) ≤ n and thus rad(G(R)) ≤ n.

Now we prove rad(G(R)) ≥ rad(G(R)). If rad(G(R)) = ∞, there is nothing to prove. Let rad(G(R)) =

n < ∞. Then there exists a ∈ R such that ε(a) = n. For x ∈ R, if a = x, then d(a, x) = 2 < n; if a , x,
then a path from a to x deduces a path from a to x, so d(a, x) = d(a, x) ≤ n. This implies ε(a) ≤ n. So
rad(G(R)) ≤ n. �

Theorem 3.3. Let R be a ring. Then the following statements are equivalent.

(1) rad(G(R)) < rad(G(R)).

(2) rad(G(R)) = 1 and rad(G(R)) = 2.

(3) R is a local ring but not a division ring.

Proof. (2)⇒ (1). It is clear.
(1) ⇒ (3). Suppose that rad(G(R)) < rad(G(R)). Then by Lemma 3.2, rad(G(R)) ≤ 2. As

rad(G(R)) = 1 implies rad(G(R)) = 1 by Lemma 3.1, we have rad(G(R)) = 1 and rad(G(R)) = 2.
Thus R is a division ring again by Lemma 3.1. So R is a local ring. As rad(G(R)) = 2, R is not a
division ring by Lemma 3.1.
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(3)⇒ (2). Suppose that R is a local ring but not a division ring. For any 0 , x ∈ R, if x ∈ U(R), then
d(0, x) = 1; if x < U(R), then the path 0—1—x implies d(0, x) = 2. So ε(0) ≤ 2 and hence rad(G(R)) ≤
2. As R is not a division ring, we know that rad(G(R)) , 1 by Lemma 3.1. So rad(G(R)) = 2. Note that
R is a division ring, so, by Lemma 3.1, we have rad(G(R)) = 1. �

Corollary 3.4. Let R be a ring. Then rad(G(R)) = rad(G(R)) if and only if one of following holds:

(1) R is not a local ring.

(2) R is a division ring.

As we mentioned in the previous, the radius of unit graphs of rings has at least four possibilities.
Using the next theorem, we prove that the radius of unit graphs of rings can be any positive integer.
For the completeness, we recall a lemma.

Lemma 3.5. [22, Lemma 2.2] Let R be a ring and r ∈ R. Then the following hold:

(1) If r is k-good, then d(r, 0) ≤ k;

(2) If r , 0 and d(r, 0) = k, then r is k-good but not l-good for all l < k.

Theorem 3.6. Let R be a ring but not a division ring. For an integer n ≥ 2, the following statements
are equivalent.

(1) ε(0) = n.

(2) usn(R) = n.

(3) rad(G(R)) = n.

Proof. (1) ⇒ (2). For any r ∈ R, since ε(0) = n, we have d(r, 0) ≤ n. This implies that r is k-good
for some k ≤ n by Lemma 3.5(2). Again, as ε(0) = n, there exists x ∈ R such that d(x, 0) = n. This
deduces that x is n-good, but not (n − 1)-good by Lemma 3.5. By the definition of usn(R), we know
usn(R) = n.

(2) ⇒ (1). Suppose that usn(R) = n. Then for any given element r in R, r is kr-good, for some
kr ≤ n. So d(r, 0) ≤ kr ≤ n by Lemma 3.5(1). So ε(0) ≤ n. As usn(R) = n, there must exist an element
x ∈ R such that x is exactly n-good, but not (n − 1)-good. Thus d(x, 0) = n by Lemma 3.5(2). So,
ε(0) = n.

(2)⇒ (3). Assume usn(R) = n. For any given element x ∈ R, by assumption, x is kr-good for some
kr ≤ n. Then d(x, 0) ≤ kr by Lemma 3.5. So ε(0) ≤ kr ≤ n. Thus rad(G(R)) ≤ n. As usn(R) = n ≥ 2,
there exists an element y ∈ R such that y is exactly n-good. By Lemma 3.5, d(y, 0) = n and hence
ε(0) = n. So rad(G(R)) = n.

(3)⇒ (2). Assume rad(G(R)) = n ≥ 2. we have ε(0) = k ≥ n. If ε(0) = k > n, by the equivalencies
of (1) and (2), we have usn(R) = k > n, a contradiction. So ε(0) = n. Again by the equivalencies of (1)
and (2), we have usn(R) = n. �

In [12, Corollary 4], the author has proved that there exists a ring R such that usn(R) = n for any
given positive integer n.

Corollary 3.7. For a positive integer n, there exists a ring R such that rad(G(R)) = n.

Proof. The result follows by Lemma 3.1, Theorem 3.6 and [12, Corollary 4]. �
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4. Self-injective rings

Theorem 4.1. [22, Theorem 3.6] Let R be a ring with R/J(R) right self-injective (in particular, R is
right self-injective). Then diam(G(R)) ∈ {1, 2, 3,∞}.

The following result is an easy observation.

Corollary 4.2. Let R be a ring with R/J(R) right self-injective (in particular, R is right self-injective).
Then rad(G(R)) ∈ {1, 2, 3,∞}.

Proof. By the fact that rad(G) ≤ diam(G) ≤ 2rad(G) and Theorem 4.1, the result follows. �

In [14, Theorem 6], Khurana and Srivastava determined the unit sum number u(R) of a regular right
self-injective ring R. We use the notion usn(R) to restate the theorem below.

Lemma 4.3. [14] Let R be a regular self-injective ring. Then usn(R) = 2, 3 or∞. Moreover,

(1) usn(R) = 2 if and only if R has no nonzero Boolean ring as a ring direct summand or R � Z2.

(2) usn(R) = 3 if and only if R � Z2 and R has Z2, but no Boolean ring with more than two elements,
as a ring direct summand.

(3) usn(R) = ∞ if and only if R has a Boolean ring with more than two elements as a ring direct
summand.

Theorem 4.4. Let R be a right self-injective ring. Then the following hold.

(1) rad(G(R)) = 1 if and only if R is a division ring.

(2) rad(G(R)) = 2 if and only if R is not a division ring and one of following holds

(i) R has no factor ring isomorphic to Z2

(ii) R � Z2.

(3) rad(G(R)) = 3 if and only if R has exactly one factor ring isomorphic to Z2 and R � Z2.

(4) rad(G(R)) = ∞ if and only if R has a factor ring isomorphic to Z2 × Z2.

Proof. By Lemma 4.3, we have usn(R) = 2, 3 or∞. To complete the proof, we just need to discuss all
possibilities of usn(R).

Case 1. usn(R) = 2. Then, by Lemma 4.3, R has no nonzero Boolean ring as a ring direct summand
or R � Z2. If R is a division ring, then rad(G(R)) = 1 by Lemma 3.1. If R is not a division ring, then by
Theorem 3.6, we know rad(G(R)) = 2 .

Case 2. usn(R) = 3. Then R has a factor ring isomorphic to Z2, but has no factor ring isomorphic to
Z2×Z2 by Lemma 4.3. If R � Z2, then G(R) is a complete bipartite graph with at least four vertices. So
rad(G(R)) = 2. If R � Z2, we claim that rad(G(R)) = 3. To see this, by Corollary 4.2, rad(G(R)) ≤ 3.
Note that d((0, 0), (x, 1)) = 3 if x is not a unit. So ε(0) = 3 and hence rad(G(R)) = 3 by Theorem 3.6.

Case 3. usn(R) = ∞. Then G(R) is disconnected by [8, Theorem 4.3], so rad(G(R)) = ∞. �

Afkhami and Khosh-Ahang [5] studied the unit graphs of polynomial rings and power series rings.
Concerning the diameter, they prove that
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Theorem 4.5. [5, Theorem 3.5] Let R be a commutative ring. Then the following hold.

(1) The unit graph G(R[x]) is always disconnected. In particular, diam(G(R)) = ∞.

(2) If diam(G(R)) = 1, then diam(G(R[[x]])) = 2.

(3) If diam(G(R)) ≥ 2, then diam(G(R)) = diam(G(R[[x]])).

Similarly, we have following theorem.

Theorem 4.6. Let R be a commutative ring. Then the following hold.

(1) rad(G(R[x])) = ∞.

(2) If rad(G(R)) = 1, then rad(G(R[[x]])) = 2.

(3) If rad(G(R)) ≥ 2, then rad(G(R)) = rad(G(R[[x]])).

Proof. (1) As the unit graph G(R[x]) is always disconnected, we have rad(G(R[x])) = ∞.
(2) By Lemma 3.1, rad(G(R)) = 1 implies that R is a division ring. For f (x) =

∑
i aixi ∈ G(R[[x]]),

if a0 ∈ U(R), then d(0, f (x)) = 1. If a0 = 0, then the path 0—1— f (x) deduces d(0, f (x)) = 2. So
ε(0) = 2 in G(R[[x]]). By Theorem 3.6, rad(G(R[[x]])) = 2.

(3) If rad(G(R)) = ∞, then G(R) is disconnected. This implies G(R[[x]]) is also disconnected and
hence rad(G(R[x])) = ∞. Now suppose that rad(G(R)) = n ≥ 2. Then, by Theorem 3.6, ε(0) = n in
G(R). So ε(0) ≥ n in G(R[[x]]). For f (x) =

∑
i aixi ∈ G(R[[x]]), as d(0, a0) ≤ n, we have d(0, f (x)) ≤ n

and thus ε(0) ≤ n. So ε(0) = n in G(R[[x]]) and thus rad(G(R[[x]])) = n by Theorem 3.6. �

5. Conclusions

The properties of unit graphs of rings are widely studied. In this paper, we obtain the radius of
unit graphs of self-injective rings and completely classified the self-injective rings via the radius of its
unit graphs. One may consider how large class of rings having radius 1,2,3 and ∞. We think that this
question is closely relative to the unit sum number of rings. In the end of this paper, we investigated
the polynomial extension of rings. For the further research, we may consider the other extensions, for
example, matrix extension, that is, one may consider to determine rad(G(Mn(R))) in terms of rad(G(R)).
The trivial extension of a ring R by an R-bimodule M is R ∝ M := {(a, x) : a ∈ R, x ∈ M} with addition
defined componentwise and multiplication defined by (a, x)(b, y) = (ab, ay + xb). In fact, R ∝ M is
isomorphic to the subring {(a x

0 a) : a ∈ R, x ∈ M} of the formal triangular matrix ring (R M
0 R). One may

consider to determine rad(G(R ∝ M)) in terms of rad(G(R)) and the properties of M.
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