Let $ R $ be a ring with identity. The commuting graph of $ R $ is the graph associated to $ R $ whose vertices are non-central elements in $ R $, and distinct vertices $ A $ and $ B $ are adjacent if and only if $ AB = BA $. In this paper, we completely determine the automorphism group of the commuting graph of $ 2\times 2 $ matrix ring over $ \mathbb{Z}_{p^{s}} $, where $ \mathbb{Z}_{p^{s}} $ is the ring of integers modulo $ p^{s} $, $ p $ is a prime and $ s $ is a positive integer.
Citation: Hengbin Zhang. Automorphism group of the commuting graph of $ 2\times 2 $ matrix ring over $ \mathbb{Z}_{p^{s}} $[J]. AIMS Mathematics, 2021, 6(11): 12650-12659. doi: 10.3934/math.2021729
Let $ R $ be a ring with identity. The commuting graph of $ R $ is the graph associated to $ R $ whose vertices are non-central elements in $ R $, and distinct vertices $ A $ and $ B $ are adjacent if and only if $ AB = BA $. In this paper, we completely determine the automorphism group of the commuting graph of $ 2\times 2 $ matrix ring over $ \mathbb{Z}_{p^{s}} $, where $ \mathbb{Z}_{p^{s}} $ is the ring of integers modulo $ p^{s} $, $ p $ is a prime and $ s $ is a positive integer.
[1] | A. Abdollahi, Commuting graphs of full matrix rings over finite fields, Linear Algebra Appl., 428 (2008), 2947–2954. |
[2] | A. Mohammadian, On commuting graphs of finite matrix rings, Commun. Algebra, 38 (2010), 988–994. |
[3] | S. Akbari, H. Bidkhori, A. Mohammadian, Commuting graphs of matrix algebras, Commun. Algebra, 36 (2008), 4020–4031. |
[4] | D. Bundy, The connectivity of commuting graphs, J. Comb. Theory Ser. A, 113 (2006), 995–1007. |
[5] | M. Herzog, P. Longobardi, M. Maj, On a commuting graph on conjugacy classes of groups, Commun. Algebra, 37 (2009), 3369–3387. |
[6] | M. Mirzargar, P. P. Pach, A. R. Ashrafi, The automorphism group of commuting graph of a finite group, Bull. Korean Math. Soc., 51 (2014), 1145–1153. |
[7] | M. Mirzargar, P. P. Pach, A. R. Ashrafi, Remarks on commuting graph of a finite group, Electron. Notes Discrete Math., 45 (2014), 103–106. |
[8] | J. Zhou, Automorphisms of the commuting graph over $2\times2$ matrix ring, Acta Sci. Nat. Univ. Sunyatseni, 55 (2016), 39–43. |
[9] | B. R. McDonald, Finite rings with identity, New York: Marcel Dekker, Inc., 1974. |
[10] | J. J. Rotman, An introduction to the theory of groups, 4 Eds., New York: Springer-Verlag, 1995. |
[11] | T. Ceccherini-Silberstein, F. Scarabotti, F. Tolli, Representation theory and harmonic analysis of wreath products of finite groups, Cambridge University Press, 2014. |
[12] | M. D. Neusel, L. Smith, Invariant theory of finite groups, American Mathematical Society, 2001. |