Processing math: 57%
Research article Special Issues

Automorphism group of the commuting graph of 2×2 matrix ring over Zps

  • Let R be a ring with identity. The commuting graph of R is the graph associated to R whose vertices are non-central elements in R, and distinct vertices A and B are adjacent if and only if AB=BA. In this paper, we completely determine the automorphism group of the commuting graph of 2×2 matrix ring over Zps, where Zps is the ring of integers modulo ps, p is a prime and s is a positive integer.

    Citation: Hengbin Zhang. Automorphism group of the commuting graph of 2×2 matrix ring over Zps[J]. AIMS Mathematics, 2021, 6(11): 12650-12659. doi: 10.3934/math.2021729

    Related Papers:

    [1] Yanfang Li, Yanmin Liu, Xianghu Liu, He Jun . On the approximate controllability for some impulsive fractional evolution hemivariational inequalities. AIMS Mathematics, 2017, 2(3): 422-436. doi: 10.3934/Math.2017.3.422
    [2] Ebrahem A. Algehyne, Abdur Raheem, Mohd Adnan, Asma Afreen, Ahmed Alamer . A study of nonlocal fractional delay differential equations with hemivariational inequality. AIMS Mathematics, 2023, 8(6): 13073-13087. doi: 10.3934/math.2023659
    [3] Yongwei Jia . Approximate controllability of evolution hemivariational inequalities under nonlocal conditions. AIMS Mathematics, 2025, 10(2): 3581-3596. doi: 10.3934/math.2025165
    [4] Yan Ning, Daowei Lu . A critical point theorem for a class of non-differentiable functionals with applications. AIMS Mathematics, 2020, 5(5): 4466-4481. doi: 10.3934/math.2020287
    [5] Chunli You, Linxin Shu, Xiao-bao Shu . Approximate controllability of second-order neutral stochastic differential evolution systems with random impulsive effect and state-dependent delay. AIMS Mathematics, 2024, 9(10): 28906-28930. doi: 10.3934/math.20241403
    [6] Ramkumar Kasinathan, Ravikumar Kasinathan, Dumitru Baleanu, Anguraj Annamalai . Well posedness of second-order impulsive fractional neutral stochastic differential equations. AIMS Mathematics, 2021, 6(9): 9222-9235. doi: 10.3934/math.2021536
    [7] Qi Wang, Chenxi Xie, Qianqian Deng, Yuting Hu . Controllability results of neutral Caputo fractional functional differential equations. AIMS Mathematics, 2023, 8(12): 30353-30373. doi: 10.3934/math.20231550
    [8] Rajesh Dhayal, Muslim Malik, Syed Abbas . Solvability and optimal controls of non-instantaneous impulsive stochastic neutral integro-differential equation driven by fractional Brownian motion. AIMS Mathematics, 2019, 4(3): 663-683. doi: 10.3934/math.2019.3.663
    [9] Chengbo Yi, Rui Guo, Jiayi Cai, Xiaohu Yan . Pinning synchronization of dynamical neural networks with hybrid delays via event-triggered impulsive control. AIMS Mathematics, 2023, 8(10): 25060-25078. doi: 10.3934/math.20231279
    [10] Gokula Nanda Chhatria . On oscillatory second order impulsive neutral difference equations. AIMS Mathematics, 2020, 5(3): 2433-2447. doi: 10.3934/math.2020161
  • Let R be a ring with identity. The commuting graph of R is the graph associated to R whose vertices are non-central elements in R, and distinct vertices A and B are adjacent if and only if AB=BA. In this paper, we completely determine the automorphism group of the commuting graph of 2×2 matrix ring over Zps, where Zps is the ring of integers modulo ps, p is a prime and s is a positive integer.



    Clarke's subdifferential operator is associated with a type of nonlinear inclusion known as hemivariational inequalities. These inequalities have applications in structural analysis and non-convex optimization. The two main types of inequality problems are variational inequalities and hemivariational inequalities. Hemivariational inequalities handle nonsmooth, nonconvex energy functions, whereas variational inequalities primarily deal with convex energy functions. In 1981, Panagiotopoulos introduced the concept of hemivariational inequality as a method to represent mechanical obstacles. Hemivariational inequalities or subdifferential inclusions can be used to model various nonsmooth contact mechanics issues involving multivalued and nonmonotone constitutive laws with boundary conditions (see [1,2,3]). Since then, numerous researchers have made significant contributions to the field of hemivariational inequalities, as seen in [4,5,6,7,8,9]. Moreover, neutral differential systems with impulsive effects have become a prominent area of research, modeling real-world processes that undergo sudden changes at specific points. This field has far-reaching applications in areas like finance, economics, mechanics, neural networks, electronics, and telecommunications. Notably, the authors of [10] investigated the controllability of nonlocal neutral differential inclusions with impulse effects. Researchers looked at the existence of impulsive multivalued neutral functional differential inclusions [11,12].

    Research on controllability in hemivariational-type systems has gained significant attention from the scientific community in recent times. Control problems have significant implications for various fields, including engineering, physics, and finance [13]. Despite the progress made, many intriguing questions and concepts remain unexplored. Notably, the authors of [14,15] established the existence of optimal control in hemivariational inequalities, while [16,17] investigated optimal control in parabolic hemivariational inequalities. Furthermore, [18,19] demonstrated the existence of optimal control in hyperbolic systems, contributing to the advancement of the field. Due to their wide application to numerous pragmatist mathematics fields, neutral systems have attracted attention recently. Neutral systems have numerous applications in various fields, including thermal expansion of materials, biological advancements, surface waves, and stretchability, which benefit from neutral systems either directly or indirectly. Additionally, researchers have extensively studied hemivariational inequalities with a neutral type in [20,21]. For further information regarding the system with hemivariational inequalities, refer to [22,23,24,25,26]. Recently, there has been a surge of interest in Clarke's subdifferential evolution inclusion problems, particularly in the context of nonsmooth analysis and optimization. Frictional contact analysis can effectively characterize the interaction between a piezoelectric body and an electrically conducting foundation, and the frictional contact between a piezoelectric cylinder and a foundation exhibits anti-plane shear deformations. Moreover, the authors of [27] have established approximate controllability results for Sobolev-type Hilfer fractional neutral evolution problems with Clarke's subdifferential-type problems. Our proposed problem presents a model that combines the key elements of hemivariational inequality and fractional impulsive differential equations into a unified framework. This study establishes approximate controllability results for a neutral differential system with impulsive effects, formulated as a hemivariational inequality. Next, we will define the specific system under consideration, which will be the focus of our investigation:

    {ddφ[u(φ)g1(φ,u(φ))]+A(φ)u(φ)+Bv(φ),ωM+H(φ,u(φ);ω)0,φiφL=[0,a],  ωM,u(0)=u0, u(0)=u1,Δu(φi)=Li(u(φi)),Δu(φi)=Ki(u(φi)), i=1,2,3,...,m, 0<φ1<φ2<...<φm<a. (1.1)

    Here ,M stands for the inner product of the separable Hilbert space M and A:D(A)MM is a closed, linear, and densely defined operator on M. H(φ,;) denotes the generalized Clarke's directional derivative [6] of a locally Lipschitz function H(φ,):MR. The function g1:L×MM. The control function vV takes values from L2(L,V) and V is the control set which is also a Hilbert space. Let B:VM be the bounded linear operator. Let 0<φ1<φ2<...<φm<φm+1=a be pre-fixed points and the symbol Δu(φi) represents the jump in the state u at time t which is defined by Δu(φi)=u(φ+i)u(φi), and u(φi) and u(φ+i) denote the left and right limit of u at φi. Li:MM and Ki:MM,i=1,2,3,...,m, are impulsive functions.

    The structure of the article is presented in the following way:

    ● We begin by reviewing key definitions, fundamental theorems, and initial findings from a previous section.

    ● The core focus then shifts to exploring the existence of mild solutions for the system represented by Eq (1.1).

    ● Next, we investigate the approximate controllability of the system (1.1).

    ● Finally, we solidify our theoretical results by presenting a concrete example.

    Let Z and Z be a Banach space and its dual, respectively with Z and , is the duality pairing of Z and Z. The Banach space PC(L,Z) is the set of all piecewise continuous functions from L=[0,a] into Z together with uPC=supφLu(φ)Z. Also,

    M(w)k(e)(Z):={Z: is (weakly) compact (convex)};Mf(e)(Z):={Z: is closed (convex)}.

    Consider the non-autonomous second-order initial value problem:

    z(φ)= A(φ)z(φ)+f(φ),0z,φa, (2.1)
    z(z)= z0,z(z)=z1, (2.2)

    where A(φ):D(A(φ))MM, φ[0,a] is a closed densely defined operator and f:[0,a]M is an appropriate function. One can refer to [15,28,29,30] and the references therein. A significant number of articles relate the existence of solutions to the (2.1)-(2.2) problem to the existence of the evolution operator Q(φ,z) for the homogeneous equation

    z(φ)= A(φ)z(φ),0φa. (2.3)

    Assume that the domain of A(φ) is a subspace D that is dense in M and independent of φ, and that the function φA(φ)z is continuous for each zD(A(φ)).

    In view of Kozak's work [31], we shall apply the following evolution operator notion in this study.

    Definition 2.1. A family Q of bounded linear operators Q(φ,z):[0,a]×[0,a]L(M) is called an evolution operator for (2.3) if the following conditions are satisfied:

    (Z1) For each zM, the mapping [0,a]×[0,a](φ,z)Q(φ,z)zM is of class C1 and

    (i) for each φ[0,a], Q(φ,φ)=0,

    (ii) for all φ,z[0,a], and for each zM,

    φQ(φ,z)z|φ=z=z,zQ(φ,z)z|φ=z=z.

    (Z2) For all φ,z[0,a], if zD(A), then Q(φ,z)zD(A), the mapping [0,a]×[0,a](φ,z)Q(φ,z)zM is of class C2 and

    (i) 2φ2Q(φ,z)z=A(φ)Q(φ,z)z,

    (ii) 2z2Q(φ,z)z=Q(φ,z)B(z)z,

    (iii) zφQ(φ,z)z|φ=z=0.

    (Z3) For all φ,z[0,a], if zD(A), and then zQ(φ,z)zD(A), then 2φ2zQ(φ,z)z, 2z2φQ(φ,z)z, and

    (i) 2φ2zQ(φ,z)z=A(φ)zQ(φ,z)z,

    (ii) 2z2φQ(φ,z)z=φQ(φ,z)A(z)z,

    and the mapping [0,a]×[0,a](φ,z)A(φ)zQ(φ,z)z is continuous.

    Let us take

    C(φ,z)=Q(φ,z)z.

    Also, for some positive constants N1 and N2, we set sup0φ,zaQ(φ,z)N2 and sup0φ,zaC(φ,z)N1 and

    Q(φ+g,z)Q(φ,z)N1|g|, (2.4)

    for all z,φ,φ+g[0,a]. The mild solution z:[0,a]M of (2.1)-(2.2) is:

    z(φ)=C(φ,z)z0+Q(φ,z)z1+φ0Q(φ,η)f(η)dη.

    Let us start by discussing the necessary definitions and findings from the multivalued analysis. The following sources [7,32,33] are recommended for readers in addition to multivalued maps.

    Definition 2.2. Given a Banach space Z and a multivalued map H:Z2Z{}=N(Z), we say

    (i) H is convex and closed valued, only when H(u) is convex and closed valued for all uZ.

    (ii) H is said to be upper semicontinuous on Z, if for all yZ, H(u) is closed in Z and if for each open set J1 of Z which contains H(u), then there is an open neighborhood E of u such that H(E)J1.

    (iii) H is bounded on bounded sets if H(B)=uBH(u) is bounded in Z for all BMb(Z) (i.e., supuB{sup{k:kH(u)}}<).

    (iv) H is supposed to be completely continuous provided that H(J1) is relatively compact, for all bounded subset J1Z.

    (v) H has a fixed point if there is a uZ such that uH(u).

    For a locally Lipschitzian functional H:ZR, we denote H0(q;p), the Clarke's generalized directional derivative of H at point q in the direction of p, that is,

    H0(q;p):=limγ0+supϑqH(ϑ+γp)H(ϑ)γ.

    Also, H(q):={qZ:H0(q;p)q;p,for every pZ} denotes the generalized Clarke's subdifferential.

    The subsequent features and outcomes will facilitate our goal achievement:

    Lemma 2.3. [9] If the function H:R is a locally Lipschitz on an open set of Z, then

    (i) For all pZ, it has H0(q;p)=max{q;p: for all qH(q)};

    (ii) For all q, the gradient H(q) is a nonempty, convex, weak-compact subset of Z and qZM, for all qH(q);

    (iii) The graph of H is closed in ×Z. That is, if {qn}, {qn}Z are sequences as qnH(qn) and qnqZ, qnq weakly in Z, then qH(q) (where the Banach space Z furnished with the -topology is denoted by Z);

    (iv) The multifunction qH(q)Z is upper semicontinuous which maps into Z.

    Lemma 2.4. [9] Let Z be the separable reflexive Banach space, 0<a< and H:(0,a)×ZR, such that  H(,w) is measurable for each wZ and H(φ,) is locally Lipschitz on Z for all φ(0,a). Then the multifunction (0,a)×Z(φ,w)H(φ,w)Z is measurable.

    As discussed in [9], we can investigate the existence of mild solutions and approximate controllability for the following semilinear inclusions:

    {ddφ[z(φ)g1(φ,u(φ))]A(φ)u(φ)+Bv(φ)+H(φ,z(φ)), φL=[0,a],u(0)=u0, u(0)=u1,Δu(φi)=Li(u(φi)), Δu(φi)=Ki(u(φi)), i=1,2,3,...,m. (2.5)

    Now, we can explore the implication that every solution to Eq (2.5) is also a solution to Eq (1.1). Hence, if uPC(L,M) is a solution of (2.5), there exists h(φ)H(φ,u(φ)) provided hL2(L,M) and

    {ddφ[u(φ)g1(φ,u(φ))]=A(φ)u(φ)+Bv(φ)+h(φ), φL=[0,a],u(0)=u0, u(0)=u1,Δz(φi)=Li(u(φi)), Δu(φi)=Ki(u(φi)), i=1,2,3,...,m,

    which implies

    {ddφ[u(φ)g1(φ,u(φ))]+A(φ)u(φ)+Bv(φ),ωM+h(φ),ωM=0, φL=[0,a],for all ωM,u(0)=u0, u(0)=u1,Δz(φi)=Li(u(φi)), Δu(φi)=Ki(u(φi)), i=1,2,3,...,m.

    Since h(φ),ωMH0(φ,u(φ);ω) and h(φ)H(φ,u(φ)),

    {ddφ[u(φ)g1(φ,u(φ))]+A(φ)u(φ)+Bv(φ),ωM+ H0(φ,u(φ);ω), φL=[0,a], for all ωM,u(0)=u0, u(0)=u1,Δu(φi)=Li(u(φi)), Δu(φi)=Ki(u(φi)), i=1,2,3,...,m.

    Therefore, our initial focus will be on examining the semilinear inclusion (2.5), which proceeds our investigation of the hemivariational inequality (1.1). According to established literature [33,34], the mild solution for problem (2.5) is defined as below.

    Definition 2.5. For all vL2(L,V), a function uPC(L,M) is a mild solution for (2.5) if there exists hL2(L,M) as h(φ)H(φ,u(φ)) almost everywhere on φL,

    u(φ)=C(φ,0)u0+Q(φ,0)[u1g1(0,u(0))]+φ0C(φ,z)g1(z,u(z))dz+φ0Q(φ,z)h(z)dz+φ0Q(φ,z)Bv(z)dz+0<φi<φC(φ,φi)Li(u(φi))+0<φi<φQ(φ,φi)Ki(u(φi)), φL.

    Let us take the following assumptions:

    (A1) The function H:L×MR satisfies:

    (i) uM, φH(φ,z) is measurable;

    (ii) uH(φ,u) is locally Lipschitz continuous for a.e. φL;

    (iii) There is a function b(φ)L2(L,R+) and e>0 such that

    H(φ,u)=sup{h:h(φ)H(φ,u)}b(φ)+eu,for a.e. φL and for each uM.

    (A2) In the function g1:L×MM, there exists some constants C1,C2>0, and for every uM, φ1,φ2L, we have

    g1(φ1,u(φ1))g1(φ2,u(φ2))C1u(φ1)u(φ2),g1(φ1,u(φ1))C2(1+u(φ1)).

    (A3) For some constants ci,li>0, the maps Li,Ki:MM are continuous, and

    Li(φ)ci,Ki(φ)li, i=1,2,3,...,m, for all uM.

    Let M:L2(L,M)2L2(L,M) be defined as below:

    M(u)={kL2(L,M):k(φ)H(φ,u(φ)) almost everywhere, φL}, for all uL2(L,M).

    Lemma 2.6. [35] Let (A1) and M be true. If unu in L2(L,M), wnw weakly in L2(L,M) and unM(un), and then uM(u).

    Lemma 2.7. [9] Let all hypotheses and (A1) hold. Then for every uL2(L,M), the set M(u) has nonempty, weakly compact and convex values.

    Theorem 2.8. [9] Consider the Banach space Z which is locally convex and Υ:Z2Z is a compact convex valued, upper semicontinuous multivalued map such that there exists a closed neighborhood J of 0 for which Υ(J) is relatively compact provided

    ={xZ:γxΥ(u), for some γ>1}

    is bounded. Then Υ has a fixed point.

    Theorem 3.1. For all vL2(L,V), provided that (A1)(A3) are fulfilled, then (2.5) has a mild solution on L such that a(N1C2+N2e)<1, where N1:=supφ,z[0,a]C(φ,z), N2:=supφ,z[0,a]Q(φ,z).

    Proof. Initially, choose any uPC(L,M)L2(L,M), by Lemma 2.7. Now, define Υ:PC(L,M)2PC(L,M) as:

    Υ(u)={fPC(L,M):f(φ)=C(φ,0)u0+Q(φ,0)[u1g1(0,u(0))]+φ0C(φ,z)g1(z,u(z))dz+φ0Q(φ,z)h(z)dz+φ0Q(φ,z)Bv(z)dz+0<φi<φC(φ,φi)Li(u(φi))+0<φi<φQ(φ,φi)Ki(u(φi)), hM(u)}, uPC(L,M).

    It is clear that we can determine a fixed point of the multivalued map Υ that satisfies Theorem 2.8. First, note that the set-valued map Υ(u) is convex due to the properties of M(u). Now, let us proceed with the proof of the theorem as follows:

    Step 1. Υ(Br)(Br),r>0, is bounded in PC(L,M), where Br={uPC(L,M):uPCr}. Here, it suffices to demonstrate the existence of a positive constant such that for each σΥ(u), uBr,σPC. If σΥ(u), then there is a hM(u) provided

    σ(φ)=C(φ,0)u0+Q(φ,0)[u1g1(0,u(0))]+φ0C(φ,z)g1(z,u(z))dz+φ0Q(φ,z)h(z)dz+φ0Q(φ,z)Bv(z)dz+0<φi<φC(φ,φi)Li(u(φi))+0<φi<φQ(φ,φi)Ki(u(φi)),φL.

    By Hölder's inequality,

    σ(φ)C(φ,0)u0+Q(φ,0)[u1g1(0,u(0))]+φ0C(φ,z)g1(z,u(z))dz+φ0Q(φ,z)h(z)dz+φ0Q(φ,z)Bv(z)dz+0<φi<φC(φ,φi)Li(u(φi))+0<φi<φC(φ,φi)Ki(u(φi))N1u0+N2[u1g1(0,u(0))]+N1φ0C2(1+r)dz+N2φ0[b(z)+er+Bv(z)]dz+N10<φi<φLi(u(φi))+N20<φi<φKi(u(i))N1u0+N2φ2[u1g1(0,u(0))]+N1aC2(1+r)+N2[abL2(Q,R+)+era+aBvL2(Q,V)]+N1mi=1ci+N2mi=1li:=.

    Thus, Υ(Br) is bounded.

    Step 2. {Υ(u):uBr} is completely continuous.

    Let us note that for any uBr, σΥ(u), there exists hM(u) such that for all φL,

    σ(φ)C(φ,0)u0+Q(φ,0)[u1g1(0,u(0))]+φ0C(φ,z)g1(z,u(z))dz+φ0Q(φ,z)h(z)dz+φ0Q(φ,z)Bv(z)dz+0<φi<φC(φ,φi)Li(u(φi))+0<φi<φC(φ,φi)Ki(u(φi)).

    For 0<ξ1<ξ2a and k>0 very small,

    σ(ξ2)σ(ξ1)MC(ξ2,0)C(ξ1,0)u0+Q(ξ2,0)Q(ξ1,0)[u1g1(0,u(0))]+ξ1k0C(ξ2,z)C(ξ1,z)g1(z,u(z))dz+ξ1ξ1kC(ξ2,z)C(ξ1,z)g1(z,u(z))dz+ξ2ξ1C(ξ2,z) g1(z,u(z))dz+ξ1k0Q(ξ2,z)Q(ξ1,z)h(z)+Bv(z)dz+ξ1ξ1kQ(ξ2,z)Q(ξ1,z) h(z)+Bv(z)dz+ξ2ξ1Q(ξ2,z) h(z)+Bv(z)dz+0<φi<aC(ξ2,φi)C(ξ1,φi)Li(u(φi))+0<φi<aQ(ξ2,φi)Q(ξ1,φi)Ki(u(φi))C(ξ2,0)C(ξ1,0)u0+Q(ξ2,0)Q(ξ1,0)[u1g1(0,u(0))]+ξ1k0C(ξ2,z)C(ξ1,z)C2(1+r)dz+ξ1ξ1kC(ξ2,z)C(ξ1,z)C2(1+r)dz+N1 C2(1+r)(ξ2ξ1)+ξ1k0Q(ξ2,φi)Q(ξ1,φi)[b(z)+er+Bv(z)]dz+ξ1ξ1kQ(ξ2,z)Q(ξ1,z)[b(z)+er+Bv(z)]dz+N2ξ2ξ1[b(z)+er+Bv(z)]dz+0<φi<aC(ξ2,φi)C(ξ1,φi)Li(u(φi))+0<φi<aQ(ξ2,φi)Q(ξ1,φi)Ki(u(φi)). (3.1)

    From the uniform operator topology [33, Lemma 6.2], it is easily understood that (3.1) tends to zero of uBr as ξ2ξ1 and k0.

    Equivalently, for ξ1=0 and 0<ξ2a, we can show that σ(ξ2)u0M tends to zero independently of uBr as ξ20. Hence, we can conclude that {Υ(u):uBr} is equicontinuous of PC(L,M).

    Finally, from the assumptions (A1) and (A3) and by the definition of a relatively compact set, it is not difficult to check that {σ(t):σΥ(Br)} is relatively compact in M. Thus, by the generalized Arzelˊa-Ascoli theorem, we get that Υ is a multivalued compact map.

    Therefore, based on the above arguments, Υ is completely continuous.

    Step 3. Assume unu in PC(L,M), σnΥ(un) and σnσ in PC(L,M). Let us check σΥ(u). It is obvious that \sigma_n \in \Upsilon(u_n) exist only when h_n \in \mathbb{M}(u_n) such that

    \begin{align} {} \sigma_n (\varphi)& = C(\varphi,0) u_0+ Q(\varphi,0)[u_1-g_1(0, u(0))]\\ & \quad {} +\int_0^\varphi C(\varphi,z) g_1(z, u_n(z))dz + \int_0^\varphi Q(\varphi,z)h_n(z)dz + \int_0^\varphi Q(\varphi,z)\mathscr{B}v(z)dz \\ & \quad +\sum\limits_{0 < \varphi_i < \varphi}C(\varphi,\varphi_i)\mathcal{L}_i(u(\varphi_i))+\sum\limits_{0 < \varphi_i < \varphi}Q(\varphi,\varphi_i)\mathcal{K}_i(u(\varphi_i)). \end{align} (3.2)

    Here \{h_n\}_{n\geq 1} \subseteq L^2(\mathfrak{L}, \mathcal{M}) is bounded from the hypothesis \bf{(A2)} . Hence we may assume that

    \begin{align} h_n \to h_* \ \text{weakly in} \ L^2(\mathfrak{L},\mathcal{M}). \end{align} (3.3)

    From (3.2) and (3.3), we have

    \begin{align} {} \sigma_n (\varphi) &\to C(\varphi,0) u_0+ Q(\varphi,0)[u_1-g_1(0, u(0))]\\ & \quad {} +\int_0^\varphi C(\varphi,z) g_1(z, u_*(z))dz + \int_0^\varphi Q(\varphi,z)h_*(z)dz + \int_0^\varphi Q(\varphi,z)\mathscr{B}v(z)dz \\ & \quad +\sum\limits_{0 < \varphi_i < \varphi}C(\varphi,\varphi_i)\mathcal{L}_i(u(\varphi_i))+\sum\limits_{0 < \varphi_i < \varphi}Q(\varphi,\varphi_i)\mathcal{K}_i(u(\varphi_i)). \end{align} (3.4)

    We can see that \sigma_n \to \sigma_* in \mathscr{PC}(\mathfrak{L}, \mathcal{M}) and h_n \in \mathbb{M}(u) . According to Lemma 2.6 and (3.4), h_* \in \mathbb{M}(u_*) . Then, \sigma_* \in \Upsilon(u_*) , and this shows that \Upsilon has a closed graph. Hence using Proposition 3.12 of [36] implies that it is upper semicontinuous.

    Step 4. A priori estimate.

    Based on the results from Steps 1–3, we have established that the multivalued map \Upsilon satisfies the following properties: upper semicontinuity, convex-valuedness, compactness, and relative compactness of \Upsilon(\mathfrak{B}_r) . Therefore, \Upsilon meets the conditions of Theorem 2.8, which implies that

    \begin{align*} \mho = \{u \in \mathscr{PC}(\mathfrak{L},\mathcal{M}) : \gamma u \in \Upsilon(u),\ \gamma > 1\}, \end{align*}

    is bounded. To prove \Upsilon has a fixed point, let u \in \mho , and h\in \mathbb{M}(u) such that

    \begin{align*} u(\varphi)& = \gamma^{-1} C(\varphi,0) u_0+ Q(\varphi,0)[u_1-g_1(0, u(0))]+ \gamma^{-1} \int_0^\varphi C(\varphi,z) g_1(z, u(z))dz\\&\quad+\gamma^{-1} \int_0^\varphi Q(\varphi,z)h(z)dz +\gamma^{-1} \int_0^\varphi Q(\varphi,z) \mathscr{B}v(z)dz\\ &\quad+ \gamma^{-1} \sum\limits_{0 < \varphi_i < \varphi} C(\varphi,\varphi_i)\mathcal{L}_i(u(\varphi_i))+ \gamma^{-1} \sum\limits_{0 < \varphi_i < \varphi} Q(\varphi,\varphi_i)\mathcal{K}_i(u(\varphi_i)). \end{align*}

    From our assumptions,

    \begin{align} {} \|u(\varphi)\|_\mathcal{M} &\le \|C(\varphi,0) u_0\|+ \|Q(\varphi,0)[u_1-g_1(0, u(0))]\|+\|\int_0^\varphi C(\varphi,z) g_1(z, u(z))dz\|\\ &{} \quad+ \|\int_0^\varphi Q(\varphi,z)h(z)dz\| +\|\int_0^\varphi Q(\varphi,z)\mathscr{B}v(z)dz\|\\ &{} \quad+ \sum\limits_{0 < \varphi_i < \varphi} \| C(\varphi,\varphi_i)\mathcal{L}_i(u(\varphi_i))\|+ \sum\limits_{0 < \varphi_i < \varphi}\| Q(\varphi,\varphi_i)\mathcal{K}_i(u(\varphi_i))\| \\ &{} \le {\mathscr{N}}_1 \|u_0\|+ {\mathscr{N}}_2 \|[u_1-g_1(0, u(0))]\| + {\mathscr{N}}_1 \int_0^\varphi C_2(1+\|u(z)\|) dz\\ &{} \quad+ {\mathscr{N}}_2 \int_0^\varphi [a(z)+e\|u(z)\|+\|\mathscr{B}\|\|v(z)\|]dz + {\mathscr{N}}_1 \sum\limits_{0 < \varphi_i < \varphi} \|\mathcal{L}_i(u(\varphi_i))\|\\ &{} \quad + {\mathscr{N}}_2 \sum\limits_{0 < \varphi_i < \varphi} \|\mathcal{K}_i(u(\varphi_i))\| \\ &\le \rho +\mathscr{K}_1\|u\|, \end{align} (3.5)

    where

    \begin{align*} \rho = & {\mathscr{N}}_1 [u_0]+{\mathscr{N}}_2 [u_1-g_1(0, u(0))]+{\mathscr{N}}_1 C_2b+ {\mathscr{N}}_2 (\|b\|_{L^2(\mathfrak{L},\mathbb{R}^+)}\\ &+\|\mathscr{B}\|\|v\|_{L^2(\mathfrak{L},V)})\sqrt{a} +\sum\limits_{i = 1}^m l_i]+ {\mathscr{N}}_1 \sum\limits_{i = 1}^m c_i, \\ \mathscr{K}_1& = a({\mathscr{N}}_1 C_2 + {\mathscr{N}}_2e). \end{align*}

    Hence, by the assumption \mathscr{K}_1 < 1 and (3.5), we can see that

    \begin{align*} \|u\| = \sup\limits_{\varphi \in \mathfrak{L}} \|u(\varphi)\| \le \rho+\mathscr{K}_1\|u\|,\ \text{thus} \ \|u\| \le \frac{\rho}{1-\mathscr{K}_1} = :\ell_2. \end{align*}

    Hence, \Upsilon has a fixed point.

    Consider that the mild solution for the Eq (2.5) is u(\cdot; v) , the control variable v has values in L^2(\mathfrak{L}, V) , and the initial value is u_0, u_{1} \in \mathcal{M} . At the terminal time a , the accessible set of the system (2.5) is defined as \mathbb{R}(a, u_0, u_{1}) = \{ u(a; u_{0}, u_{1}): v \in L^2(\mathfrak{L}, V) \}.

    Definition 4.1. The Eq (2.5) is approximately controllable on \mathfrak{L} , if for any initial value u_0, u_{1} \in \mathcal{M} , then \overline{\mathbb{R} (a, u_0, u_{1})} = \mathcal{M} .

    Consider the linear differential system:

    \begin{align} \begin{cases} u^{\prime \prime}(\varphi) = \mathcal{A}(\varphi) u(\varphi)+\mathscr{B}v(\varphi),\ \varphi \in \mathfrak{L} = [0,a], \\ u(0) = u_0,\,\, u^\prime (0) = u_1 . \end{cases} \end{align} (4.1)

    Now, define the operators for the system (4.1) as:

    \begin{align*} \Upsilon_0^a = & \int_0^a Q(a,z) \mathscr{B}\mathscr{B}^*Q^*(a,z)dz \quad \text{and} \quad \mathscr{R}(\beta, \Upsilon_0^a) = (\beta I+\Upsilon_0^a)^{-1},\ \beta > 0, \end{align*}

    where \mathscr{B}^* and Q^*(\varphi) are adjoint of \mathscr{B} and Q(\varphi) , respectively.

    Lemma 4.2. [9] The system (4.1) is approximately controllable on \mathfrak{L} iff \beta \ \mathscr{R}(\beta, \Upsilon_0^a)\to 0 as \beta \to 0^+ in the strong operator topology.

    Choose any \beta > 0, \ u \in \mathscr{PC}(\mathfrak{L}, \mathcal{M})\subset L^2(\mathfrak{L}, \mathcal{M}) and u_a \in \mathcal{M} , as stated in Lemma 2.7, and it is possible to define a multivalued map \Upsilon_\beta: \mathscr{PC}(\mathfrak{L}, \mathcal{M}) \to 2^{\mathscr{PC}(\mathfrak{L}, \mathcal{M})} given by

    \begin{align*} \Upsilon_\beta(u) = \Big\{ f \in \mathscr{PC}(\mathfrak{L},\mathcal{M}) : f(\varphi)& = C(\varphi,0) u_0+ Q(\varphi,0)[u_1-g_1(0, u(0))]\\ &\quad+\int_0^\varphi C(\varphi,z) g_1(z, u(z))dz + \int_0^\varphi Q(\varphi,z)h(z)dz\\ &\quad + \int_0^\varphi Q(\varphi,z)\mathscr{B}v(z)dz +\sum\limits_{0 < \varphi_i < \varphi}C(\varphi,\varphi_i)\mathcal{L}_i(u(\varphi_i))\\ &\quad+\sum\limits_{0 < \varphi_i < \varphi}Q(\varphi,\varphi_i)\mathcal{K}_i(u(\varphi_i)), \quad h\in \mathbb{M}(u) \Big\}, \end{align*}

    and

    \begin{align*} v_\beta(\varphi)& = \mathscr{B}^*Q^* (a,z)\mathscr{R}(\beta, \Upsilon_0^a) \Big( u_a - C(a,0) u_0- Q(a,0)[u_1-g_1(0, u(0))]\\ &\quad-\int_0^a C(a,z) g_1(z, u(z))dz -\int_0^a Q(a,z)h(z)dz \\ &\quad-\sum\limits_{0 < \varphi_i < a}C(a,\varphi_i)\mathcal{L}_i(u(\varphi_i))-\sum\limits_{0 < \varphi_i < a}Q(a,\varphi_i)\mathcal{K}_i(u(\varphi_i)) \Big). \end{align*}

    Theorem 4.3. Let {\bf (A{1})} {\bf (A{3})} be true. \Upsilon_\beta, for all \beta > 0, has a fixed point on \mathfrak{L} = [0, a] if

    \begin{align*} a({\mathscr{N}}_1 C_2 + {\mathscr{N}}_2e)\Bigg ( 1+ \frac{{\mathscr{N}}_2^2\|\mathscr{B}\|^2}{\beta}\Bigg) < 1, \end{align*}

    where {\mathscr{N}}_1 : = \sup_{\varphi, z \in [0, a]} \|C(\varphi, z)\|, \ {\mathscr{N}}_2 : = \sup_{\varphi, z \in [0, a]} \|Q(\varphi, z)\| .

    Proof. For every u \in \mathscr{PC}(\mathfrak{L}, \mathcal{M}) , by the nature of \mathbb{M}(u) , we can say \Upsilon_\beta is convex.

    Step 1. For every \mathfrak{p} > 0, \Upsilon_\beta(\mathfrak{B}_\mathfrak{p}) is bounded in \mathscr{PC}(\mathfrak{L}, \mathcal{M}) ,

    \mathfrak{B}_\mathfrak{p} = \{u \in \mathscr{PC}(\mathfrak{L},\mathcal{M}) : \|u\|_\mathscr{PC} \le \mathfrak{p}\}.

    Here, it is sufficient to prove that there exists a positive constant l_\beta and for all \sigma \in \Upsilon_\beta (u), \ u \in \mathfrak{B}_\mathfrak{p}, \ \|\sigma\|_\mathscr{PC} \le l_\beta . If \sigma \in \Upsilon_\beta(u) , there is h \in \mathbb{M}(u) such that

    \begin{align*} \sigma(\varphi)& = C(\varphi,0) u_0+ Q(\varphi,0)[u_1-g_1(0, u(0))]\\ & \quad+\int_0^\varphi C(\varphi,z) g_1(z, u(z))dz + \int_0^\varphi Q(\varphi,z)h(z)dz + \int_0^\varphi Q(\varphi,z)\mathscr{B}v(z)dz \\ & \quad+\sum\limits_{0 < \varphi_i < \varphi}C(\varphi,\varphi_i)\mathcal{L}_i(u(\varphi_i))+\sum\limits_{0 < \varphi_i < \varphi}Q(\varphi,\varphi_i)\mathcal{K}_i(u(\varphi_i)), \ \varphi \in \mathfrak{L}. \end{align*}

    Notice that

    \begin{align} {} \|v_\beta(\varphi)\| & = \Bigg\|\mathscr{B}^*Q^* (a,z)\mathscr{R}(\beta, \Upsilon_0^a) \Big( u_a - C(a,0) u_0- Q(a,0)[u_1-g_1(0, u(0))]\\ &\quad {} - \int_0^a C(a,z) g_1(z, u(z))dz -\int_0^a Q(a,z)h(z)dz \\ &\quad {} -\sum\limits_{0 < \varphi_i < a}C(a,\varphi_i)\mathcal{L}_i(u(\varphi_i))-\sum\limits_{0 < \varphi_i < a}Q(a,\varphi_i)\mathcal{K}_i(u(\varphi_i)) \Big) \Bigg\| \\ {} & \le \frac{{\mathscr{N}}_2 \|\mathscr{B}\|}{\beta} \Big[\|u_a\| + {\mathscr{N}}_1\|u_0\|+{\mathscr{N}}_2\|u_1-g_1(0, u(0))\| + a {\mathscr{N}}_1 C_2(1+\mathfrak{p})\\ & \quad+ {\mathscr{N}}_2 [\|b\|_{L^2(\mathfrak{L},\mathbb{R}^+)}\sqrt{a} +e\mathfrak{p}a] +{\mathscr{N}}_1 \sum\limits_{i = 1}^{m}c_i+ {\mathscr{N}}_2 \sum\limits_{i = 1}^{m}l_i \Big] : = \Psi. \end{align} (4.2)

    From (4.2),

    \begin{align*} \| \sigma(\varphi)\|_\mathcal{M} &\le \|C(\varphi,0) u_0\|_\mathcal{M}+ \| Q(\varphi,0)[u_1-g_1(0, u(0))]\|_\mathcal{M}+\Big\|\int_0^\varphi C(\varphi,z) g_1(z, u(z))dz\Big\|\\ &\quad +\Big\|\int_0^\varphi Q(\varphi,z)h(z)dz\Big\|+ \Big\|\int_0^\varphi Q(\varphi,z)\mathscr{B}v(z)dz\Big\|\\ &\quad+ \sum\limits_{0 < \varphi_i < \varphi}\Big\|C(\varphi,\varphi_i)\mathcal{L}_i(u(\varphi_i))\Big\|+ \sum\limits_{0 < \varphi_i < \varphi}\Big\|C(\varphi,\varphi_i)\mathcal{K}_i(u(\varphi_i))\Big\|\\ &\le {\mathscr{N}}_1 \|u_0\|+ {\mathscr{N}}_2 \|[u_1-g_1(0, u(0))]\|+\mathscr N_{1}a C_2(1+\mathfrak{p})+{\mathscr{N}}_2 \big[ \sqrt{a}\|b\|_{L^2(\mathfrak{L},\mathbb{R}^+)} + e\mathfrak{p}a\\ &\quad + \|\mathscr{B}\|\Psi a \big] +{\mathscr{N}}_1 \sum\limits_{i = 1}^m c_i + {\mathscr{N}}_2 \sum\limits_{i = 1}^m l_i : = l_\beta. \end{align*}

    Thus \Upsilon_\beta(\mathfrak{B}_\mathfrak{p}) is bounded in \mathscr{PC}(\mathfrak{L}, \mathcal{M}) .

    Step 2. Consider any u \in \mathfrak{B}_\mathfrak{p}, \ \sigma \in \Upsilon_\beta(u) . There exists h\in \mathbb{M}(u) , for every \varphi \in \mathfrak{L},

    \begin{align*} \sigma (\varphi)& = C(\varphi,0) u_0+ Q(\varphi,0)[u_1-g_1(0, u(0))]\\ & \quad+\int_0^\varphi C(\varphi,z) g_1(z, u(z))dz + \int_0^\varphi Q(\varphi,z)h(z)dz + \int_0^\varphi Q(\varphi,z)\mathscr{B}v(z)dz \\ & \quad+\sum\limits_{0 < \varphi_i < \varphi}C(\varphi,\varphi_i)\mathcal{L}_i(u(\varphi_i))+\sum\limits_{0 < \varphi_i < \varphi}Q(\varphi,\varphi_i)\mathcal{K}_i(u(\varphi_i)). \end{align*}

    Using \|v_\beta({t})\| as (4.2) and also from Theorem 3.1, Step 2, one can obtain that \{\Upsilon_\beta(u): u \in \mathfrak{B}_\mathfrak{p}\} is completely continuous.

    Step 3. Consider u_n \to u_* in \mathscr{PC}(\mathfrak{L}, \mathcal{M}), \ \sigma_n \in \Upsilon_\beta(u_n) and \sigma_n \to \sigma_* in \mathscr{PC}(\mathfrak{L}, \mathcal{M}) . We investigate \sigma_* \in \Upsilon_\beta(u_*) . Indeed, \sigma_n \in \Upsilon_\beta(u_n) exists only when h_n \in \mathbb{M}(u_n) such that

    \begin{align} {} \sigma_n (\varphi)& = C(\varphi,0) u_0+ Q(\varphi,0)[u_1-g_1(0, u(0))]\\ {} & \quad+\int_0^\varphi C(\varphi,z) g_1(z, u_n(z))dz + \int_0^\varphi Q(\varphi,z)h_n(z)dz + \int_0^\varphi Q(\varphi,z)\mathscr{B}\mathscr{B}^*Q^* (a,z)\mathscr{R}(\beta, \Upsilon_0^a)\\ {} & \quad (\times) \Big( u_a - C(a,0) u_0- Q(a,0)[u_1-g_1(0, u(0))]-\int_0^a C(a,\eta) g_1(\eta, u_n(\eta))d\eta \\ {} &\quad-\int_0^a Q(a,\eta)h_n(\eta)d\eta -\sum\limits_{0 < \varphi_i < a}C(a,\varphi_i)\mathcal{L}_i(u(\varphi_i))-\sum\limits_{0 < \varphi_i < a}Q(a,\varphi_i)\mathcal{K}_i(u(\varphi_i)) \Big)dz \\ & \quad+\sum\limits_{0 < \varphi_i < \varphi}C(\varphi,\varphi_i)\mathcal{L}_i(u(\varphi_i))+\sum\limits_{0 < \mathfrak{t}_i < \mathfrak{t}}Q(\varphi,\varphi_i)\mathcal{K}_i(u(\varphi_i)). \end{align} (4.3)

    From {\bf (A1)} , we will prove \{h_n\}_{n\ge 1} \subseteq L^2(\mathfrak{L}, \mathcal{M}) is bounded. Hence,

    \begin{align} h_n \to h_* \ \text{weakly in} \ L^2(\mathfrak{L},\mathcal{M}). \end{align} (4.4)

    From (4.3) and (4.4),

    \begin{align} {} \sigma_n (\varphi) &\to C(\varphi,0) u_0+ Q(\varphi,0)[z_1-g_1(0, z(0))]\\ {} & \quad+\int_0^\varphi C(\varphi,z) g_1(z, u_*(z))dz + \int_0^\varphi Q(\varphi,z)h_*(z)dz + \int_0^\varphi Q(\varphi,z)\mathscr{B}\mathscr{B}^*Q^* (a,z)\mathscr{R}(\beta, \Upsilon_0^a)\\ {} & \quad (\times) \Big( u_a - C(a,0) u_0- Q(a,0)[u_1-g_1(0, u(0))]-\int_0^a C(a,\eta) g_1(\eta, u_*(\eta))d\eta \\ {} &\quad-\int_0^a Q(a,\eta)h_*(\eta)d\eta -\sum\limits_{0 < \varphi_i < a}C(a,\varphi_i)\mathcal{L}_i(u(\varphi_i))-\sum\limits_{0 < \varphi_i < a}Q(a,\varphi_i)\mathcal{K}_i(u(\varphi_i)) \Big)dz \\ & \quad+\sum\limits_{0 < \varphi_i < \varphi}C(\varphi,\varphi_i)\mathcal{L}_i(u(\varphi_i))+\sum\limits_{0 < \varphi_i < \varphi}Q(\varphi,\varphi_i)\mathcal{K}_i(u(\varphi_i)). \end{align} (4.5)

    Clearly, \sigma_n \to \sigma_* in \mathscr{PC}(\mathfrak{L}, \mathcal{M}) and h_n\in \mathbb{M}(u_n) . According to Lemma 2.6 and (4.5), h_* \in \mathbb{M}(u_*) . Then, \sigma_* \in \Upsilon(u_*) , and this shows that \Upsilon has a closed graph. Hence, by using Proposition 3.12 of [36] implies that it is upper semicontinuous.

    Step 4. A priori estimate.

    By Steps 1–3, \Upsilon_\beta is convex valued, compact upper semicontinuous, \Upsilon_\beta(\mathfrak{B}_\mathfrak{p}) is a relatively compact set and meets Theorem 2.8, and

    \begin{align*} \mathbb{J} = \{u \in \mathscr{PC}(\mathfrak{L},\mathcal{M}) : \gamma u \in \Upsilon_\beta(u),\ \gamma > 1\}, \end{align*}

    is bounded.

    Consider u\in \mathbb{J} . Then there exists h\in \mathcal{M}(u) such that

    \begin{align*} u(\varphi)& = \gamma^{-1} C(\varphi,0) u_0 + \gamma^{-1} Q(\varphi,0)[u_1-g_1(0, u(0))]+\gamma^{-1} \int_0^\varphi C(\varphi,z) g_1(\varphi, u(\varphi)) dz\\ &\quad+\gamma^{-1} \int_0^\varphi Q(\varphi,z)h(z)dz +\gamma^{-1} \int_0^\varphi Q(\varphi,z) \mathscr{B}v_\beta(z)dz \\ &\quad + \gamma^{-1} \sum\limits_{0 < \varphi_i < \varphi} C(\varphi,\varphi_i)\mathcal{L}_i(u(\varphi_i))+\gamma^{-1} \sum\limits_{0 < \varphi_i < \varphi} Q(\varphi,\varphi_i)\mathcal{K}_i(u(\varphi_i)), \end{align*}

    and

    \begin{align*} v_\beta(\varphi)& = \mathscr{B}^*Q^* (a,z)\mathscr{R}(\beta, \Upsilon_0^a) \Big( u_a - C(a,0) u_0- Q(a,0)[u_1-g_1(0, u(0))]\\ &\quad-\int_0^a C(a,z) g_1(z, u(z))dz -\int_0^a Q(a,z)h(z)dz \\ &\quad-\sum\limits_{0 < \varphi_i < a}C(a,\varphi_i)\mathcal{L}_i(u(\varphi_i))-\sum\limits_{0 < \varphi_i < a}Q(a,\varphi_i)\mathcal{K}_i(u(\varphi_i)) \Big). \end{align*}

    Then from our assumptions,

    \begin{align} {} \|u(\varphi)\|_\mathcal{M} &\le \|C(\varphi,0) u_0\|+ \|Q(\varphi,0)[u_1-g_1(0, u(0))]\|+\|\int_0^\varphi C(\varphi,z) g_1(z, u(z))dz\|\\ &{} \quad+ \|\int_0^\varphi Q(\varphi,z)h(z)dz\| +\|\int_0^\varphi Q(\varphi,z)\mathscr{B}v_\beta(z)dz\|\\ &{} \quad+ \sum\limits_{0 < \varphi_i < \varphi} \|C(\varphi,\varphi_i)\mathcal{L}_i(u(\varphi_i))\|+ \sum\limits_{0 < \varphi_i < \varphi} \| Q(\varphi,\varphi_i)\mathcal{K}_i(u(\varphi_i))\| \\ &{} \le {\mathscr{N}}_1 \|z_0\|+ {\mathscr{N}}_2 \|[u_1-g_1(0, u(0))]\| + {\mathscr{N}}_1 \int_0^\varphi C_2(1+\|u(\varphi)\|) dz+ {\mathscr{N}}_2 \int_0^\varphi [b(z)+e\|u(z)\|\\ &{} \quad+\|\mathscr{B}\|\Bigg(\frac{{\mathscr{N}}_2 \|\mathscr{B}\|}{\beta} \Big[\|u_a\| + {\mathscr{N}}_1\|u_0\|+{\mathscr{N}}_2\|u_1-g_1(0, z(0))\| + a {\mathscr{N}}_1 C_2(1+\mathfrak{p})\\ & {} \quad+ {\mathscr{N}}_2 [\|b\|_{L^2(\mathfrak{L},\mathbb{R}^+)}\sqrt{a} +e\mathfrak{p}a] +{\mathscr{N}}_1 \sum\limits_{i = 1}^{m}c_i+ {\mathscr{N}}_2 \sum\limits_{i = 1}^{m}l_i \Big]\Bigg)dz \\ {} & \quad + {\mathscr{N}}_1 \sum\limits_{0 < \varphi_i < \varphi} \|\mathcal{L}_i(u(\varphi_i))\|+ {\mathscr{N}}_2 \sum\limits_{0 < \varphi_i < \varphi} \|\mathcal{K}_i(u(\varphi_i))\| \\ &\le \rho +\mathscr{K}_2\|u\|, \end{align} (4.6)

    where

    \begin{align*} \rho & = {\mathscr{N}}_1 \|u_0\|+ {\mathscr{N}}_2 \|[u_1-g_1(0, u(0))]\|+{\mathscr{N}}_1C_2a+ {\mathscr{N}}_2[\|b\|_{L^2(\mathfrak{L},\mathbb{R}^+)}]\sqrt{a}\\ &\quad+ \frac{{\mathscr{N}}_2^2 \|\mathscr{B}\|^2}{\beta}\Bigg (\|u_a\|+{\mathscr{N}}_1 \|u_0\|+ {\mathscr{N}}_2 \|[u_1-g_1(0, u(0))]\| \\ &\quad+{\mathscr{N}}_1C_2a+ {\mathscr{N}}_2[\|b\|_{L^2(\mathfrak{L},\mathbb{R}^+)}]\sqrt{a}\Bigg)+ {\mathscr{N}}_1 \sum\limits_{i = 1}^m c_i+{\mathscr{N}}_2 \sum\limits_{i = 1}^m l_i.\\ \mathscr{K}_2& = a({\mathscr{N}}_1 C_2 + {\mathscr{N}}_2e)\Bigg ( 1+ \frac{{\mathscr{N}}_2^2\|\mathscr{B}\|^2}{\beta}\Bigg). \end{align*}

    According to \mathscr{K}_2 < 1 and (4.6), we conclude,

    \begin{align*} \|u\| = \sup\limits_{\varphi \in \mathfrak{L}} \|u(\varphi)\| \le \rho+\mathscr{K}_2\|u\|,\ \text{and thus} \ \|u\| \le \frac{\rho}{1-\mathscr{K}_2} = :\ell_3. \end{align*}

    Therefore \mathbb{J} is bounded which leads to the conclusion that \Upsilon_\beta has a fixed point.

    Theorem 4.4. Suppose the conditions of the above theorem are satisfied. Then, if system (4.1) is approximately controllable on the set \mathfrak{L} , it follows that system (2.5) is also approximately controllable on \mathfrak{L} .

    Proof. By Theorem 4.3, \Upsilon_\beta, for all \beta > 0 , has a fixed point in \mathscr{PC}(\mathfrak{L}, \mathcal{M}) . Let u^\beta be a fixed point of \Upsilon_\beta in \mathscr{PC}(\mathfrak{L}, \mathcal{M}) . Clearly, \Upsilon_\beta is a mild solution of (2.5). Then, there exists h^\beta \in \mathbb{M}(u^\beta) such that for each \varphi \in \mathfrak{L} ,

    \begin{align*} u^\beta (\varphi)& = C(\varphi,0) u_0+ Q(\varphi,0)[u_1-g_1(0, u(0))]\\ {\nonumber} & \quad+\int_0^\varphi C(\varphi,z) g_1(z, u(z))dz + \int_0^\varphi Q(\varphi,z)h^\beta(z)dz + \int_0^\varphi Q(\varphi,z)\mathscr{B}\mathscr{B}^*Q^* (a,z)\mathscr{R}(\beta, \Upsilon_0^a)\\ {\nonumber} & \quad (\times) \Big( u_a - C(a,0) u_0- Q(a,0)[u_1-g_1(0, u(0))]-\int_0^a C(a,\eta) g_1(\eta, u(\eta))d\eta \\ {\nonumber} &\quad-\int_0^a Q(a,\eta)h^\beta(\eta)d\eta -\sum\limits_{0 < \varphi_i < a}C(a,\varphi_i)\mathcal{L}_i(u(\varphi_i))-\sum\limits_{0 < \varphi_i < a}Q(a,\varphi_i)\mathcal{K}_i(u(\varphi_i)) \Big)du \\ & \quad+\sum\limits_{0 < \varphi_i < \varphi}C(\varphi,\varphi_i)\mathcal{L}_i(u(\varphi_i))+\sum\limits_{0 < \varphi_i < \varphi}Q(\varphi,\varphi_i)\mathcal{K}_i(u(\varphi_i)). \end{align*}

    Since I-\Upsilon_0^a \mathscr{R}(\beta, \Upsilon_0^a) = \beta \mathscr{R}(\beta, \Upsilon_0^a) , we have u^\beta(a) = u_a-\beta \mathscr{R}(\beta, \Upsilon_0^a) \mathbb{E}(h^\beta) . From the above,

    \begin{align*} \mathbb{E}(h^ \beta)& = u_a - C(a,0) u_0- Q(a,0)[u_1-g_1(0, u(0))]-\int_0^a C(a,\eta) g_1(\eta, u(\eta))d\eta \\ {\nonumber} &\quad-\int_0^a Q(a,\eta)h^\beta(\eta)d\eta -\sum\limits_{0 < \varphi_i < a}C(a,\varphi_i)\mathcal{L}_i(u(\varphi_i))-\sum\limits_{0 < \varphi_i < a}Q(a,\varphi_i)\mathcal{K}_i(u(\varphi_i)). \end{align*}

    From the hypothesis (A1) and from Theorem 4.3, \|\partial H(\varphi, u)\| \le b(\varphi)+e\|u(\varphi)\| \le b(\varphi)+e\mathfrak{p} : = \nu(\varphi). Then,

    \begin{align*} \int_0^a \|h^\beta(z)\|dz \le \|\nu\|_{L^2(\mathfrak{L},\mathbb{R}^+)} \sqrt{a}. \end{align*}

    Consequently \{h^\beta\} is a bounded sequence in L^2(\mathfrak{L}, \mathcal{M}) . So, there exists a subsequence, \{h^\beta\} , which will converge weakly to h in L^2(\mathfrak{L}, \mathcal{M}) . It is expressed as

    \begin{align*} g& = u_a - C(a,0) u_0- Q(a,0)[u_1-g_1(0, u(0))]-\int_0^a C(a,\eta) g_1(\eta, u(\eta))d\eta \\ {\nonumber} &\quad-\int_0^a Q(a,\eta)h(\eta)d\eta -\sum\limits_{0 < \varphi_i < a}C(a,\varphi_i)\mathcal{L}_i(u(\varphi_i))-\sum\limits_{0 < \varphi_i < a}Q(a,\varphi_i)\mathcal{K}_i(u(\varphi_i)). \end{align*}

    Now,

    \begin{align} {}\|\mathbb{E}(h^\beta)-g\| = &\bigg\|\int_0^{a} \mathcal C(a,\eta) \big[g_1(\eta, y^{\beta}(\eta))-g_1(\eta, y(\eta))\big]d\eta\bigg\|+\bigg\|\int_0^{a} \mathcal S(a,\eta)[h^\beta(\eta)-h(\eta)]d\eta\bigg\| \\ \le& \mathcal M_{1} \sup\limits_{0 \le {\eta}\le a} \big[g_1(\eta, y^{\beta}(\eta))-g_1(\eta, y(\eta))\big]+ \mathcal M_{2} \sup\limits_{0 \le {\eta}\le a} [h^\beta(\eta)-h(\eta)]. \end{align} (4.7)

    From Step 2 in Theorem 4.3 and by the Arzel \grave{\text{a}} -Ascoli theorem, we get that the compactness of the right-hand side of (4.7) tends to zero as \beta \to 0^+ , which gives

    \begin{align*} \|u^\beta(a)-u_1\| & = \|\beta \mathscr{R}(\beta, \Upsilon_0^a)\mathbb{E}(h^\beta)\| \\ & \le\|\beta \mathscr{R}(\beta, \Upsilon_0^a)(g)\|+\|\mathbb{E}(h^\beta)-g\| \to 0,\ \text{as} \ \beta \to 0^+. \end{align*}

    Hence, (2.5) is approximately controllable on \mathfrak{L} .

    We utilize our theoretical findings on a concrete partial differential equation. We need to provide the required technological resources to accomplish our goals.

    Now, let us take

    \begin{align*} \mathcal A(\varphi) = \mathcal A+\tilde{\mathcal A}(\varphi), \end{align*}

    where \mathcal A is the infinitesimal generator of a cosine function C(\varphi) with associated sine function Q(t) , and \tilde{\mathcal A}(\varphi):D(\tilde{\mathcal A}(\varphi))\to \mathcal M is a closed linear operator with D\subset D(\tilde{\mathcal A}(\varphi)) , for all \varphi\in \mathfrak L . We take the space \mathcal M = L^{2}(\mathbb T, \mathbb C) , where the group \mathbb T is defined as the quotient \mathbb R/2\pi\mathbb Z , and we denote by L^{2}(\mathbb T, \mathbb C) the space of 2\pi periodic 2-integrable functions from \mathbb R to \mathbb C . Also, we use the identification between functions on \mathbb T and 2\pi periodic functions on \mathbb R . Furthermore, H^{2}(\mathbb T, \mathbb C) denotes the Sobolev space of 2\pi periodic from \mathbb R to \mathbb C such that u^{\prime\prime}\in L^{2}(\mathbb T, \mathbb C).

    We define \mathcal Au(\varphi) = u^{\prime\prime}(\varphi) with domain D(\mathcal A) = H^{2}(\mathbb T, \mathbb C) . Then, \mathcal A can be written as

    \mathcal A u = \sum\limits_{n = 1}^{\infty} - n^{2} \langle u , x_{n} \rangle x_{n}, u \in D(A),

    where x_{n}(\varphi) = \frac{1}{\sqrt{2\pi}}e^{in\varphi} (n\in\mathbb Z) is an orthonormal basis of \mathcal M . It is well known that \mathcal A is the infinitesimal generator of a strongly continuous cosine function C(\varphi) on \mathcal M . The cosine function C(\varphi) is given by

    C(\varphi)u = \sum\limits_{n = 1}^{\infty} \cos{n t} \langle u , x_{n} \rangle x_{n}, \; u \in \mathcal M, \; \varphi \in \mathbb {R}.

    The connected sine operator (Q(\varphi))_{\varphi \in \mathbb {R}} is

    Q(t) u = \sum\limits_{n = 1}^{\infty} \frac{\sin{n t}}{n} \langle u , x_{n} \rangle x_{n}, \; u \in \mathcal M, \;\varphi \in \mathbb {R}.

    It is clear that \|C(\varphi)\|\leq 1 for all \varphi\in \mathbb R , so it is uniformly bounded on \mathbb R .

    Assume the following second-order non-autonomous neutral differential system of the form:

    \begin{align} {} \frac{\partial}{\partial \varphi}\Big[\frac{\partial}{\partial \varphi} u(\varphi,\wp)-\hat{g}_1(\varphi, y(\varphi,\wp)\Big]& = \frac{\partial^2}{\partial q^2} u(\varphi,\wp)+\mathbb B(\varphi)\frac{\partial}{\partial \varphi} u(\varphi,\wp) \\& \quad +\mathscr{B}\tilde{v}(\varphi,\wp)+\phi(\varphi,u{} (\varphi,\wp)), \quad 0 < \varphi < a, \\ {} u(\varphi,0)& = u(\varphi,\pi) = 0, \ 0 < \varphi < a, \label{eg1} \\ {} u(0, \wp)& = u_0(\wp), \wp \in (0, \pi), \\ \frac{\partial}{\partial \varphi}y(0, \wp)& = u_1(\wp), \\ {} \Delta u(\varphi_k)(\wp)& = \int_0^{\varphi_k}b_k(\varphi_k - \varphi) u(\varphi,\wp)d\varphi,\\ {} \Delta \frac{\partial}{\partial \varphi} u(\varphi_k)(\wp)& = \int_0^{\varphi_k}b_k(\varphi_k - \varphi) u_1(\varphi,\wp)d\varphi,{} \end{align} (5.1)

    where \mathbb B:\mathbb R\to \mathbb R is a continuous function such that \sup_{\varphi\in [0, a]}\|\mathbb B(\varphi)\| = c_{0} , and u(\varphi, \wp) represents the temperature at \wp\in(0, \pi) and \varphi \in (0, a) . Let \phi(\varphi, u(\varphi, \wp)) = \phi_1(\xi_{1}, \varphi(\varphi, \wp))+\phi_2(\varphi, u(\varphi, \wp)) and \phi_2(\varphi, u(\varphi, \wp)) is the temperature function of the form -\phi_2(\varphi, u(\varphi, \wp))\in \partial H(\varphi, \wp, u(\varphi, \wp)), (\varphi, \wp)\in (0, a) \times (0, \pi) . Here, the nonsmooth and nonconvex function H = H(\varphi, \wp, k) is defined as a locally Lipschitz energy function. \partial H is the generalized Clarke's gradient in the third variable k [6]. Assume that H fulfills the assumptions (A1), H(k) = \min \{h_1(\nu), h_2(\nu)\} , and h_i = \mathbb {R} \to \mathbb {R}(i = 1, 2) are convex quadratic functions [16].

    Now we take \tilde{\mathcal A}(\varphi)u(\wp) = \mathbb B(\varphi)u(\wp) defined on H^{1}(\mathbb T, \mathbb C) . It is easy to see that \mathcal A(\varphi) = \mathcal A+\tilde{\mathcal A}(\varphi) is a closed linear operator. Initially, we will show that \mathcal A+\tilde{\mathcal A}(\varphi) generates an evolution operator. It is well known that the solution of the scalar initial value problem

    \begin{align*} p^{\prime\prime}(\varphi) = &-n^{2}p(\varphi)+q(\varphi), \\ p(s) = &\ 0,\ p^{\prime}(s) = \ p_{1}, \end{align*}

    is given by

    \begin{align*} p(t) = \frac{p_{1}}{n} \sin n(\varphi-z)+\frac{1}{n}\int_{z}^{\varphi} \sin n(\varphi-\imath)q(\imath)d\imath. \end{align*}

    Therefore, the solution of the scalar initial value problem

    \begin{align} p^{\prime\prime}(\varphi) = &-n^{2}p(\varphi)+in\mathbb B(\varphi)p(\varphi), \end{align} (5.2)
    \begin{align} p(z) = &\ 0,\ p^{\prime} (z) = p_{1}, \end{align} (5.3)

    satisfies the following equation:

    \begin{align*} p(\varphi) = \frac{p_{1}}{n}\sin n(\varphi-z)+i\int_{z}^{\varphi} \sin n(\varphi-\imath)\mathbb B(\imath)q(\imath)d\imath. \end{align*}

    By the Gronwall-Bellman lemma, we obtain

    \begin{align} |p(t)|\leq\frac{p_{1}}{n} e^{c(\varphi-z)} \end{align} (5.4)

    for z\leq \varphi and c is a constant. We denote by p_{n}(\varphi, z) the solution of (5.2)-(5.3). We define

    Q(\varphi, z) u = \sum\limits_{n = 1}^{\infty} p_{n}(\varphi,z) \langle u, x_{n} \rangle x_{n}, \; u \in \mathcal M, \;\varphi \in \mathbb {R}.

    It follows from the estimate (5.4) that Q(\varphi, z):\mathcal M\to \mathcal M is well defined and satisfies the condition of Definition 2.1. We set u(t) = u(\varphi, \cdot) , that is, u(\varphi)(\wp) = u(\varphi, \wp), \ \varphi\in \mathfrak L, \ \wp\in [0, \pi] . Then, we assume the infinite dimensional Hilbert space \mathscr{V} , and we have

    \begin{align*} \mathscr{V} = \bigg\{{v} :{v} \in \sum\limits_{\jmath = 1}^{\infty} {v}_\jmath x_\jmath \ \text{with} \ \sum\limits_{\jmath = 2}^\infty {v}_\jmath^2 < \infty\bigg\}, \end{align*}

    with \mathscr{V} as

    \begin{align*} \|{v}\|_{\mathscr{V}} = \big(\sum\limits_{\jmath = 2}^\infty {v}_\jmath^2 \big)^\frac{1}{2}. \end{align*}

    Let us define \mathscr{B} \in \mathcal{L}(\mathscr{V}, \mathcal M) as below:

    \begin{align*} \mathscr{B}v = 2v_2x_{1}+\sum\limits_{\jmath = 2}^{\infty} {v}_\jmath x_\jmath < \infty, \text{for all}\ {v} = \sum\limits_{\jmath = 2}^\infty {v}_\jmath x_\jmath \in \mathscr{V}. \end{align*}

    It continuous that

    \begin{align*} \mathscr{B}^*v = (2v+v_2)x_{2}+\sum\limits_{\jmath = 3}^\infty v_\jmath x_\jmath, \ \text{for all} \ v = \sum\limits_{\jmath = 2}^\infty v_\jmath x_\jmath \in \mathcal M. \end{align*}

    Assume these functions satisfy the requirements of the hypotheses. From the above choices of the functions and evolution operator \mathcal A(\varphi) with \mathscr B , system (5.1) can be formulated as system (2.5) in \mathcal M . Since all hypotheses of Theorem 4.4 are satisfied, the approximate controllability of system (5.1) on \mathfrak L follows from Theorem 4.4.

    The principles of approximate controllability of second-order differential impulsive systems with the impact of hemivariational inequalities are the main focus of this article. The generalized Clarke's subdifferential technique and multivalued maps were used to suggest and demonstrate the necessary requirements for existence and approximate controllability. In the future, we will extend the results with finite delay and stochastic systems.

    Yong-Ki Ma: Conceptualization, Methodology, Validation, Visualization, Writing–original draft. N. Valliammal: Conceptualization, Formal analysis, Methodology, Validation, Visualization, Writing–original draft. K. Jothimani: Conceptualization, Formal analysis, Investigation, Resources, Supervision, Writing–original draft. V. Vijayakumar: Conceptualization, Formal analysis, Resources, Supervision, Writing–original draft, Writing–Review & Editing. All authors have read and approved the final version of the manuscript for publication.

    This work was supported by the research grant of Kongju National University in 2024. The authors are immensely grateful to the anonymous referees for their careful reading of this paper and helpful comments, which have been very useful for improving the quality of this paper.

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.



    [1] A. Abdollahi, Commuting graphs of full matrix rings over finite fields, Linear Algebra Appl., 428 (2008), 2947–2954.
    [2] A. Mohammadian, On commuting graphs of finite matrix rings, Commun. Algebra, 38 (2010), 988–994.
    [3] S. Akbari, H. Bidkhori, A. Mohammadian, Commuting graphs of matrix algebras, Commun. Algebra, 36 (2008), 4020–4031.
    [4] D. Bundy, The connectivity of commuting graphs, J. Comb. Theory Ser. A, 113 (2006), 995–1007.
    [5] M. Herzog, P. Longobardi, M. Maj, On a commuting graph on conjugacy classes of groups, Commun. Algebra, 37 (2009), 3369–3387.
    [6] M. Mirzargar, P. P. Pach, A. R. Ashrafi, The automorphism group of commuting graph of a finite group, Bull. Korean Math. Soc., 51 (2014), 1145–1153.
    [7] M. Mirzargar, P. P. Pach, A. R. Ashrafi, Remarks on commuting graph of a finite group, Electron. Notes Discrete Math., 45 (2014), 103–106.
    [8] J. Zhou, Automorphisms of the commuting graph over 2\times2 matrix ring, Acta Sci. Nat. Univ. Sunyatseni, 55 (2016), 39–43.
    [9] B. R. McDonald, Finite rings with identity, New York: Marcel Dekker, Inc., 1974.
    [10] J. J. Rotman, An introduction to the theory of groups, 4 Eds., New York: Springer-Verlag, 1995.
    [11] T. Ceccherini-Silberstein, F. Scarabotti, F. Tolli, Representation theory and harmonic analysis of wreath products of finite groups, Cambridge University Press, 2014.
    [12] M. D. Neusel, L. Smith, Invariant theory of finite groups, American Mathematical Society, 2001.
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2513) PDF downloads(147) Cited by(0)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog