Citation: Yan Ning, Daowei Lu. A critical point theorem for a class of non-differentiable functionals with applications[J]. AIMS Mathematics, 2020, 5(5): 4466-4481. doi: 10.3934/math.2020287
[1] | Rou Lin, Min Zhao, Jinlu Zhang . Random uniform exponential attractors for non-autonomous stochastic Schrödinger lattice systems in weighted space. AIMS Mathematics, 2023, 8(2): 2871-2890. doi: 10.3934/math.2023150 |
[2] | Ailing Ban . Asymptotic behavior of non-autonomous stochastic Boussinesq lattice system. AIMS Mathematics, 2025, 10(1): 839-857. doi: 10.3934/math.2025040 |
[3] | Xin Liu . Stability of random attractors for non-autonomous stochastic p-Laplacian lattice equations with random viscosity. AIMS Mathematics, 2025, 10(3): 7396-7413. doi: 10.3934/math.2025339 |
[4] | Xintao Li, Yunlong Gao . Random uniform attractors for fractional stochastic FitzHugh-Nagumo lattice systems. AIMS Mathematics, 2024, 9(8): 22251-22270. doi: 10.3934/math.20241083 |
[5] | Chunting Ji, Hui Liu, Jie Xin . Random attractors of the stochastic extended Brusselator system with a multiplicative noise. AIMS Mathematics, 2020, 5(4): 3584-3611. doi: 10.3934/math.2020233 |
[6] | Xintao Li, Lianbing She, Rongrui Lin . Invariant measures for stochastic FitzHugh-Nagumo delay lattice systems with long-range interactions in weighted space. AIMS Mathematics, 2024, 9(7): 18860-18896. doi: 10.3934/math.2024918 |
[7] | Hamood Ur Rehman, Aziz Ullah Awan, Sayed M. Eldin, Ifrah Iqbal . Study of optical stochastic solitons of Biswas-Arshed equation with multiplicative noise. AIMS Mathematics, 2023, 8(9): 21606-21621. doi: 10.3934/math.20231101 |
[8] | Xiaobin Yao . Random attractors for non-autonomous stochastic plate equations with multiplicative noise and nonlinear damping. AIMS Mathematics, 2020, 5(3): 2577-2607. doi: 10.3934/math.2020169 |
[9] | Xiao Bin Yao, Chan Yue . Asymptotic behavior of plate equations with memory driven by colored noise on unbounded domains. AIMS Mathematics, 2022, 7(10): 18497-18531. doi: 10.3934/math.20221017 |
[10] | Li Yang . Pullback random attractors of stochastic strongly damped wave equations with variable delays on unbounded domains. AIMS Mathematics, 2021, 6(12): 13634-13664. doi: 10.3934/math.2021793 |
Lattice dynamical systems arise from a variety of applications in electrical engineering, biology, chemical reaction, pattern formation and so on, see, e.g., [4,7,14,19,33]. Many researchers have discussed broadly the deterministic models in [6,12,34,39], etc. Stochastic lattice equations, driven by additive independent white noise, was discussed for the first time in [2], followed by extensions in [8,13,15,16,21,23,27,32,35,36,37,38,40].
In this paper, we will study the long term behavior of the following second order non-autonomous stochastic lattice system driven by additive white noise: for given τ∈R, t>τ and i∈Z,
{¨u+νA˙u+h(˙u)+Au+λu+f(u)=g(t)+a˙ω(t),u(τ)=(uτi)i∈Z=uτ,˙u(τ)=(u1τi)i∈Z=u1τ, | (1.1) |
where u=(ui)i∈Z is a sequence in l2, ν and λ are positive constants, ˙u=(˙ui)i∈Z and ¨u=(¨ui)i∈Z denote the fist and the second order time derivatives respectively, Au=((Au)i)i∈Z, A˙u=((A˙u)i)i∈Z, A is a linear operators defined in (2.2), a=(ai)i∈Z∈l2, f(u)=(fi(ui))i∈Z and h(˙u)=(hi(˙ui))i∈Z satisfy certain conditions, g(t)=(gi(t))i∈Z∈L2loc(R,l2) is a given time dependent sequence, and ω(t)=W(t,ω) is a two-sided real-valued Wiener process on a probability space.
The approximation we use in the paper was first proposed in [18,22] where the authors investigated the chaotic behavior of random equations driven by Gδ(θtω). Since then, their work was extended by many scholars. To the best of my knowledge, there are three forms of Wong-Zakai approximations Gδ(θtω) used recenly, Euler approximation of Brownian [3,10,17,20,25,28,29,30], Colored noise [5,11,26,31] and Smoothed approximation of Brownian motion by mollifiers [9]. In this paper, we will focus on Euler approximation of Brownian and compare the long term behavior of system (1.1) with pathwise deterministic system given by
{¨uδ+νA˙uδ+h(˙uδ)+Auδ+λuδ+f(uδ)=g(t)+aGδ(θtω),uδ(τ)=(uδτi)i∈Z=uδτ,˙uδ(τ)=(uδ,1τi)i∈Z=uδ,1τ, | (1.2) |
for δ∈R with δ≠0, τ∈R, t>τ and i∈Z, where Gδ(θtω) is defined in (3.2). Note that the solution of system (1.2) is written as uδ to show its dependence on δ.
This paper is organized as follows. In Section 2, we prove the existence and uniqueness of random attractors of system (1.1). Section 3 is devoted to consider the the Wong-Zakai approximations associated with system (1.1). In Section 4, we establish the convergence of solutions and attractors for approximate system (1.2) when δ→0.
Throughout this paper, the letter c and ci(i=1,2,…) are generic positive constants which may change their values from line to line.
In this section, we will define a continuous cocycle for second order non-autonomous stochastic lattice system (1.1), and then prove the existence and uniqueness of pullback attractors.
A standard Brownian motion or Wiener process (Wt)t∈R (i.e., with two-sided time) in R is a process with W0=0 and stationary independent increments satisfying Wt−Ws∼N(0,|t−s|I). F is the Borel σ-algebra induced by the compact-open topology of Ω, and P is the corresponding Wiener measure on (Ω,F), where
Ω={ω∈C(R,R):ω(0)=0}, |
the probability space (Ω,F,P) is called Wiener space. Define the time shift by
θtω(⋅)=ω(⋅+t)−ω(t),ω∈Ω, t∈R. |
Then (Ω,F,P,{θt}t∈R) is a metric dynamical system (see [1]) and there exists a {θt}t∈R-invariant subset ˜Ω⊆Ω of full measure such that for each ω∈Ω,
ω(t)t→0ast→±∞. | (2.1) |
For the sake of convenience, we will abuse the notation slightly and write the space ˜Ω as Ω.
We denote by
lp={u|u=(ui)i∈Z,ui∈R, ∑i∈Z|ui|p<+∞}, |
with the norm as
‖u‖pp=∑i∈Z|ui|p. |
In particular, l2 is a Hilbert space with the inner product (⋅,⋅) and norm ‖⋅‖ given by
(u,v)=∑i∈Zuivi,‖u‖2=∑i∈Z|ui|2, |
for any u=(ui)i∈Z, v=(vi)i∈Z∈l2.
Define linear operators B, B∗, and A acting on l2 in the following way: for any u=(ui)i∈Z∈l2,
(Bu)i=ui+1−ui,(B∗u)i=ui−1−ui, |
and
(Au)i=2ui−ui+1−ui−1. | (2.2) |
Then we find that A=BB∗=B∗B and (B∗u,v)=(u,Bv) for all u,v∈l2.
Also, we let Fi(s)=∫s0fi(r)dr, h(˙u)=(hi(˙ui))i∈Z, f(u)=(fi(ui))i∈Z with fi,hi∈C1(R,R) satisfy the following assumptions:
|fi(s)|≤α1(|s|p+|s|), | (2.3) |
sfi(s)≥α2Fi(s)≥α3|s|p+1, | (2.4) |
and
hi(0)=0,0<h1≤h′i(s)≤h2,∀s∈R, | (2.5) |
where p>1, αi and hj are positive constants for i=1,2,3 and j=1,2.
In addition, we let
β=h1λ4λ+h22,β<1ν, | (2.6) |
and
σ=h1λ√4λ+h22(h2+√4λ+h22). | (2.7) |
For any u,v∈l2, we define a new inner product and norm on l2 by
(u,v)λ=(1−νβ)(Bu,Bv)+λ(u,v),‖u‖2λ=(u,u)λ=(1−νβ)‖Bu‖2+λ‖u‖2. |
Denote
l2=(l2,(⋅,⋅),‖⋅‖),l2λ=(l2,(⋅,⋅)λ,‖⋅‖λ). |
Then the norms ‖⋅‖ and ‖⋅‖λ are equivalent to each other.
Let E=l2λ×l2 endowed with the inner product and norm
(ψ1,ψ2)E=(u(1),u(2))λ+(v(1),v(2)),‖ψ‖2E=‖u‖2λ+‖v‖2, |
for ψj=(u(j),v(j))T=((u(j)i),(v(j)i))Ti∈Z∈E, j=1,2,ψ=(u,v)T=((ui),(vi))Ti∈Z∈E.
A family D={D(τ,ω):τ∈R,ω∈Ω} of bounded nonempty subsets of E is called tempered (or subexponentially growing) if for every ϵ>0, the following holds:
lim |
where \|D\| = \mathop{\sup}\limits_{x\in D}\|x\|_{E} . In the sequel, we denote by \mathcal{D} the collection of all families of tempered nonempty subsets of E , i.e.,
\begin{equation} \nonumber \mathcal{D} = \{D = \{D(\tau,\omega):\tau\in\mathbb{R},\omega\in\Omega\}:D\; \text{is tempered in}\; E\}. \end{equation} |
The following conditions will be needed for g when deriving uniform estimates of solutions, for every \tau\in\mathbb{R} ,
\begin{equation} \int_{-\infty}^{\tau}e^{\gamma s}\|g(s)\|^{2}ds < \infty, \end{equation} | (2.8) |
and for any \varsigma > 0
\begin{equation} \lim\limits_{t\rightarrow -\infty}e^{\varsigma t}\int_{-\infty}^{0}e^{ \gamma s}\|g(s+t)\|^{2}ds = 0, \end{equation} | (2.9) |
where \gamma = \min\{\frac{\sigma}{2}, \frac{\alpha_{2}\beta}{p+1}\} .
Let \bar{v} = \dot{u}+\beta u and \bar{\varphi} = (u, \bar{v})^{T} , then system (1.1) can be rewritten as
\begin{eqnarray} \dot{\bar{\varphi}}+L_{1}(\bar{\varphi}) = H_{1}(\bar{\varphi})+G_{1}(\omega), \end{eqnarray} | (2.10) |
with initial conditions
\bar{\varphi}_{\tau} = (u_{\tau},\bar{v}_{\tau})^{T} = (u_{\tau},u_{\tau}^{1}+\beta u_{\tau})^{T}, |
where
L_{1}(\bar{\varphi}) = \left( \begin{array}{ccc} \beta u-\bar{v} \\ (1-\nu\beta)Au+\nu A\bar{v}+\lambda u +\beta^{2} u-\beta\bar{v} \end{array} \right) + \left( \begin{array}{ccc} 0 \\ h(\bar{v}-\beta u) \end{array} \right) , |
H_{1}(\bar{\varphi}) = \left( \begin{array}{ccc} 0 \\ -f(u)+g(t) \end{array} \right),\; \; \; \; G_{1}(\omega) = \left( \begin{array}{ccc} 0 \\ a\dot\omega(t) \end{array} \right) . |
Denote
v(t) = \bar{v}(t)-a\omega(t) \; \; \text{and}\; \; \varphi = (u,v)^{T}. |
By (2.10) we have
\begin{eqnarray} \dot{\varphi}+L(\varphi) = H(\varphi)+G(\omega), \end{eqnarray} | (2.11) |
with initial conditions
\varphi_{\tau} = (u_{\tau},v_{\tau})^{T} = (u_{\tau},u_{\tau}^{1}+\beta u_{\tau}-a\omega(\tau))^{T}, |
where
L(\varphi) = \left( \begin{array}{ccc} \beta u-v \\ (1-\nu\beta) Au+\nu Av+\lambda u+\beta^{2} u-\beta v \end{array} \right) + \left( \begin{array}{ccc} 0 \\ h(v-\beta u+a\omega(t)) \end{array} \right) , |
H(\varphi) = \left( \begin{array}{ccc} 0 \\ -f(u)+g(t) \end{array} \right),\; \; \; \; G(\omega) = \left( \begin{array}{ccc} a\omega(t)\\ \beta a\omega(t)-\nu Aa\omega(t) \end{array} \right) . |
Note that system (2.11) is a deterministic functional equation and the nonlinearity in (2.11) is locally Lipschitz continuous from E to E . Therefore, by the standard theory of functional differential equations, system (2.11) is well-posed. Thus, we can define a continuous cocycle \Phi_{0}:\mathbb{R}^{+}\times\mathbb{R}\times \Omega\times E\rightarrow E associated with system (2.10), where for \tau\in\mathbb{R} , t\in\mathbb{R}^{+} and \omega\in\Omega
\begin{equation} \begin{split}\nonumber \Phi_{0}(t,\tau,\omega,\bar{\varphi}_{\tau})& = \bar{\varphi}(t+\tau,\tau,\theta_{-\tau}\omega,\bar{\varphi}_{\tau})\\ & = (u(t+\tau,\tau,\theta_{-\tau}\omega,u_{\tau}),\bar{v}(t+\tau,\tau,\theta_{-\tau}\omega,\bar{v}_{\tau}))^{T}\\ & = (u(t+\tau,\tau,\theta_{-\tau}\omega,u_{\tau}),v(t+\tau,\tau,\theta_{-\tau}\omega,v_{\tau})+a(\omega(t)-\omega(-\tau)))^{T}\\ & = \varphi(t+\tau,\tau,\theta_{-\tau}\omega,\varphi_{\tau})+(0,a(\omega(t)-\omega(-\tau)))^{T}, \end{split} \end{equation} |
where v_{\tau} = \bar{v}_{\tau}+a\omega(-\tau) .
Lemma 2.1. Suppose that (2.3)–(2.8) hold. Then for every \tau\in\mathbb{R} , \omega\in\Omega , and T > 0 , there exists c = c(\tau, \omega, T) > 0 such that for all t\in[\tau, \tau+T] , the solution \varphi of system (2.11) satisfies
\begin{equation} \begin{split}\nonumber \|\varphi(t,\tau,\omega,\varphi_{\tau})\|^{2}_{E} +\int_{\tau}^{t}\|\varphi(s,\tau,\omega,\varphi_{\tau})\|^{2}_{E}ds \leq& c\int^{t}_{\tau}\big(\|g(s)\|^{2}+|\omega(s)|^{2}+| \omega(s)|^{p+1}\big)ds\\ &+c\big(\|\varphi_{\tau}\|^{2}_{E}+2\sum\limits_{i\in\mathbb{Z}} F_{i}(u_{\tau,i})\big). \end{split} \end{equation} |
Proof. Taking the inner product (\cdot, \cdot)_{E} on both side of the system (2.11) with \varphi , it follows that
\begin{equation} \begin{split} &\frac{1}{2}\frac{d}{dt}\|\varphi\|^{2}_{E}+(L(\varphi),\varphi)_{E} = (H(\varphi),\varphi)_{E}+(G(\omega),\varphi)_{E}. \end{split} \end{equation} | (2.12) |
For the second term on the left-hand side of (2.12), we have
\begin{equation} \begin{split}\nonumber (L(\varphi),\varphi)_{E} = \beta\|u\|^{2}_{\lambda}+\beta^{2}(u,v)-\beta\|v\|^{2}+\nu(Av,v)+(h(v-\beta u+a\omega(t)),v). \end{split} \end{equation} |
By the mean value theorem and (2.5), there exists \xi_{i}\in(0, 1) such that
\begin{equation} \begin{split}\nonumber &\beta^{2}(u,v)+(h(v-\beta u+a\omega(t)),v)\\ & = \beta^{2}(u,v) +\sum\limits_{i\in\mathbb{Z}}h'_{i}(\xi_{i}(v_{i}-\beta u_{i}+a_{i}\omega(t)))(v_{i}-\beta u_{i}+a_{i}\omega(t))v_{i}\\ &\geq (\beta^{2}-h_{2}\beta)\|u\|\|v\|+h_{1}\|v\|^{2}-h_{2}|(a\omega(t),v)|. \end{split} \end{equation} |
Then
\begin{equation} \begin{split}\nonumber (L(\varphi),\varphi)_{E}-\sigma\|\varphi\|^{2}_{E}-\frac{h_{1}}{2}\|v\|^{2} \geq &(\beta-\sigma)\|u\|^{2}_{\lambda}+(\frac{h_{1}}{2}-\beta-\sigma)\|v\|^{2}\\&- \frac{\beta h_{2}}{\sqrt{\lambda}}\|u\|_{\lambda}\|v\|-h_{2}|(a\omega(t),v)|, \end{split} \end{equation} |
which along with (2.6) and (2.7) implies that
\begin{equation} \begin{split} (L(\varphi),\varphi)_{E}\geq\sigma\|\varphi\|^{2}_{E}+\frac{h_{1}}{2}\|v\|^{2} -\frac{\sigma+h_{1}}{6}\|v\|^{2}-c|\omega(t)|^{2}\|a\|^{2}. \end{split} \end{equation} | (2.13) |
As to the first term on the right-hand side of (2.12), by (2.3) and (2.4) we get
\begin{equation} \begin{split} (H(\varphi),\varphi)_{E}& = (-f(u),\dot{u}+\beta u-a\omega(t))+(g(t),v)\\ &\leq-\frac{d}{dt}\big(\sum\limits_{i\in\mathbb{Z}}F_{i}(u_{i})\big)-\alpha_{2}\beta\sum\limits_{i\in\mathbb{Z}}F_{i}(u_{i}) +\alpha_{1}\sum\limits_{i\in\mathbb{Z}}(|u_{i}|^{p}+|u_{i}|)|a_{i}\omega(t)|+(g(t),v)\\ &\leq-\frac{d}{dt}\big(\sum\limits_{i\in\mathbb{Z}}F_{i}(u_{i})\big)-\frac{\alpha_{2}\beta}{p+1}\sum\limits_{i\in\mathbb{Z}}F_{i}(u_{i}) +c|\omega(t)|^{p+1}\|a\|^{p+1}\\ &\quad+\frac{\sigma\lambda}{4}\|u\|^{2}+c\|a\|^{2}|\omega(t)|^{2}+\frac{\sigma+h_{1}}{6}\|v\|^{2}+c\|g(t)\|^{2}. \end{split} \end{equation} | (2.14) |
The last term of (2.12) is bounded by
\begin{equation} \begin{split} (G(\omega),\varphi)_{E}& = \omega(t)(a,u)_{\lambda}+\beta \omega(t)(a,v)-\nu\omega(t)(Aa,v)\\ &\leq \frac{\sigma}{4}\|u\|^{2}_{\lambda}+\frac{1}{\sigma}\|a\|^{2}_{\lambda}|\omega(t)|^{2}+\frac{\sigma+h_{1}}{6}\|v\|^{2}+c|\omega(t)|^{2}\|a\|^{2}. \end{split} \end{equation} | (2.15) |
It follows from (2.12)–(2.15) that
\begin{equation} \begin{split} &\frac{d}{dt}\Big(\|\varphi\|_{E}^{2}+2\sum\limits_{i\in\mathbb{Z}} F_{i}(u_{i})\Big) +\gamma\Big(\|\varphi\|_{E}^{2}+2\sum\limits_{i\in\mathbb{Z}} F_{i}(u_{i})\Big)+\gamma\|\varphi\|_{E}^{2}\\ &\leq c\Big(\|g(t)\|^{2}+|\omega(t)|^{2}+|\omega(t)|^{p+1}\Big), \end{split} \end{equation} | (2.16) |
where \gamma = \min\{\frac{\sigma}{2}, \frac{\alpha_{2}\beta}{p+1}\} . Multiplying (2.16) by e^{\gamma t} and then integrating over (\tau, t) with t\geq\tau , we get for every \omega\in\Omega
\begin{equation} \begin{split} &\|\varphi(t,\tau,\omega,\varphi_{\tau})\|_{E}^{2} +\gamma\int^{t}_{\tau}e^{\gamma(s-t)}\|\varphi(s,\tau,\omega,\varphi_{\tau})\|_{E}^{2}ds\\ &\leq e^{\gamma(\tau-t)}\Big(\|\varphi_{\tau}\|_{E}^{2}+2\sum\limits_{i\in\mathbb{Z}} F_{i}(u_{\tau,i})\Big)+c\int^{t}_{\tau}e^{\gamma(s-t)}\Big(\|g(s)\|^{2}+|\omega(s)|^{2}+|\omega(s)|^{p+1}\Big)ds, \end{split} \end{equation} | (2.17) |
which implies desired result.
Lemma 2.2. Suppose that (2.3)–(2.9) hold. Then the continuous cocycle \Phi_{0} associated with system (2.10) has a closed measurable \mathcal{D} -pullback absorbing set K_{0} = \{K_{0}(\tau, \omega):\tau\in\mathbb{R}, \omega\in\Omega\}\in\mathcal{D} , where for every \tau\in\mathbb{R} and \omega\in\Omega
\begin{equation} \begin{split} K_{0}(\tau,\omega) = \{\bar{\varphi}\in E:\|\bar{\varphi}\|^{2}_{E}\leq R_{0}(\tau,\omega)\}, \end{split} \end{equation} | (2.18) |
where \bar{\varphi}_{\tau-t}\in D(\tau-t, \theta_{-t}\omega) and R_{0}(\tau, \omega) is given by
\begin{equation} \begin{split} R_{0}(\tau,\omega) = c+c|\omega(-\tau)|^{2}+c\int^{0}_{-\infty}e^{\gamma s}\Big(\|g(s+\tau)\|^{2}+|\omega(s)-\omega(-\tau)|^{2}+| \omega(s)-\omega(-\tau)|^{p+1}\Big)ds, \end{split} \end{equation} | (2.19) |
where c is a positive constant independent of \tau , \omega and \mathcal{D} .
Proof. By (2.17), we get for every \tau\in\mathbb{R} , t\in\mathbb{R}^{+} and \omega\in\Omega
\begin{equation} \begin{split} &\|\varphi(\tau,\tau-t,\theta_{-\tau}\omega,\varphi_{\tau-t})\|^{2}_{E}+\gamma\int_{\tau-t}^{\tau}e^{\gamma(s-\tau)}\|\varphi(s,\tau-t,\theta_{-\tau}\omega,\varphi_{\tau-t})\|^{2}_{E}ds\\ &\leq e^{-\gamma t}\Big(\|\varphi_{\tau-t}\|^{2}_{E}+2\sum\limits_{i\in\mathbb{Z}} F_{i}(u_{\tau-t,i})\Big)\\ &\quad +c\int^{\tau}_{\tau-t}e^{\gamma(s-\tau)}\Big(\|g(s)\|^{2}+|\omega(s-\tau)-\omega(-\tau)|^{2}+|\omega(s-\tau)-\omega(-\tau)|^{p+1}\Big)ds\\ &\leq e^{-\gamma t}\Big(\|\varphi_{\tau-t}\|^{2}_{E}+2\sum\limits_{i\in\mathbb{Z}} F_{i}(u_{\tau-t,i})\Big)\\ &\quad +c\int^{0}_{-t}e^{\gamma s}\Big(\|g(s+\tau)\|^{2}+|\omega(s)-\omega(-\tau)|^{2}+| \omega(s)-\omega(-\tau)|^{p+1}\Big)ds. \end{split} \end{equation} | (2.20) |
By (2.1) and (2.8), the last integral on the right-hand side of (2.20) is well defined. For any s\geq \tau-t ,
\begin{equation} \begin{split}\nonumber &\bar{\varphi}(s,\tau-t,\theta_{-\tau}\omega,\bar{\varphi}_{\tau-t}) = \varphi(s,\tau-t,\theta_{-\tau}\omega,\varphi_{\tau-t})+(0,a(\omega(s-\tau)-\omega(-\tau)))^{T}, \end{split} \end{equation} |
which along with (2.20) implies that
\begin{equation} \begin{split} &\|\bar{\varphi}(\tau,\tau-t,\theta_{-\tau}\omega,\bar{\varphi}_{\tau-t})\|^{2}_{E} +\gamma\int_{\tau-t}^{\tau}e^{\gamma(s-\tau)}\|\bar{\varphi}(s,\tau-t,\theta_{-\tau}\omega,\bar{\varphi}_{\tau-t})\|^{2}_{E}ds\\ &\leq2\|\varphi(\tau,\tau-t,\theta_{-\tau}\omega,\varphi_{\tau-t})\|^{2}_{E} +2\gamma\int_{\tau-t}^{\tau}e^{\gamma(s-\tau)}\|\varphi(s,\tau-t,\theta_{-\tau}\omega,\varphi_{\tau-t})\|^{2}_{E}ds\\ &\quad+2\|a\|^{2}\Big(|\omega(-\tau)|^{2}+\gamma\int_{\tau-t}^{\tau}e^{\gamma(s-\tau)}|\omega(s-\tau)-\omega(-\tau)|^{2}ds\Big)\\ &\leq 4e^{-\gamma t}\Big(\|\bar{\varphi}_{\tau-t}\|^{2}_{E}+\|a\|^{2}|\omega(-t)-\omega(-\tau)|^{2}+\sum\limits_{i\in\mathbb{Z}} F_{i}(u_{\tau-t,i})\Big)+c|\omega(-\tau)|^{2}\\ &\quad +c\int^{0}_{-\infty}e^{\gamma s}\Big(\|g(s+\tau)\|^{2}+|\omega(s)-\omega(-\tau)|^{2}+| \omega(s)-\omega(-\tau)|^{p+1}\Big)ds.\\ \end{split} \end{equation} | (2.21) |
By (2.3) and (2.4) we have
\begin{equation} \begin{split} \sum\limits_{i\in\mathbb{Z}} F_{i}(u_{\tau-t,i})\leq \frac{1}{\alpha_{2}}\sum\limits_{i\in\mathbb{Z}} f_{i}(u_{\tau-t,i})u_{\tau-t, i} \leq\frac{1}{\alpha_{2}}\max\limits_{-\|u_{\tau-t}\|\leq s\leq\|u_{\tau-t}\|}|f'_{i}(s)|\|u_{\tau-t}\|^{2}. \end{split} \end{equation} | (2.22) |
Using \bar{\varphi}_{\tau-t}\in D(\tau-t, \theta_{-t}\omega) , (2.1) and (2.22), we find
\begin{equation} \begin{split} \limsup\limits_{t\rightarrow +\infty}4e^{-\gamma t}\Big(\|\bar{\varphi}_{\tau-t}\|^{2}_{E}+\|a\|^{2}|\omega(-t)-\omega(-\tau)|^{2}+\sum\limits_{i\in\mathbb{Z}} F_{i}(u_{\tau-t,i})\Big) = 0, \end{split} \end{equation} | (2.23) |
which along with (2.21) implies that there exists T = T(\tau, \omega, D) > 0 such that for all t\geq T ,
\begin{equation} \begin{split} &\|\bar{\varphi}(\tau,\tau-t,\theta_{-\tau}\omega,\bar{\varphi}_{\tau-t})\|^{2}_{E} +\gamma\int_{\tau-t}^{\tau}e^{\gamma(s-\tau)}\|\bar{\varphi}(s,\tau-t,\theta_{-\tau}\omega,\bar{\varphi}_{\tau-t})\|^{2}_{E}ds\\ &\leq c+c|\omega(-\tau)|^{2}+c\int^{0}_{-\infty}e^{\gamma s}\Big(\|g(s+\tau)\|^{2}+|\omega(s)-\omega(-\tau)|^{2}+| \omega(s)-\omega(-\tau)|^{p+1}\Big)ds, \end{split} \end{equation} | (2.24) |
where c is a positive constant independent of \tau , \omega and D . Note that K_{0} given by (2.18) is closed measurable random set in E . Given \tau\in\mathbb{R} , \omega\in\Omega , and D\in\mathcal{D} , it follows from (2.24) that for all t\geq T ,
\begin{equation} \begin{split} \Phi_{0}(t,\tau-t,\theta_{-t}\omega,D(\tau-t,\theta_{-t}\omega))\subseteq K_{0}(\tau,\omega), \end{split} \end{equation} | (2.25) |
which implies that K_{0} pullback attracts all elements in \mathcal{D} . By (2.1) and (2.9), one can easily check that K_{0} is tempered, which along with (2.25) completes the proof.
Next, we will get uniform estimates on the tails of solutions of system (2.10).
Lemma 2.3. Suppose that (2.3)–(2.9) hold. Then for every \tau\in\mathbb{R} , \omega\in\Omega , D = \{D(\tau, \omega):\tau\in\mathbb{R}, \omega\in\Omega\}\in\mathcal{D} and \varepsilon > 0 , there exist T = T(\tau, \omega, D, \varepsilon) > 0 and N = N(\tau, \omega, \varepsilon) > 0 such that for all t\geq T , the solution \bar{\varphi} of system (2.10) satisfies
\begin{equation} \begin{split}\nonumber \sum\limits_{|i|\geq N}|\bar{\varphi}_{i}(\tau,\tau-t,\theta_{-\tau}\omega,\bar{\varphi}_{\tau-t,i})|_{E}^{2}\leq\varepsilon,\\ \end{split} \end{equation} |
where \bar{\varphi}_{\tau-t}\in D(\tau-t, \theta_{-t}\omega) and |\bar{\varphi}_{i}|_{E}^{2} = (1-\nu\beta)|Bu|_{i}^{2}+\lambda |u_{i}|^{2}+|\bar{v}_{i}|^{2} .
Proof. Let \eta be a smooth function defined on \mathbb{R}^{+} such that 0\leq\eta(s)\leq1 for all s\in\mathbb{R}^{+} , and
\begin{equation} \nonumber \eta(s) = \left\{\begin{array}{l} 0,\; \; 0\leq s\leq1;\\ 1,\; \; s\geq2. \end{array}\right. \end{equation} |
Then there exists a constant C_{0} such that |\eta'(s)|\leq C_{0} for s\in\mathbb{R}^{+} . Let k be a fixed positive integer which will be specified later, and set x = (x_{i})_{i\in\mathbb{Z}} , y = (y_{i})_{i\in\mathbb{Z}} with x_{i} = \eta(\frac{|i|}{k})u_{i} , y_{i} = \eta(\frac{|i|}{k})v_{i} . Note \psi = (x, y)^{T} = ((x_{i}), (y_{i}))^{T}_{i\in\mathbb{Z}} . Taking the inner product of system (2.11) with \psi , we have
\begin{equation} \begin{split} (\dot{\varphi},\psi)_{E}+(L(\varphi),\psi)_{E} = (H(\varphi),\psi)_{E}+(G,\psi)_{E}. \end{split} \end{equation} | (2.26) |
For the first term of (2.26), we have
\begin{equation} \begin{split} (\dot{\varphi},\psi)_{E}& = (1-\nu\beta)\sum\limits_{i\in\mathbb{Z}}(B\dot{u})_{i}(Bx)_{i}+\lambda\sum\limits_{i\in\mathbb{Z}}\dot{u}_{i}x_{i} +\sum\limits_{i\in\mathbb{Z}}\dot{v}_{i}y_{i}\\ & = \frac{1}{2}\frac{d}{dt}\sum\limits_{i\in\mathbb{Z}}\eta(\frac{|i|}{k})|\varphi_{i}|^{2}_{E} +(1-\nu\beta)\sum\limits_{i\in\mathbb{Z}}(B\dot{u})_{i}\Big((Bx)_{i}-\eta(\frac{|i|}{k})(Bu)_{i}\Big)\\ &\geq\frac{1}{2}\frac{d}{dt}\sum\limits_{i\in\mathbb{Z}}\eta(\frac{|i|}{k})|\varphi_{i}|^{2}_{E} -\frac{(1-\nu\beta)C_{0}}{k}\sum\limits_{i\in\mathbb{Z}}|(B(v-\beta u+a\omega(t))_{i}||u_{i+1}|\\ &\geq\frac{1}{2}\frac{d}{dt}\sum\limits_{i\in\mathbb{Z}}\eta(\frac{|i|}{k})|\varphi_{i}|^{2}_{E} -\frac{c}{k}\|\varphi\|^{2}_{E}-\frac{c}{k}|\omega(t)|^{2}\|a\|^{2}, \end{split} \end{equation} | (2.27) |
where |\varphi_{i}|_{E}^{2} = (1-\nu\beta)|Bu|_{i}^{2}+\lambda |u_{i}|^{2}+|v_{i}|^{2} . As to the second term on the left-hand side of (2.26), we get
\begin{equation} \begin{split}\nonumber (L(\varphi),\psi)_{E} = &\beta(1-\nu\beta)(Au,x)+(1-\nu\beta)((Au,y)-(Av,x))+\nu(Av,y)+\lambda\beta(u,x)\\ &+\beta^{2}(u,y)-\beta(v,y)+(h(v-\beta u+a\omega(t)),y). \end{split} \end{equation} |
It is easy to check that
\begin{equation} \begin{split}\nonumber (Au,x) = \sum\limits_{i\in\mathbb{Z}}(Bu)_{i}\Big(\eta(\frac{|i|}{k})(Bu)_{i}+(Bx)_{i}-\eta(\frac{|i|}{k})(Bu)_{i}\Big) \geq\sum\limits_{i\in\mathbb{Z}}\eta(\frac{|i|}{k})|Bu|_{i}^{2}-\frac{2C_{0}}{k}\|u\|^{2}, \end{split} \end{equation} |
\begin{equation} \begin{split}\nonumber (Av,y) = \sum\limits_{i\in\mathbb{Z}}(Bv)_{i}\Big(\eta(\frac{|i|}{k})(Bv)_{i}+(By)_{i}-\eta(\frac{|i|}{k})(Bv)_{i}\Big) \geq\sum\limits_{i\in\mathbb{Z}}\eta(\frac{|i|}{k})|Bv|_{i}^{2}-\frac{2C_{0}}{k}\|v\|^{2}, \end{split} \end{equation} |
and
\begin{equation} \begin{split}\nonumber (Au,y)-(Av,x)\geq-\frac{C_{0}}{k}\sum\limits_{i\in\mathbb{Z}}|(Bu)_{i}||v_{i+1}|-\frac{C_{0}}{k}\sum\limits_{i\in\mathbb{Z}}|(Bv)_{i}||u_{i+1}| \geq-\frac{2 C_{0}}{k}(\|u\|^{2}+\|v\|^{2}). \end{split} \end{equation} |
By the mean value theorem and (2.5), there exists \xi_{i}\in(0, 1) such that
\begin{equation} \begin{split}\nonumber &\beta^{2}(u,y)+(h(v-\beta u+a\omega(t)),y)\\ & = \beta^{2}\sum\limits_{i\in\mathbb{Z}}\eta(\frac{|i|}{k})u_{i}v_{i} +\sum\limits_{i\in\mathbb{Z}}h'_{i}(\xi_{i}(v_{i}-\beta u_{i}+a_{i}\omega(t)))(v_{i}-\beta u_{i}+a_{i}\omega(t))\eta(\frac{|i|}{k})v_{i}\\ &\geq \beta(\beta-h_{2})\sum\limits_{i\in\mathbb{Z}}\eta(\frac{|i|}{k})|u_{i}v_{i}|+h_{1}\sum\limits_{i\in\mathbb{Z}}\eta(\frac{|i|}{k})|v_{i}|^{2} -h_{2}\sum\limits_{i\in\mathbb{Z}}\eta(\frac{|i|}{k})|v_{i}a_{i}\omega(t)|. \end{split} \end{equation} |
Then
\begin{equation} \begin{split}\nonumber &(L(\varphi),\varphi)_{E}-\sigma\sum\limits_{i\in\mathbb{Z}}\eta(\frac{|i|}{k})|\varphi_{i}|^{2}_{E} -\frac{h_{1}}{2}\sum\limits_{i\in\mathbb{Z}}\eta(\frac{|i|}{k})|v_{i}|^{2}\\ &\geq (\beta-\sigma)\sum\limits_{i\in\mathbb{Z}}\eta(\frac{|i|}{k})\Big((1-\nu\beta)|Bu|_{i}^{2}+\lambda u_{i}^{2}\Big)+(\frac{h_{1}}{2}-\beta-\sigma)\sum\limits_{i\in\mathbb{Z}}\eta(\frac{|i|}{k})|v_{i}|^{2}\\ &\quad-\frac{\beta h_{2}}{\sqrt{\lambda}}\sum\limits_{i\in\mathbb{Z}}\eta(\frac{|i|}{k})|v_{i}|\Big((1-\nu\beta)(Bu)_{i}^{2}+\lambda| u_{i}|^{2}\Big)^{\frac{1}{2}}-h_{2}\sum\limits_{i\in\mathbb{Z}}\eta(\frac{|i|}{k})|v_{i}a_{i}\omega(t)|-\frac{c}{k}\|\varphi\|^{2}_{E}, \end{split} \end{equation} |
which along with (2.6) and (2.7) implies that
\begin{equation} \begin{split} (L(\varphi),\varphi)_{E}&\geq\sigma\sum\limits_{i\in\mathbb{Z}}\eta(\frac{|i|}{k})|\varphi_{i}|^{2}_{E}+ \frac{h_{1}}{2}\sum\limits_{i\in\mathbb{Z}}\eta(\frac{|i|}{k})|v_{i}|^{2}-\frac{c}{k}\|\varphi\|^{2}_{E}-h_{2}\sum\limits_{i\in\mathbb{Z}}\eta(\frac{|i|}{k})|v_{i}a_{i}\omega(t)|\\ &\geq\sigma\sum\limits_{i\in\mathbb{Z}}\eta(\frac{|i|}{k})|\varphi_{i}|^{2}_{E}+ \frac{h_{1}}{6}\sum\limits_{i\in\mathbb{Z}}\eta(\frac{|i|}{k})|v_{i}|^{2}-\frac{c}{k}\|\varphi\|^{2}_{E} -c\sum\limits_{i\in\mathbb{Z}}\eta(\frac{|i|}{k})|a_{i}|^{2}|\omega(t)|^{2}. \end{split} \end{equation} | (2.28) |
As to the first term on the right-hand side of (2.26), by (2.3) and (2.4)we get
\begin{equation} \begin{split} (H(\varphi),\psi)_{E}& = -\sum\limits_{i\in\mathbb{Z}}\eta(\frac{|i|}{k})f_{i}(u_{i})(\dot{u_{i}}+\beta u_{i}-a_{i}\omega(t))+\sum\limits_{i\in\mathbb{Z}}\eta(\frac{|i|}{k})g_{i}(t)v_{i}\\ &\leq-\frac{d}{dt}\big(\sum\limits_{i\in\mathbb{Z}}\eta(\frac{|i|}{k})F_{i}(u_{i})\big) -\frac{\alpha_{2}\beta}{p+1}\sum\limits_{i\in\mathbb{Z}}\eta(\frac{|i|}{k})F_{i}(u_{i})\\ &\quad+c\sum\limits_{i\in\mathbb{Z}}\eta(\frac{|i|}{k})|\omega(t)|^{p+1}|a_{i}|^{p+1} +\frac{\sigma\lambda}{4}\sum\limits_{i\in\mathbb{Z}}\eta(\frac{|i|}{k})|u_{i}|^{2}\\ &\quad+c\sum\limits_{i\in\mathbb{Z}}\eta(\frac{|i|}{k})|a_{i}|^{2}|\omega(t)|^{2} +\frac{\sigma}{6} \sum\limits_{i\in\mathbb{Z}}\eta(\frac{|i|}{k})|v_{i}|^{2} +c\sum\limits_{i\in\mathbb{Z}}\eta(\frac{|i|}{k})|g_{i}(t)|^{2}. \end{split} \end{equation} | (2.29) |
For the last term of (2.26), we have
\begin{equation} \begin{split} (G,\psi)_{E}& = \omega(t)(a,x)_{\lambda}+\beta \omega(t)(a,y)-\nu\omega(t)(Aa,y)\\ & = \omega(t)(1-\nu\beta)(Ba,Bx)-\nu\omega(t)(Ba,By)+\lambda\omega(t)(a,x)+\beta \omega(t)(a,y), \end{split} \end{equation} | (2.30) |
As to the first two terms on the right-hand side of (2.30), we get
\begin{equation} \begin{split} \omega(t)(1-\nu\beta)(Ba,Bx)& = \omega(t)(1-\nu\beta)\sum\limits_{i\in\mathbb{Z}}(a_{i+1}-a_{i})\Big(\eta(\frac{|i+1|}{k})u_{i+1}-\eta(\frac{|i|}{k})u_{i}\Big)\\ &\leq\Big(\sum\limits_{i\in\mathbb{Z}}\eta(\frac{|i+1|}{k})u_{i+1}^{2}\Big)^{\frac{1}{2}}\Big(\sum\limits_{i\in\mathbb{Z}}\eta(\frac{|i+1|}{k})\big(\omega(t)(1-\nu\beta)(a_{i+1}-a_{i})\big)^{2}\Big)^{\frac{1}{2}}\\ &\quad+\Big(\sum\limits_{i\in\mathbb{Z}}\eta(\frac{|i|}{k})u_{i}^{2}\Big)^{\frac{1}{2}}\Big(\sum\limits_{i\in\mathbb{Z}}\eta(\frac{|i|}{k})\big(\omega(t)(1-\nu\beta)(a_{i+1}-a_{i})\big)^{2}\Big)^{\frac{1}{2}}\\ &\leq \frac{\sigma\lambda}{8}\sum\limits_{i\in\mathbb{Z}}\eta(\frac{|i|}{k})u_{i}^{2}+c|\omega(t)|^{2}\sum\limits_{|i|\geq k}a_{i}^{2}, \end{split} \end{equation} | (2.31) |
and
\begin{equation} \begin{split} -\nu\omega(t)(Ba,By)& = -\nu\omega(t)\sum\limits_{i\in\mathbb{Z}}(a_{i+1}-a_{i})\Big(\eta(\frac{|i+1|}{k})v_{i+1}-\eta(\frac{|i|}{k})v_{i}\Big)\\ &\leq \frac{\sigma}{6}\sum\limits_{i\in\mathbb{Z}}\eta(\frac{|i|}{k})v_{i}^{2}+c|\omega(t)|^{2}\sum\limits_{|i|\geq k}a_{i}^{2}. \end{split} \end{equation} | (2.32) |
The last two terms of (2.30) is bounded by
\begin{equation} \begin{split} \lambda\omega(t)(a,x)+\beta \omega(t)(a,y)\leq \frac{\sigma\lambda}{8}\sum\limits_{i\in\mathbb{Z}}\eta(\frac{|i|}{k})u_{i}^{2}+\frac{\sigma+h_{1}}{6}\sum\limits_{i\in\mathbb{Z}}\eta(\frac{|i|}{k})v_{i}^{2} +c|\omega(t)|^{2}\sum\limits_{|i|\geq k}a_{i}^{2}. \end{split} \end{equation} | (2.33) |
It follows from (2.26)–(2.33) that
\begin{equation} \begin{split} &\frac{d}{dt}\Big(\sum\limits_{i\in\mathbb{Z}}\eta(\frac{|i|}{k})\big(|\varphi_{i}|_{E}^{2} +2 F_{i}(u_{i})\big)\Big) +\gamma\Big(\sum\limits_{i\in\mathbb{Z}}\eta(\frac{|i|}{k})\big(|\varphi_{i}|_{E}^{2} +2 F_{i}(u_{i})\big)\Big)+\gamma\sum\limits_{i\in\mathbb{Z}}\eta(\frac{|i|}{k})|\varphi|_{E}^{2}\\ &\leq\frac{c}{k}\|\varphi\|^{2}_{E}+\frac{c}{k}|\omega(t)|^{2} +c\sum\limits_{|i|\geq k}|a_{i}|^{p+1}|\omega(t)|^{p+1}+c\sum\limits_{|i|\geq k}|g_{i}(t)|^{2}+c\sum\limits_{|i|\geq k}|a_{i}|^{2}|\omega(t)|^{2}, \end{split} \end{equation} | (2.34) |
where \gamma = \min\{\frac{\sigma}{2}, \frac{\alpha_{2}\beta}{p+1}\} . Multiplying (2.34) by e^{\gamma t} , replacing \omega by \theta_{-\tau}\omega and integrating on (\tau-t, \tau) with t\in\mathbb{R}^{+} , we get for every \omega\in\Omega
\begin{equation} \begin{split} &\sum\limits_{i\in\mathbb{Z}}\eta(\frac{|i|}{k})\Big(|\varphi_{i}(\tau,\tau-t,\theta_{-\tau}\omega,\varphi_{\tau-t,i})|^{2}_{E} +2F_{i}(u_{i}(\tau,\tau-t,\theta_{-\tau}\omega,u_{\tau-t,i}))\Big)\\ &\leq e^{-\gamma t}\Big(\sum\limits_{i\in\mathbb{Z}}\eta(\frac{|i|}{k})\big(|\varphi_{\tau-t,i}|^{2}_{E}+2 F_{i}(u_{\tau-t,i})\big)\Big) +\frac{c}{k}\int^{\tau}_{\tau-t}e^{\gamma(s-\tau)}\|\varphi(s,\tau-t,\theta_{-\tau}\omega,\varphi_{\tau-t})\|^{2}_{E}ds\\ &\quad+\frac{c}{k}\int^{0}_{-\infty}e^{\gamma s}|\omega(s)-\omega(-\tau)|^{2}ds +c\sum\limits_{|i|\geq k}|a_{i}|^{p+1}\int_{-\infty}^{0}e^{\gamma s}|\omega(s)-\omega(-\tau)|^{p+1}ds\\ &\quad+c\sum\limits_{|i|\geq k}|a_{i}|^{2}\int_{-\infty}^{0}e^{\gamma s}|\omega(s)-\omega(-\tau)|^{2}ds+c\int_{-\infty}^{0}e^{\gamma s}\sum\limits_{|i|\geq k}|g_{i}(s+\tau)|^{2}ds. \end{split} \end{equation} | (2.35) |
For any s\geq \tau-t ,
\begin{equation} \begin{split}\nonumber &\bar{\varphi}(s,\tau-t,\theta_{-\tau}\omega,\bar{\varphi}_{\tau-t}) = \varphi(s,\tau-t,\theta_{-\tau}\omega,\varphi_{\tau-t})+(0,a(\omega(s-\tau)-\omega(-\tau)))^{T}, \end{split} \end{equation} |
which along with (2.35) implies that
\begin{equation} \begin{split} &\sum\limits_{i\in\mathbb{Z}}\eta(\frac{|i|}{k})\Big(|\bar{\varphi}_{i}(\tau,\tau-t,\theta_{-\tau}\omega,\bar{\varphi}_{\tau-t,i})|^{2}_{E} +2F_{i}(u_{i}(\tau,\tau-t,\theta_{-\tau}\omega,u_{\tau-t,i}))\Big)\\ &\leq 4e^{-\gamma t}\Big(\sum\limits_{i\in\mathbb{Z}}\eta(\frac{|i|}{k})\big(|\bar{\varphi}_{\tau-t,i}|^{2}_{E}+|a_{i}|^{2}|\omega(-t)-\omega(-\tau)|^{2}+ F_{i}(u_{\tau-t,i})\big)\Big)\\ &\quad+\frac{c}{k}\int^{\tau}_{\tau-t}e^{\gamma(s-\tau)}\|\bar{\varphi}(s,\tau-t,\theta_{-\tau}\omega,\bar{\varphi}_{\tau-t})\|^{2}_{E}ds+\frac{c}{k}\int^{0}_{-\infty}e^{\gamma s}|\omega(s)-\omega(-\tau)|^{2}ds\\ &\quad +c\sum\limits_{|i|\geq k}|a_{i}|^{p+1}\int_{-\infty}^{0}e^{\gamma s}|\omega(s)-\omega(-\tau)|^{p+1}ds+c\sum\limits_{|i|\geq k}|a_{i}|^{2}\int_{-\infty}^{0}e^{\gamma s}|\omega(s)-\omega(-\tau)|^{2}ds\\ &\quad+c\int_{-\infty}^{0}e^{\gamma s}\sum\limits_{|i|\geq k}|g_{i}(s+\tau)|^{2}ds+2\sum\limits_{|i|\geq k}|a_{i}|^{2}|\omega(-\tau)|^{2}. \end{split} \end{equation} | (2.36) |
By (2.1) and (2.8), the last four integrals in (2.36) are well defined. By (2.3) and (2.4), we obtain
\begin{equation} \begin{split}\nonumber \sum\limits_{i\in\mathbb{Z}}\eta(\frac{|i|}{k}) F_{i}(u_{i,\tau-t})\leq \frac{1}{\alpha_{2}}\sum\limits_{i\in\mathbb{Z}}\eta(\frac{|i|}{k}) f_{i}(u_{\tau-t,i})u_{\tau-t,i} \leq\frac{1}{\alpha_{2}}\max\limits_{-\|u_{\tau-t}\|\leq s\leq\|u_{\tau-t}\|}|f'_{i}(s)|\|u_{\tau-t}\|^{2}, \end{split} \end{equation} |
which along with \bar{\varphi}_{\tau-t}\in D(\tau-t, \theta_{-t}\omega) and (2.1) implies that
\begin{equation} \begin{split} \label{127}\nonumber \limsup\limits_{t\rightarrow +\infty}4e^{-\gamma t}\Big(\sum\limits_{i\in\mathbb{Z}}\eta(\frac{|i|}{k})\big(|\bar{\varphi}_{\tau-t,i}|^{2}_{E}+|a_{i}|^{2}|\omega(-t)-\omega(-\tau)|^{2}+ F_{i}(u_{\tau-t,i})\big)\Big) = 0. \end{split} \end{equation} |
Then there exists T_{1} = T_{1}(\tau, \omega, D, \varepsilon) > 0 such that for all t\geq T_{1} ,
\begin{equation} \begin{split} 4e^{-\gamma t}\Big(\sum\limits_{i\in\mathbb{Z}}\eta(\frac{|i|}{k})\big(|\bar{\varphi}_{\tau-t,i}|^{2}_{E}+|a_{i}|^{2}|\omega(-t)-\omega(-\tau)|^{2}+ F_{i}(u_{\tau-t,i})\big)\Big)\leq\frac{\varepsilon}{4}. \end{split} \end{equation} | (2.37) |
By (2.1) and (2.24), there exist T_{2} = T_{2}(\tau, \omega, D, \varepsilon) > T_{1} and N_{1} = N_{1}(\tau, \omega, \varepsilon) > 0 such that for all t\geq T_{2} and k\geq N_{1}
\begin{equation} \begin{split} \frac{c}{k}\int^{\tau}_{\tau-t}e^{\gamma(s-\tau)}\|\bar{\varphi}(s,\tau-t,\theta_{-\tau}\omega,\bar{\varphi}_{\tau-t})\|^{2}_{E}ds+\frac{c}{k}\int^{0}_{-\infty}e^{\gamma s}|\omega(s)-\omega(-\tau)|^{2}ds\leq\frac{\varepsilon}{4}. \end{split} \end{equation} | (2.38) |
By (2.8), there exists N_{2} = N_{2}(\tau, \omega, \varepsilon) > N_{1} such that for all k\geq N_{2} ,
\begin{equation} \begin{split} 2\sum\limits_{|i|\geq k}|a_{i}|^{2}|\omega(-\tau)|^{2}+c\int_{-\infty}^{0}e^{\gamma s}\sum\limits_{|i|\geq k}|g_{i}(s+\tau)|^{2}ds\leq\frac{\varepsilon}{4}. \end{split} \end{equation} | (2.39) |
By (2.1) again, we find that there exists N_{3} = N_{3}(\tau, \omega, \varepsilon) > N_{2} such that for all k\geq N_{3} ,
\begin{equation} \begin{split} c\sum\limits_{|i|\geq k}|a_{i}|^{p+1}\int_{-\infty}^{0}e^{\gamma s}|\omega(s)-\omega(-\tau)|^{p+1}ds +c\sum\limits_{|i|\geq k}|a_{i}|^{2}\int_{-\infty}^{0}e^{\gamma s}|\omega(s)-\omega(-\tau)|^{2}ds \leq\frac{\varepsilon}{4}. \end{split} \end{equation} | (2.40) |
Then it follows from (2.36)–(2.40) that for all t\geq T_{2} and k\geq N_{3}
\begin{equation} \begin{split}\nonumber \sum\limits_{|i|\geq 2k}|\bar{\varphi}_{i}(\tau,\tau-t,\theta_{-\tau}\omega,\bar{\varphi}_{\tau-t,i})|^{2}_{E} \leq\sum\limits_{i\in\mathbb{Z}}\eta(\frac{|i|}{k})|\bar{\varphi}_{i}(\tau,\tau-t,\theta_{-\tau}\omega,\bar{\varphi}_{\tau-t,i})|^{2}_{E} \leq\varepsilon. \end{split} \end{equation} |
This concludes the proof.
As a consequence of Lemma 2.2 and Lemma 2.3, we get the existence of \mathcal{D} -pullback attractors for \Phi_{0} immediately.
Theorem 2.1. Suppose that (2.3)–(2.9) hold. Then the continuous cocycle \Phi_{0} associated with system (2.10) has a unique \mathcal{D} -pullback attractors \mathcal{A}_{0} = \{\mathcal{A}_{0}(\tau, \omega):\tau\in\mathbb{R} , \omega\in\Omega\}\in \mathcal{D} in E .
In this section, we will approximate the solutions of system (1.1) by the pathwise Wong-Zakai approximated system (1.2). Given \delta\neq0 , define a random variable \mathcal{G}_{\delta} by
\begin{equation} \begin{split} \mathcal{G}_{\delta}(\omega) = \frac{\omega(\delta)}{\delta},\; \; \text{for all}\; \omega\in\Omega. \end{split} \end{equation} | (3.1) |
From (3.1) we find
\begin{equation} \begin{split} \mathcal{G}_{\delta}(\theta_{t}\omega) = \frac{\omega(t+\delta)-\omega(t)}{\delta}\; \; \text{and}\; \int_{0}^{t}\mathcal{G}_{\delta}(\theta_{s}\omega)ds = \int_{t}^{t+\delta}\frac{\omega(s)}{\delta}ds+\int_{\delta}^{0}\frac{\omega(s)}{\delta}ds. \end{split} \end{equation} | (3.2) |
By (3.2) and the continuity of \omega we get for all t\in\mathbb{R} ,
\begin{equation} \begin{split} \lim\limits_{\delta\rightarrow0}\int_{0}^{t}\mathcal{G}_{\delta}(\theta_{s}\omega)ds = \omega(t). \end{split} \end{equation} | (3.3) |
Note that this convergence is uniform on a finite interval as stated below.
Lemma 3.1. ([17]). Let \tau\in\mathbb{R} , \omega\in\Omega and T > 0 . Then for every \varepsilon > 0 , there exists \delta_{0} = \delta_{0}(\varepsilon, \tau, \omega, T) > 0 such that for all 0 < |\delta| < \delta_{0} and t\in[\tau, \tau+T] ,
\Big|\int_{0}^{t}\mathcal{G}_{\delta}(\theta_{s}\omega)ds-\omega(t)\Big| < \varepsilon. |
By Lemma 3.1, we find that there exist c = c(\tau, \omega, T) > 0 and \tilde{\delta}_{0} = \tilde{\delta}_{0}(\tau, \omega, T) > 0 such that for all 0 < |\delta| < \tilde{\delta}_{0} and t\in[\tau, \tau+T] ,
\begin{equation} \begin{split} \Big|\int_{0}^{t}\mathcal{G}_{\delta}(\theta_{s}\omega)ds\Big|\leq c. \end{split} \end{equation} | (3.4) |
By (3.3) we find that \mathcal{G}_{\delta}(\theta_{t}\omega) is an approximation of the white noise in a sense. This leads us to consider system (1.2) as an approximation of system (1.1).
Let \bar{v}^{\delta} = \dot{u}^{\delta}+\beta u^{\delta} and \bar{\varphi}_{\delta} = (u^{\delta}, \bar{v}^{\delta}) , the system (1.2) can be rewritten as
\begin{eqnarray} \dot{\bar{\varphi}}_{\delta}+L_{\delta,1}(\bar{\varphi}_{\delta}) = H_{\delta,1}(\bar{\varphi}_{\delta})+G_{\delta,1}(\omega), \end{eqnarray} | (3.5) |
with initial conditions
\bar{\varphi}_{\delta,\tau} = (u^{\delta}_{\tau},\bar{v}^{\delta}_{\tau})^{T} = (u_{\tau}^{\delta},u_{\tau}^{\delta,1}+\beta u_{\tau}^{\delta})^{T}, |
where
L_{\delta,1}(\bar{\varphi}) = \left( \begin{array}{ccc} \beta u^{\delta}-\bar{v}^{\delta} \\ (1-\nu\beta)Au^{\delta}+\nu A\bar{v}^{\delta}+\lambda u^{\delta} +\beta^{2} u^{\delta}-\beta\bar{v}^{\delta} \end{array} \right) + \left( \begin{array}{ccc} 0 \\ h(\bar{v}^{\delta}-\beta u^{\delta}) \end{array} \right) , |
H_{\delta,1}(\bar{\varphi_{\delta}}) = \left( \begin{array}{ccc} 0 \\ -f(u^{\delta})+g(t) \end{array} \right),\; \; \; \; G_{\delta,1}(\omega) = \left( \begin{array}{ccc} 0 \\ a\mathcal{G}_{\delta}(\theta_{t}\omega) \end{array} \right) . |
Denote
v^{\delta}(t) = \bar{v}^{\delta}(t)-a\int_{0}^{t}\mathcal{G}_{\delta}(\theta_{s}\omega)ds \; \; \text{and}\; \; \varphi_{\delta} = (u^{\delta},v^{\delta})^{T}. |
By (3.5) we have
\begin{eqnarray} \dot{\varphi}_{\delta}+L_{\delta}(\varphi_{\delta}) = H_{\delta}(\varphi_{\delta})+G_{\delta}(\omega), \end{eqnarray} | (3.6) |
with initial conditions
\varphi_{\delta,\tau} = (u^{\delta}_{\tau},v^{\delta}_{\tau})^{T} = (u^{\delta}_{\tau},u_{\tau}^{\delta,1}+\beta u^{\delta}_{\tau}-a\int_{0}^{\tau}\mathcal{G}_{\delta}(\theta_{s}\omega)ds)^{T}, |
where
L_{\delta}(\varphi_{\delta}) = \left( \begin{array}{ccc} \beta u^{\delta}-v^{\delta} \\ (1-\nu\beta) Au^{\delta}+\nu Av^{\delta}+\lambda u^{\delta}+\beta^{2} u^{\delta}-\beta v^{\delta} \end{array} \right) + \left( \begin{array}{ccc} 0 \\ h(v^{\delta}-\beta u^{\delta}+a\int_{0}^{t}\mathcal{G}_{\delta}(\theta_{s}\omega)ds) \end{array} \right) , |
H_{\delta}(\varphi_{\delta}) = \left( \begin{array}{ccc} 0 \\ -f(u^{\delta})+g(t) \end{array} \right),\; \; \; \; G_{\delta}(\omega) = \left( \begin{array}{ccc} a\int_{0}^{t}\mathcal{G}_{\delta}(\theta_{s}\omega)ds\\ \beta a\int_{0}^{t}\mathcal{G}_{\delta}(\theta_{s}\omega)ds-\nu Aa\int_{0}^{t}\mathcal{G}_{\delta}(\theta_{s}\omega)ds \end{array} \right) . |
Note that system (3.6) is a deterministic functional equation and the nonlinearity in (3.6) is locally Lipschitz continuous from E to E . Therefore, by the standard theory of functional differential equations, system (3.6) is well-posed. Thus, we can define a continuous cocycle \Phi_{\delta}:\mathbb{R}^{+}\times\mathbb{R}\times \Omega\times E\rightarrow E associated with system (3.5), where for \tau\in\mathbb{R} , t\in\mathbb{R}^{+} and \omega\in\Omega
\begin{equation} \begin{split}\nonumber \Phi_{\delta}(t,\tau,\omega,\bar{\varphi}_{\delta,\tau})& = \bar{\varphi}_{\delta}(t+\tau,\tau,\theta_{-\tau}\omega,\bar{\varphi}_{\delta,\tau})\\ & = (u^{\delta}(t+\tau,\tau,\theta_{-\tau}\omega,u^{\delta}_{\tau}),\bar{v}^{\delta}(t+\tau,\tau,\theta_{-\tau}\omega,\bar{v}^{\delta}_{\tau}))^{T}\\ & = \Big(u^{\delta}(t+\tau,\tau,\theta_{-\tau}\omega,u^{\delta}_{\tau}),v^{\delta}(t+\tau,\tau,\theta_{-\tau}\omega,v^{\delta}_{\tau})+a\int_{-\tau}^{t}\mathcal{G}_{\delta}(\theta_{s}\omega)ds\Big)^{T}\\ & = \varphi_{\delta}(t+\tau,\tau,\theta_{-\tau}\omega,\varphi_{\delta,\tau})+\Big(0,a\int_{-\tau}^{t}\mathcal{G}_{\delta}(\theta_{s}\omega)ds\Big)^{T}, \end{split} \end{equation} |
where v_{\tau}^{\delta} = \bar{v}_{\tau}^{\delta}-a\int_{-\tau}^{0}\mathcal{G}_{\delta}(\theta_{s}\omega)ds .
For later purpose, we now show the estimates on the solutions of system (3.6) on a finite time interval.
Lemma 3.2. Suppose that (2.3)–(2.8) hold. Then for every \tau\in\mathbb{R} , \omega\in\Omega , and T > 0 , there exist \delta_{0} = \delta_{0}(\tau, \omega, T) > 0 and c = c(\tau, \omega, T) > 0 such that for all 0 < |\delta| < \delta_{0} and t\in[\tau, \tau+T] , the solution \varphi_{\delta} of system (3.6) satisfies
\begin{equation} \begin{split}\nonumber &\|\varphi_{\delta}(t,\tau,\omega,\varphi_{\delta,\tau})\|^{2}_{E} +\int_{\tau}^{t}\|\varphi_{\delta}(s,\tau,\omega,\varphi_{\delta,\tau})\|^{2}_{E}ds\leq c\Big(\|\varphi_{\delta,\tau}\|^{2}_{E}+2\sum\limits_{i\in\mathbb{Z}}F_{i}(u^{\delta}_{\tau,i})\Big)\\ &\quad+ c\int^{t}_{\tau}\Big(\|g(s)\|^{2}+|\int_{0}^{s}\mathcal{G}_{\delta}(\theta_{l}\omega)dl|^{2}+|\int_{0}^{s}\mathcal{G}_{\delta}(\theta_{l}\omega)dl|^{p+1}|\Big)ds. \end{split} \end{equation} |
Proof. Taking the inner product (\cdot, \cdot)_{E} on both side of the system (3.6) with \varphi_{\delta} , it follows that
\begin{equation} \begin{split} &\frac{1}{2}\frac{d}{dt}\|\varphi_{\delta}\|^{2}_{E}+(L_{\delta}(\varphi_{\delta}),\varphi_{\delta})_{E} = (H_{\delta}(\varphi_{\delta}),\varphi_{\delta})_{E}+(G_{\delta}(\omega),\varphi_{\delta})_{E}. \end{split} \end{equation} | (3.7) |
By the similar calculations in (2.13)–(2.15), we get
\begin{equation} \begin{split} (L_{\delta}(\varphi_{\delta}),\varphi_{\delta})_{E}\geq\sigma\|\varphi_{\delta}\|^{2}_{E}+\frac{h_{1}}{2}\|v^{\delta}\|^{2} -\frac{\sigma+h_{1}}{6}\|v^{\delta}\|^{2}-c|\int_{0}^{t}\mathcal{G}_{\delta}(\theta_{s}\omega)ds|^{2}\|a\|^{2}, \end{split} \end{equation} | (3.8) |
\begin{equation} \begin{split} (H_{\delta}(\varphi_{\delta}),\varphi_{\delta})_{E} &\leq-\frac{d}{dt}(\sum\limits_{i\in\mathbb{Z}}F_{i}(u^{\delta}_{i}))-\frac{\alpha_{2}\beta}{p+1}\sum\limits_{i\in\mathbb{Z}}F_{i}(u^{\delta}_{i}) +c|\int_{0}^{t}\mathcal{G}_{\delta}(\theta_{s}\omega)ds|^{p+1}\|a\|^{p+1}\\ &\quad+\frac{\sigma\lambda}{4}\|u^{\delta}\|^{2}+c\|a\|^{2}|\int_{0}^{t}\mathcal{G}_{\delta}(\theta_{s}\omega)ds|^{2}+c\|g(t)\|^{2}+\frac{\sigma+h_{1}}{6}\|v^{\delta}\|^{2}, \end{split} \end{equation} | (3.9) |
and
\begin{equation} \begin{split} (G_{\delta}(\omega),\varphi_{\delta})_{E}\leq \frac{\sigma}{4}\|u^{\delta}\|^{2}_{\lambda} +c\|a\|^{2}|\int_{0}^{t}\mathcal{G}_{\delta}(\theta_{s}\omega)ds|^{2}+\frac{\sigma+h_{1}}{6}\|v^{\delta}\|^{2}. \end{split} \end{equation} | (3.10) |
It follows from (3.7)–(3.10) that
\begin{equation} \begin{split} &\frac{d}{dt}\Big(\|\varphi_{\delta}\|_{E}^{2}+2\sum\limits_{i\in\mathbb{Z}}F_{i}(u_{i}^{\delta})\Big) +\gamma\Big(\|\varphi_{\delta}\|_{E}^{2}+2\sum\limits_{i\in\mathbb{Z}}F_{i}(u_{i}^{\delta})\Big) +\gamma\|\varphi_{\delta}\|_{E}^{2}\\ &\leq c\Big(\|g(t)\|^{2}+|\int_{0}^{t}\mathcal{G}_{\delta}(\theta_{s}\omega)ds|^{2}+|\int_{0}^{t}\mathcal{G}_{\delta}(\theta_{s}\omega)ds|^{p+1}\Big), \end{split} \end{equation} | (3.11) |
where \gamma = \min\{\frac{\sigma}{2}, \frac{\alpha_{2}\beta}{p+1}\} . Multiplying (3.11) by e^{\gamma t} and integrating on (\tau, t) with t\geq\tau , we get for every \omega\in\Omega
\begin{equation} \begin{split}\nonumber &\|\varphi_{\delta}(t,\tau,\omega,\varphi_{\delta,\tau})\|_{E}^{2} +\gamma\int^{t}_{\tau}e^{\gamma(s-t)}\|\varphi_{\delta}(s,\tau,\omega,\varphi_{\delta,\tau})\|_{E}^{2}ds\leq e^{\gamma(\tau-t)}\Big(\|\varphi_{\delta,\tau}\|_{E}^{2}+2\sum\limits_{i\in\mathbb{Z}}F_{i}(u_{\tau,i}^{\delta})\Big)\\ &\quad+c\int_{\tau}^{t}e^{\gamma(s-t)}\Big(\|g(s)\|^{2}+|\int_{0}^{s}\mathcal{G}_{\delta}(\theta_{l}\omega)dl|^{2}+|\int_{0}^{s}\mathcal{G}_{\delta}(\theta_{l}\omega)dl|^{p+1}\Big)ds, \end{split} \end{equation} |
which implies the desired result.
In what follows, we derive uniform estimates on the solutions of system (3.5) when t is sufficiently large.
Lemma 3.3. Suppose that (2.3)–(2.8) hold. Then for every \delta\neq0 , \tau\in\mathbb{R} , \omega\in\Omega , and D = \{D(\tau, \omega):\tau\in\mathbb{R}, \omega\in\Omega\}\in\mathcal{D} , there exists T = T(\tau, \omega, D, \delta) > 0 such that for all t\geq T , the solution \bar{\varphi}_{\delta} of system (3.5) satisfies
\begin{equation} \begin{split}\nonumber &\|\bar{\varphi}_{\delta}(\tau,\tau-t,\theta_{-\tau}\omega,\bar{\varphi}_{\delta,\tau-t})\|^{2}_{E} +\gamma\int_{\tau-t}^{\tau}e^{\gamma(s-\tau)}\|\bar{\varphi}_{\delta}(s,\tau-t,\theta_{-\tau}\omega,\bar{\varphi}_{\delta,\tau-t})\|^{2}_{E}ds\leq R_{\delta}(\tau,\omega), \end{split} \end{equation} |
where \bar{\varphi}_{\delta, \tau-t}\in D(\tau-t, \theta_{-t}\omega) and R_{\delta}(\tau, \omega) is given by
\begin{equation} \begin{split} R_{\delta}(\tau,\omega) = &c\int^{0}_{-\infty}e^{\gamma s}\Big(\|g(s+\tau)\|^{2}+|\int_{-\tau}^{s}\mathcal{G}_{\delta}(\theta_{l}\omega)dl|^{2} +|\int_{-\tau}^{s}\mathcal{G}_{\delta}(\theta_{l}\omega)dl|^{p+1}\Big)ds\\ &+c+c|\int_{-\tau}^{0}\mathcal{G}_{\delta}(\theta_{l}\omega)dl|^{2}, \end{split} \end{equation} | (3.12) |
where c is a positive constant independent of \tau , \omega and \delta .
Proof. Multiplying (3.11) by e^{\gamma t} , replacing \omega by \theta_{-\tau}\omega and integrating on (\tau-t, \tau) with t\in\mathbb{R}^{+} , we get for every \omega\in\Omega
\begin{equation} \begin{split} &\|\varphi_{\delta}(\tau,\tau-t,\theta_{-\tau}\omega,\varphi_{\delta,\tau-t})\|^{2}_{E}+2\sum\limits_{i\in\mathbb{Z}} F_{i}(u_{i}^{\delta}(\tau,\tau-t,\theta_{-\tau}\omega,u^{\delta}_{\tau-t,i}))\\ &\quad+\gamma\int_{\tau-t}^{\tau}e^{\gamma(s-\tau)}\|\varphi_{\delta}(s,\tau-t,\theta_{-\tau}\omega,\varphi_{\delta,\tau-t})\|^{2}_{E}ds\\ &\leq e^{-\gamma t}\Big(\|\varphi_{\delta,\tau-t}\|^{2}_{E}+2\sum\limits_{i\in\mathbb{Z}} F_{i}(u_{\tau-t,i}^{\delta})\Big)\\ &\quad +c\int^{0}_{-\infty}e^{\gamma s}\Big(\|g(s+\tau)\|^{2}+|\int_{-\tau}^{s}\mathcal{G}_{\delta}(\theta_{l}\omega)dl|^{2}+|\int_{-\tau}^{s}\mathcal{G}_{\delta}(\theta_{l}\omega)dl|^{p+1}\Big)ds. \end{split} \end{equation} | (3.13) |
By (2.1), (2.8) and (3.2), the last integral on the right-hand side of (3.13) is well defined. For any s\geq \tau-t ,
\begin{equation} \begin{split}\nonumber &\bar{\varphi}_{\delta}(s,\tau-t,\theta_{-\tau}\omega,\bar{\varphi}_{\delta,\tau-t}) = \varphi_{\delta}(s,\tau-t,\theta_{-\tau}\omega,\varphi_{\delta,\tau-t})+\Big(0,a\int_{0}^{s}\mathcal{G}_{\delta}(\theta_{l-\tau}\omega)dl\Big)^{T}, \end{split} \end{equation} |
which along with (3.13) shows that
\begin{equation} \begin{split} &\|\bar{\varphi}_{\delta}(\tau,\tau-t,\theta_{-\tau}\omega,\bar{\varphi}_{\delta,\tau-t})\|^{2}_{E} +\gamma\int_{\tau-t}^{\tau}e^{\gamma(s-\tau)}\|\bar{\varphi}_{\delta}(s,\tau-t,\theta_{-\tau}\omega,\bar{\varphi}_{\tau-t})\|^{2}_{E}ds\\ &\leq 4e^{-\gamma t}\Big(\|\bar{\varphi}_{\delta,\tau-t}\|^{2}_{E}+\|a\|^{2}|\int_{-\tau}^{-t}\mathcal{G}_{\delta}(\theta_{l}\omega)dl|^{2}+\sum\limits_{i\in\mathbb{Z}} F_{i}(u_{\tau-t,i})\Big)+c|\int_{-\tau}^{0}\mathcal{G}_{\delta}(\theta_{l}\omega)dl|^{2}\\ &\quad+c\int^{0}_{-\infty}e^{\gamma s}\Big(\|g(s+\tau)\|^{2}+|\int_{-\tau}^{s}\mathcal{G}_{\delta}(\theta_{l}\omega)dl|^{2} +| \int_{-\tau}^{s}\mathcal{G}_{\delta}(\theta_{l}\omega)dl|^{p+1}\Big)ds, \end{split} \end{equation} | (3.14) |
Note that (2.3) and (2.4) implies that
\begin{equation} \begin{split}\nonumber \sum\limits_{i\in\mathbb{Z}} F_{i}(u_{\tau-t,i}^{\delta})\leq \frac{1}{\alpha_{2}}\sum\limits_{i\in\mathbb{Z}} f_{i}(u_{\tau-t,i}^{\delta})u_{\tau-t,i}^{\delta} \leq\frac{1}{\alpha_{2}}\max\limits_{-\|u_{\tau-t}^{\delta}\|\leq s\leq\|u_{\tau-t}^{\delta}\|}|f'_{i}(s)|\|u_{\tau-t}^{\delta}\|^{2}, \end{split} \end{equation} |
which along with \bar{\varphi}_{\delta, \tau-t}\in D(\tau-t, \theta_{-t}\omega) , (2.1) and (3.2) implies that
\begin{equation} \begin{split} \limsup\limits_{t\rightarrow +\infty}4e^{-\gamma t}\Big(\|\bar{\varphi}_{\delta,\tau-t}\|^{2}_{E}+\|a\|^{2}|\int_{-\tau}^{-t}\mathcal{G}_{\delta}(\theta_{l}\omega)dl|^{2}+\sum\limits_{i\in\mathbb{Z}} F_{i}(u_{\tau-t,i})\Big) = 0. \end{split} \end{equation} | (3.15) |
Then (3.14) and (3.15) can imply the desired estimates.
Next, we show that system (3.5) has a \mathcal{D} -pullback absorbing set.
Lemma 3.4. Suppose that (2.3)–(2.9) hold. Then the continuous cocycle \Phi_{\delta} associated with system (3.5) has a closed measurable \mathcal{D} -pullback absorbing set K_{\delta} = \{K_{\delta}(\tau, \omega):\tau\in\mathbb{R}, \omega\in\Omega\}\in\mathcal{D} , where for every \tau\in\mathbb{R} and \omega\in\Omega
\begin{equation} \begin{split} K_{\delta}(\tau,\omega) = \{\bar{\varphi}_{\delta}\in E:\|\bar{\varphi}_{\delta}\|^{2}_{E}\leq R_{\delta}(\tau,\omega)\}, \end{split} \end{equation} | (3.16) |
where R_{\delta}(\tau, \omega) is given by (3.12).In addition, we have for every \tau\in\mathbb{R} and \omega\in\Omega
\begin{equation} \begin{split} \lim\limits_{\delta\rightarrow0}R_{\delta}(\tau,\omega) = R_{0}(\tau,\omega), \end{split} \end{equation} | (3.17) |
where R_{0}(\tau, \omega) is defined in (2.19).
Proof. Note K_{\delta} given by (3.16) is closed measurable random set in E . Given \tau\in\mathbb{R} , \omega\in\Omega , and D\in\mathcal{D} , it follows from Lemma 3.3 that there exists T_{0} = T_{0}(\tau, \omega, D, \delta) such that for all t\geq T_{0} ,
\begin{equation} \begin{split}\nonumber \Phi_{\delta}(t,\tau-t,\theta_{-t}\omega,D(\tau-t,\theta_{-t}\omega))\subseteq K_{\delta}(\tau,\omega), \end{split} \end{equation} |
which implies that K_{\delta} pullback attracts all elements in \mathcal{D} . By (2.1), (2.8) and (3.2), we can prove K_{\delta}(\tau, \omega) is tempered. The convergence (3.17) can be obtained by Lebesgue dominated convergence as in [17].
We are now in a position to derive uniform estimates on the tail of solutions of system (3.5).
Lemma 3.5. Suppose that (2.3)–(2.8) hold. Then for every \tau\in\mathbb{R} , \omega\in\Omega and \varepsilon > 0 , there exist \delta_{0} = \delta_{0}(\omega) > 0 , T = T(\tau, \omega, \varepsilon) > 0 and N = N(\tau, \omega, \varepsilon) > 0 such that for all t\geq T and 0 < |\delta| < \delta_{0} , the solution \bar{\varphi}_{\delta} of system (3.5) satisfies
\begin{equation} \begin{split}\nonumber \sum\limits_{|i|\geq N}|\bar{\varphi}_{\delta,i}(\tau,\tau-t,\theta_{-\tau}\omega,\bar{\varphi}_{\delta,\tau-t,i})|_{E}^{2}\leq\varepsilon,\\ \end{split} \end{equation} |
where \bar{\varphi}_{\delta, \tau-t}\in K_{\delta}(\tau-t, \theta_{-t}\omega) and |\bar{\varphi}_{\delta, i}|_{E}^{2} = (1-\nu\beta)|Bu^{\delta}|_{i}^{2}+\lambda |u^{\delta}_{i}|^{2}+|\bar{v}^{\delta}_{i}|^{2} .
Proof. Let \eta be a smooth function defined in Lemma 2.3, and set x = (x_{i})_{i\in\mathbb{Z}} , y = (y_{i})_{i\in\mathbb{Z}} with x_{i} = \eta(\frac{|i|}{k})u^{\delta}_{i} , y_{i} = \eta(\frac{|i|}{k})v^{\delta}_{i} . Note \psi = (x, y)^{T} = ((x_{i}), (y_{i}))^{T}_{i\in\mathbb{Z}} . Taking the inner product of system (3.6) with \psi , we have
\begin{equation} \begin{split} (\dot{\varphi}_{\delta},\psi)_{E}+(L_{\delta}(\varphi_{\delta}),\psi)_{E} = (H_{\delta}(\varphi_{\delta}),\psi)_{E}+(G_{\delta},\psi)_{E}. \end{split} \end{equation} | (3.18) |
For the first term of (3.18), we have
\begin{equation} \begin{split} (\dot{\varphi}_{\delta},\psi)_{E}& = (1-\nu\beta)\sum\limits_{i\in\mathbb{Z}}(B\dot{u}^{\delta})_{i}(Bx)_{i}+\lambda\sum\limits_{i\in\mathbb{Z}}\dot{u}_{i}^{\delta}x_{i} +\sum\limits_{i\in\mathbb{Z}}\dot{v}_{i}^{\delta}y_{i}\\ & = \frac{1}{2}\frac{d}{dt}\sum\limits_{i\in\mathbb{Z}}\eta(\frac{|i|}{k})|\varphi_{\delta,i}|^{2}_{E} +(1-\nu\beta)\sum\limits_{i\in\mathbb{Z}}(B\dot{u}^{\delta})_{i}\Big((Bx)_{i}-\eta(\frac{|i|}{k})(Bu^{\delta})_{i}\Big)\\ &\geq\frac{1}{2}\frac{d}{dt}\sum\limits_{i\in\mathbb{Z}}\eta(\frac{|i|}{k})|\varphi_{\delta,i}|^{2}_{E} -\frac{(1-\nu\beta)C_{0}}{k}\sum\limits_{i\in\mathbb{Z}}|B(v^{\delta}-\beta u^{\delta}+a\int_{0}^{t}\mathcal{G}_{\delta}(\theta_{s}\omega)ds)|_{i}|u_{i+1}^{\delta}|\\ &\geq\frac{1}{2}\frac{d}{dt}\sum\limits_{i\in\mathbb{Z}}\eta(\frac{|i|}{k})|\varphi_{\delta,i}|^{2}_{E} -\frac{c}{k}\|\varphi_{\delta}\|^{2}_{E}-\frac{c}{k}|\int_{0}^{t}\mathcal{G}_{\delta}(\theta_{s}\omega)ds|^{2}\|a\|^{2}, \end{split} \end{equation} | (3.19) |
where |\varphi_{\delta, i}|_{E}^{2} = (1-\nu\beta)|Bu^{\delta}|_{i}^{2}+\lambda |u^{\delta}_{i}|^{2}+|v^{\delta}_{i}|^{2} . By the similar calculations in (2.28)–(2.33), we get
\begin{equation} \begin{split} (L_{\delta}(\varphi_{\delta}),\psi)_{E} \geq&\sigma\sum\limits_{i\in\mathbb{Z}}\eta(\frac{|i|}{k})|\varphi_{\delta,i}|^{2}_{E}+ \frac{h_{1}}{6}\sum\limits_{i\in\mathbb{Z}}\eta(\frac{|i|}{k})|v_{i}^{\delta}|^{2}-\frac{c}{k}\|\varphi_{\delta}\|^{2}_{E}\\ &-c\sum\limits_{i\in\mathbb{Z}}\eta(\frac{|i|}{k})|a_{i}|^{2}|\int_{0}^{t}\mathcal{G}_{\delta}(\theta_{s}\omega)ds|^{2}, \end{split} \end{equation} | (3.20) |
\begin{equation} \begin{split} (H_{\delta}(\varphi_{\delta}),\psi)_{E} &\leq-\frac{d}{dt}(\sum\limits_{i\in\mathbb{Z}}\eta(\frac{|i|}{k})F_{i}(u^{\delta}_{i})) -\frac{\alpha_{2}\beta}{p+1}\sum\limits_{i\in\mathbb{Z}}\eta(\frac{|i|}{k})F_{i}(u^{\delta}_{i})\\ &\quad +\frac{\sigma\lambda}{4}\sum\limits_{i\in\mathbb{Z}}\eta(\frac{|i|}{k})|u_{i}^{\delta}|^{2}+\frac{\sigma}{6} \sum\limits_{i\in\mathbb{Z}}\eta(\frac{|i|}{k})|v^{\delta}_{i}|^{2} +c\sum\limits_{i\in\mathbb{Z}}\eta(\frac{|i|}{k})|g_{i}(t)|^{2}\\ &\quad +c\sum\limits_{i\in\mathbb{Z}}\eta(\frac{|i|}{k})|a_{i}|^{2}|\int_{0}^{t}\mathcal{G}_{\delta}(\theta_{s}\omega)ds|^{2} +c\sum\limits_{i\in\mathbb{Z}}\eta(\frac{|i|}{k})|a_{i}|^{p+1}|\int_{0}^{t}\mathcal{G}_{\delta}(\theta_{s}\omega)ds|^{p+1}, \end{split} \end{equation} | (3.21) |
and
\begin{equation} \begin{split} (G_{\delta},\psi)_{E}& = (1-\nu\beta)\int_{0}^{t}\mathcal{G}_{\delta}(\theta_{s}\omega)ds(Bx,Ba)_{\lambda}+\beta \int_{0}^{t}\mathcal{G}_{\delta}(\theta_{s}\omega)ds(y,a)\\ &\leq \frac{\sigma\lambda}{4}\sum\limits_{i\in\mathbb{Z}}\eta(\frac{|i|}{k})|u^{\delta}_{i}|^{2} +\Big(\frac{h_{1}}{6}+\frac{\sigma}{3}\Big)\sum\limits_{i\in\mathbb{Z}}\eta(\frac{|i|}{k})|v^{\delta}_{i}|^{2} +c|\int_{0}^{t}\mathcal{G}_{\delta}(\theta_{s}\omega)ds|^{2}\sum\limits_{i\in\mathbb{Z}}\eta(\frac{|i|}{k})|a_{i}|^{2}. \end{split} \end{equation} | (3.22) |
It follows from (3.18)–(3.22) that
\begin{equation} \begin{split} &\frac{d}{dt}\Big(\sum\limits_{i\in\mathbb{Z}}\eta(\frac{|i|}{k})\big(|\varphi_{\delta,i}|_{E}^{2}+2 F_{i}(u_{i}^{\delta})\big)\Big) +\gamma\Big(\sum\limits_{i\in\mathbb{Z}}\eta(\frac{|i|}{k})\big(|\varphi_{\delta,i}|_{E}^{2}+2 F_{i}(u_{i}^{\delta})\big)\Big)+\gamma\sum\limits_{i\in\mathbb{Z}}\eta(\frac{|i|}{k})|\varphi_{\delta,i}|_{E}^{2}\\ &\leq\frac{c}{k}\|\varphi_{\delta}\|^{2}_{E}+\frac{c}{k}|\int_{0}^{t}\mathcal{G}_{\delta}(\theta_{s}\omega)ds|^{2}+c\sum\limits_{|i|\geq k}|g_{i}(t)|^{2} +c\sum\limits_{|i|\geq k}|a_{i}|^{p+1}|\int_{0}^{t}\mathcal{G}_{\delta}(\theta_{s}\omega)ds|^{p+1}\\ &\quad+ c\sum\limits_{|i|\geq k}|a_{i}|^{2}|\int_{0}^{t}\mathcal{G}_{\delta}(\theta_{s}\omega)ds|^{2}, \end{split} \end{equation} | (3.23) |
where \gamma = \min\{\frac{\sigma}{2}, \frac{\alpha_{2}\beta}{p+1}\} . Multiplying (3.23) by e^{\gamma t} , replacing \omega by \theta_{-\tau}\omega and integrating on (\tau-t, \tau) with t\in\mathbb{R}^{+} , we get for every \omega\in\Omega
\begin{equation} \begin{split} &\sum\limits_{i\in\mathbb{Z}}\eta(\frac{|i|}{k})\Big(|\varphi_{\delta,i}(\tau,\tau-t,\theta_{-\tau}\omega,\varphi_{\delta,\tau-t,i})|^{2}_{E} +2F_{i}(u_{i}^{\delta}(\tau,\tau-t,\theta_{-\tau}\omega,u^{\delta}_{\tau-t,i}))\Big)\\ &\leq e^{-\gamma t}\sum\limits_{i\in\mathbb{Z}}\eta(\frac{|i|}{k})\Big(|\varphi_{\delta,\tau-t,i}|^{2}_{E}+2 F_{i}(u_{\tau-t,i}^{\delta})\Big) +\frac{c}{k}\int^{\tau}_{\tau-t}e^{\gamma(s-\tau)}\|\varphi_{\delta}(s,\tau-t,\theta_{-\tau}\omega,\varphi_{\delta,\tau-t})\|^{2}_{E}ds\\ &\quad+\frac{c}{k}\int^{0}_{-\infty}e^{\gamma s}|\int_{-\tau}^{s}\mathcal{G}_{\delta}(\theta_{l}\omega)dl|^{2}ds +c\int_{-\infty}^{0}e^{\gamma s}\sum\limits_{|i|\geq k}|g_{i}(s+\tau)|^{2}ds\\ &\quad+c\sum\limits_{|i|\geq k}|a_{i}|^{2}\int_{-\infty}^{0}e^{\gamma s}|\int_{-\tau}^{s}\mathcal{G}_{\delta}(\theta_{l}\omega)dl|^{2}ds+c\sum\limits_{|i|\geq k}|a_{i}|^{p+1}\int_{-\infty}^{0}e^{\gamma s}|\int_{-\tau}^{s}\mathcal{G}_{\delta}(\theta_{l}\omega)dl|^{p+1}ds. \end{split} \end{equation} | (3.24) |
For any s\geq\tau-t ,
\begin{equation} \begin{split}\nonumber &\bar{\varphi}_{\delta}(s,\tau-t,\theta_{-\tau}\omega,\bar{\varphi}_{\delta,\tau-t}) = \varphi_{\delta}(s,\tau-t,\theta_{-\tau}\omega,\varphi_{\delta,\tau-t})+\Big(0,a\int_{0}^{s}\mathcal{G}_{\delta}(\theta_{l-\tau}\omega)dl\Big)^{T}, \end{split} \end{equation} |
which along with (3.24) shows that
\begin{equation} \begin{split} &\sum\limits_{i\in\mathbb{Z}}\eta(\frac{|i|}{k})|\bar{\varphi}_{\delta,i}(\tau,\tau-t,\theta_{-\tau}\omega,\bar{\varphi}_{\delta,\tau-t,i})|^{2}_{E}\\ &\leq2\sum\limits_{i\in\mathbb{Z}}\eta(\frac{|i|}{k})|\varphi_{\delta,i}(\tau,\tau-t,\theta_{-\tau}\omega,\varphi_{\delta,\tau-t,i})|^{2}_{E} +2\sum\limits_{i\in\mathbb{Z}}\eta(\frac{|i|}{k})|a_{i}\int_{0}^{\tau}\mathcal{G}_{\delta}(\theta_{l-\tau}\omega)dl|^{2}\\ &\leq 2\sum\limits_{|i|\geq k}|a_{i}\int_{-\tau}^{0}\mathcal{G}_{\delta}(\theta_{l}\omega)dl|^{2} +4e^{-\gamma t}\sum\limits_{i\in\mathbb{Z}}\eta(\frac{|i|}{k})\Big(|\bar{\varphi}_{\delta,\tau-t,i}|^{2}_{E}+|a_{i}\int_{-\tau}^{-t}\mathcal{G}_{\delta}(\theta_{l}\omega)dl|^{2}+ F_{i}(u_{\tau-t,i}^{\delta})\Big)\\ &\quad+\frac{c}{k}\int^{\tau}_{\tau-t}e^{\gamma(s-\tau)}\|\bar{\varphi}_{\delta}(s,\tau-t,\theta_{-\tau}\omega,\bar{\varphi}_{\delta,\tau-t})\|^{2}_{E}ds +\frac{c}{k}\int^{0}_{-\infty}e^{\gamma s}|\int_{-\tau}^{s}\mathcal{G}_{\delta}(\theta_{l}\omega)dl|^{2}ds\\ &\quad +c\int_{-\infty}^{0}e^{\gamma s}\sum\limits_{|i|\geq k}|g_{i}(s+\tau)|^{2}ds+c\sum\limits_{|i|\geq k}|a_{i}|^{2}\int_{-\infty}^{0}e^{\gamma s}|\int_{-\tau}^{s}\mathcal{G}_{\delta}(\theta_{l}\omega)dl|^{2}ds\\ &\quad+c\sum\limits_{|i|\geq k}|a_{i}|^{p+1}\int_{-\infty}^{0}e^{\gamma s}|\int_{-\tau}^{s}\mathcal{G}_{\delta}(\theta_{l}\omega)dl|^{p+1}ds. \end{split} \end{equation} | (3.25) |
By (2.1) and (2.8), the last four integrals on the right-hand side of (3.24) are well defined. Note that (2.3) and (2.4) implies that
\begin{equation} \begin{split}\nonumber \sum\limits_{i\in\mathbb{Z}}\eta(\frac{|i|}{k}) F_{i}(u_{\tau-t,i}^{\delta})\leq \frac{1}{\alpha_{2}}\sum\limits_{i\in\mathbb{Z}}\eta(\frac{|i|}{k}) f_{i}(u_{\tau-t,i}^{\delta})u_{\tau-t,i}^{\delta} \leq\frac{1}{\alpha_{2}}\max\limits_{-\|u_{\tau-t}^{\delta}\|\leq s\leq\|u_{\tau-t}^{\delta}\|}|f'_{i}(s)|\|u_{\tau-t}^{\delta}\|^{2}. \end{split} \end{equation} |
Since \bar{\varphi}_{\delta, \tau-t}\in K_{\delta}(\tau-t, \theta_{-t}\omega) , we find
\begin{equation} \begin{split}\nonumber \limsup\limits_{t\rightarrow +\infty}e^{-\gamma t}\sum\limits_{i\in\mathbb{Z}}\eta(\frac{|i|}{k})|\bar{\varphi}_{\delta,\tau-t,i}|^{2}_{E}\leq\limsup\limits_{t\rightarrow +\infty}e^{-\gamma t}\|K_{\delta}(\tau-t,\theta_{-t}\omega)\|^{2}_{E} = 0, \end{split} \end{equation} |
which along with (2.1) and (3.2) shows that there exist T_{1} = T_{1}(\tau, \omega, \varepsilon) > 0 and \delta_{0} > 0 such that for all t\geq T_{1} and 0 < |\delta| < \delta_{0} ,
\begin{equation} \begin{split} 4e^{-\gamma t}\sum\limits_{i\in\mathbb{Z}}\eta(\frac{|i|}{k})\Big(|\bar{\varphi}_{\delta,\tau-t,i}|^{2}_{E}+|a_{i}\int_{-\tau}^{-t}\mathcal{G}_{\delta}(\theta_{l}\omega)dl|^{2}+ F_{i}(u_{\tau-t,i}^{\delta})\Big)\leq\frac{\varepsilon}{4}. \end{split} \end{equation} | (3.26) |
By Lemma 3.3, (2.1) and (3.2), there exist T_{2} = T_{2}(\tau, \omega, \varepsilon) > T_{1} and N_{1} = N_{1}(\tau, \varepsilon) > 0 such that for all t\geq T_{2} , k\geq N_{1} and 0 < |\delta| < \delta_{0}
\begin{equation} \begin{split} \frac{c}{k}\int^{\tau}_{\tau-t}e^{\gamma(s-\tau)}\|\bar{\varphi}_{\delta}(s,\tau-t,\theta_{-\tau}\omega,\bar{\varphi}_{\delta,\tau-t})\|^{2}_{E}ds+\frac{c}{k}\int^{0}_{-\infty}e^{\gamma s}|\int_{-\tau}^{s}\mathcal{G}_{\delta}(\theta_{l}\omega)dl|^{2}ds\leq\frac{\varepsilon}{4}. \end{split} \end{equation} | (3.27) |
By (2.8), there exists N_{2} = N_{2}(\tau, \varepsilon) > N_{1} such that for all k\geq N_{2} ,
\begin{equation} \begin{split} 2\sum\limits_{|i|\geq k}|a_{i}\int_{-\tau}^{0}\mathcal{G}_{\delta}(\theta_{l}\omega)dl|^{2}+c\int_{-\infty}^{0}e^{\gamma s}\sum\limits_{|i|\geq k}|g_{i}(s+\tau)|^{2}ds\leq\frac{\varepsilon}{4}. \end{split} \end{equation} | (3.28) |
By (2.1) and (3.2) again, we find that there exists N_{3} = N_{3}(\tau, \varepsilon) > N_{2} such that for all k\geq N_{3} and 0 < |\delta| < \delta_{0} ,
\begin{equation} \begin{split} c\sum\limits_{|i|\geq k}|a_{i}|^{p+1}\int_{-\infty}^{0}e^{\gamma s}|\int_{-\tau}^{s}\mathcal{G}_{\delta}(\theta_{l}\omega)dl|^{p+1}ds +c\sum\limits_{|i|\geq k}|a_{i}|^{2}\int_{-\infty}^{0}e^{\gamma s}|\int_{-\tau}^{s}\mathcal{G}_{\delta}(\theta_{l}\omega)dl|^{2}ds \leq\frac{\varepsilon}{4}. \end{split} \end{equation} | (3.29) |
Then it follows from (3.25)–(3.29) that for all t\geq T_{2} , k\geq N_{3} and 0 < |\delta| < \delta_{0} ,
\begin{equation} \begin{split}\nonumber \sum\limits_{|i|\geq 2k}|\bar{\varphi}_{\delta,i}(\tau,\tau-t,\theta_{-\tau}\omega,\bar{\varphi}_{\delta,\tau-t,i})|^{2}_{E} \leq\sum\limits_{i\in\mathbb{Z}}\eta(\frac{|i|}{k})|\bar{\varphi}_{\delta,i}(\tau,\tau-t,\theta_{-\tau}\omega,\bar{\varphi}_{\delta,\tau-t,i})|^{2}_{E} \leq\varepsilon. \end{split} \end{equation} |
This concludes the proof.
By Lemma 3.4, \Phi_{\delta} has a closed \mathcal{D} -pullback absorbing set, and Lemma 3.5 shows that \Phi_{\delta} is asymptotically null in E with respect to \mathcal{D} . Therefore, we get the existence of \mathcal{D} -pullback attractors for \Phi_{\delta} .
Lemma 3.6. Suppose that (2.3)–(2.9) hold. Then the continuous cocycle \Phi_{\delta} associated with (3.5) has a unique \mathcal{D} -pullback attractors \mathcal{A}_{\delta} = \{\mathcal{A}_{\delta}(\tau, \omega):\tau\in\mathbb{R} , \omega\in\Omega\}\in \mathcal{D} in E .
For the attractor \mathcal{A}_{\delta} of \Phi_{\delta} , we have the uniform compactness as showed below.
Lemma 3.7. Suppose that (2.3)–(2.9) hold. Then for every \tau\in\mathbb{R} , \omega\in\Omega , there exists \delta_{0} = \delta_{0}(\omega) > 0 such that \mathop{\bigcup}\limits_{0 < |\delta| < \delta_{0}}\mathcal{A}_{\delta}(\tau, \omega) is precompact in E .
Proof. Given \varepsilon > 0 , we will prove that \mathop{\bigcup}\limits_{0 < |\delta| < \delta_{0}}\mathcal{A}_{\delta}(\tau, \omega) has a finite covering of balls of radius less than \varepsilon . By (3.2) we have
\begin{equation} \begin{split} \int^{0}_{s}\mathcal{G}_{\delta}(\theta_{l}\omega)dl = -\int^{s+\delta}_{s}\frac{\omega(l)}{\delta}dl+\int^{\delta}_{0}\frac{\omega(l)}{\delta}dl. \end{split} \end{equation} | (3.30) |
By \lim_{\delta\rightarrow0}\int^{\delta}_{0}\frac{\omega(r)}{\delta}dr = 0 , there exists \delta_{1} = \delta_{1}(\omega) > 0 such that for all 0 < |\delta| < \delta_{1} ,
\begin{equation} \begin{split} |\int^{\delta}_{0}\frac{\omega(l)}{\delta}dl|\leq1. \end{split} \end{equation} | (3.31) |
Similarly, there exists l_{1} between s and s+\delta such that \int^{s+\delta}_{s}\frac{\omega(l)}{\delta}dl = \omega(l_{1}) , which along with (2.1) implies that there exists T_{1} = T_{1}(\omega) < 0 such that for all s\leq T_{1} and |\delta|\leq1 ,
\begin{equation} \begin{split} |\int^{s+\delta}_{s}\frac{\omega(l)}{\delta}dl|\leq 1-s. \end{split} \end{equation} | (3.32) |
Let \delta_{2} = \min\{\delta_{1}, 1\} . By (3.30)–(3.32) we get for all 0 < |\delta| < \delta_{2} and s\leq T_{1} ,
\begin{equation} \begin{split} |\int^{0}_{s}\mathcal{G}_{\delta}(\theta_{l}\omega)dl| < 2-s. \end{split} \end{equation} | (3.33) |
By (3.4), there exist \delta_{0} = \delta_{0}(\omega)\in(0, \delta_{2}) and c_{1}(\omega) > 0 such that for all 0 < |\delta|\leq\delta_{0} and T_{1}\leq s\leq0 ,
\begin{equation} \begin{split}\nonumber |\int^{0}_{s}\mathcal{G}_{\delta}(\theta_{l}\omega)dl|\leq c_{1}(\omega), \end{split} \end{equation} |
which along with (3.33) implies that for all 0 < |\delta| < \delta_{0} and s\leq0 ,
\begin{equation} \begin{split} |\int^{0}_{s}\mathcal{G}_{\delta}(\theta_{l}\omega)dl|\leq -s+c_{2}(\omega), \end{split} \end{equation} | (3.34) |
where c_{2}(\omega) = 2+c_{1}(\omega) . Denote by
\begin{equation} \begin{split}\nonumber B(\tau,\omega) = \{\bar{\varphi}_{\delta}\in E:\|\bar{\varphi}_{\delta}\|^{2}\leq R(\tau,\omega)\}, \end{split} \end{equation} |
and
\begin{equation} \begin{split} R(\tau,\omega) = &c\int_{-\infty}^{0}e^{\gamma s}\Big(\|g(s+\tau)\|^{2}+2(c_{2}-s)^{2}+2(|\tau|+c_{2})^{2}+2^{p}(c_{2}-s)^{p+1}+2^{p}(|\tau|+c_{2})^{p+1}\Big)ds\\ &\quad+c+2c(|\tau|+c_{2})^{2}, \end{split} \end{equation} | (3.35) |
with c and c_{2} being as in (3.12) and (3.34). By (3.12) and (3.35) we find that for all 0 < |\delta| < \delta_{0} ,
\begin{equation} \begin{split} R_{\delta}(\tau,\omega)\leq R(\tau,\omega). \end{split} \end{equation} | (3.36) |
By (3.35) and (3.36), we find that K_{\delta}(\tau, \omega)\subseteq B(\tau, \omega) for all 0 < |\delta| < \delta_{0} , \tau\in\mathbb{R} and \omega\in\Omega . Therefore, for every \tau\in\mathbb{R} , \omega\in\Omega ,
\begin{equation} \begin{split} \bigcup\limits_{0 < |\delta| < \delta_{0}}\mathcal{A}_{\delta}(\tau,\omega)\subseteq\bigcup\limits_{0 < |\delta| < \delta_{0}}K_{\delta}(\tau,\omega) \subseteq B(\tau,\omega). \end{split} \end{equation} | (3.37) |
By Lemma 3.5, there exist T = T(\tau, \omega, \varepsilon) > 0 and N = N(\tau, \omega, \varepsilon) > 0 such that for all t\geq T and 0 < |\delta| < \delta_{0} ,
\begin{equation} \begin{split} \sum\limits_{|i|\geq N}|\bar{\varphi}_{\delta,i}(\tau,\tau-t,\theta_{-\tau}\omega,\bar{\varphi}_{\delta,\tau-t,i})|^{2}_{E}\leq\frac{\varepsilon}{4}, \end{split} \end{equation} | (3.38) |
for any \bar{\varphi}_{\delta, \tau-t}\in K_{\delta}(\tau-t, \theta_{-t}\omega) . By (3.38) and the invariance of \mathcal{A}_{\delta} , we obtain
\begin{equation} \begin{split} \sum\limits_{|i|\geq N}|\bar{\varphi}_{i}|^{2}_{E}\leq\frac{\varepsilon}{4},\; \; \text{for all}\; \bar{\varphi} = (\bar{\varphi}_{i})_{i\in\mathbb{Z}}\in\bigcup\limits_{0 < |\delta| < \delta_{0}}\mathcal{A}_{\delta}(\tau,\omega). \end{split} \end{equation} | (3.39) |
We find that (3.37) implies the set \{(\bar{\varphi}_{i})_{|i| < N}:\bar{\varphi}\in \mathop{\bigcup}\limits_{0 < |\delta| < \delta_{0}}\mathcal{A}_{\delta}(\tau, \omega)\} is bounded in a finite dimensional space and hence is precompact. This along with (3.39) implies \mathop{\bigcup}\limits_{0 < |\delta| < \delta_{0}}\mathcal{A}_{\delta}(\tau, \omega) has a finite covering of balls of radius less than \varepsilon in E . This completes the proof.
In this section, we will study the limiting of solutions of (3.5) as \delta\rightarrow0 . Hereafter, we need an additional condition on f : For all i\in\mathbb{Z} and s\in\mathbb{R} ,
\begin{equation} \begin{split} |f'_{i}(s)|\leq\alpha_{4}|s|^{p-1}+\kappa_{i}, \end{split} \end{equation} | (4.1) |
where \alpha_{4} is a positive constant, \kappa = (\kappa_{i})_{i\in\mathbb{Z}}\in l^{2} and p > 1 .
Lemma 4.1. Suppose that (2.3)–(2.7) and (4.1) hold. Let \bar{\varphi} and \bar{\varphi}_{\delta} are the solutions of (2.10) and (3.5), respectively. Then for every \tau\in\mathbb{R} , \omega\in\Omega , T > 0 and \varepsilon\in(0, 1) , there exist \delta_{0} = \delta_{0}(\tau, \omega, T, \varepsilon) > 0 and c = c(\tau, \omega, T) > 0 such that for all t\in[\tau, \tau+T] and 0 < |\delta| < \delta_{0} ,
\begin{equation} \begin{split}\nonumber \|\bar{\varphi}_{\delta}(t,\tau,\omega,\bar{\varphi}_{\delta,\tau})-\bar{\varphi}(t,\tau,\omega,\bar{\varphi}_{\tau})\|^{2}_{E} \leq 2e^{c(t-\tau)}\|\bar{\varphi}_{\delta,\tau}-\bar{\varphi}_{\tau}\|^{2}_{E}+c\varepsilon. \end{split} \end{equation} |
Proof. Let \tilde{\varphi} = \varphi_{\delta}-\varphi and \tilde{\varphi} = (\tilde{u}, \tilde{v})^{T} , where \tilde{u} = u^{\delta}-u , \tilde{v} = v^{\delta}-v , \varphi and \varphi_{\delta} are the solutions of (2.11) and (3.6), respectively. By (2.11) and (3.6) we get
\begin{equation} \begin{split} \dot{\tilde{\varphi}}+\tilde{L}(\tilde{\varphi}) = \tilde{H}(\tilde{\varphi})+\tilde{G}(\omega), \end{split} \end{equation} | (4.2) |
where
\begin{equation} \begin{aligned}\nonumber \tilde{L}(\tilde{\varphi})& = \left( \begin{array}{ccc} \beta \tilde{u}-\tilde{v}\\ (1-\nu\beta)A\tilde{u}+\nu A\tilde{v}+\lambda \tilde{u} +\beta^{2} \tilde{u}-\beta\tilde{v} \end{array} \right)\\ &\quad+ \left( \begin{array}{ccc} 0 \\ h\big(v^{\delta}-\beta u^{\delta}+a\int_{0}^{t}\mathcal{G}_{\delta}(\theta_{s}\omega)ds\big)-h\big(v-\beta u+a\omega(t)\big) \end{array} \right), \end{aligned} \end{equation} |
\begin{equation} \begin{aligned}\nonumber \tilde{H}(\tilde{\varphi}) = \left( \begin{array}{ccc} 0 \\ -f(u^{\delta})+f(u) \end{array} \right),\; \; \; \; \tilde{G}(\omega) = \left( \begin{array}{ccc} a\big(\int_{0}^{t}\mathcal{G}_{\delta}(\theta_{s}\omega)ds-\omega(t)\big)\\ (\beta a-\nu Aa)\big(\int_{0}^{t}\mathcal{G}_{\delta}(\theta_{s}\omega)ds-\omega(t)\big) \end{array} \right). \end{aligned} \end{equation} |
Taking the inner product of (4.2) with \tilde{\varphi} in E , we have
\begin{equation} \begin{split} \frac{1}{2}\frac{d}{dt}\|\tilde{\varphi}\|^{2}_{E}+(\tilde{L}(\tilde{\varphi}),\tilde{\varphi})_{E} = (\tilde{H}(\tilde{\varphi}),\tilde{\varphi})_{E}+(\tilde{G}(\omega),\tilde{\varphi})_{E}. \end{split} \end{equation} | (4.3) |
For the second term on the left-hand side of (4.3), using the similar calculations in (2.13) we have
\begin{equation} \begin{split} (\tilde{L}(\tilde{\varphi}),\tilde{\varphi})_{E}&\geq\sigma\|\tilde{\varphi}\|_{E}^{2}+\frac{h_{1}}{2}\|\tilde{v}\|^{2} -h_{2}|\big(a(\int_{0}^{t}\mathcal{G}_{\delta}(\theta_{s}\omega)ds-\omega(t)),\tilde{v}\big)|\\ &\geq\sigma\|\tilde{\varphi}\|_{E}^{2}+\frac{h_{1}}{4}\|\tilde{v}\|^{2} -c|\int_{0}^{t}\mathcal{G}_{\delta}(\theta_{s}\omega)ds-\omega(t))|^{2}\|a\|^{2}. \end{split} \end{equation} | (4.4) |
For the first term on the right-hand side of (4.3), by (4.1) we get
\begin{equation} \begin{split} (f(u)-f(u^{\delta}),\tilde{v})& = \sum\limits_{i\in\mathbb{Z}}(f_{i}(u_{i})-f_{i}(u^{\delta}_{i}))\tilde{v}_{i} = \frac{1}{h_{1}}\sum\limits_{i\in\mathbb{Z}}|f_{i}(u_{i})-f_{i}(u^{\delta}_{i})|^{2}+\frac{h_{1}}{4}\sum\limits_{i\in\mathbb{Z}}|\tilde{v}_{i}|^{2}\\ &\leq c(\|\varphi\|^{2p-2}_{E}+\|\varphi_{\delta}\|^{2p-2}_{E})\|\tilde{\varphi}\|^{2}_{E}+\frac{h_{1}}{4}\|\tilde{v}\|^{2}+\frac{2\|\kappa\|^{2}}{h_{1}\lambda}\|\tilde{\varphi}\|^{2}_{E}. \end{split} \end{equation} | (4.5) |
As to the last term of (4.3), we have
\begin{equation} \begin{split} &\big(a(\int_{0}^{t}\mathcal{G}_{\delta}(\theta_{s}\omega)ds-\omega(t)),\tilde{u}\big)_{\lambda} +\big((\beta a-\nu Aa)(\int_{0}^{t}\mathcal{G}_{\delta}(\theta_{s}\omega)ds-\omega(t)),\tilde{v}\big)\\ &\leq\sigma\|\tilde{u}\|^{2}_{\lambda}+\frac{1}{4\sigma}|\int_{0}^{t}\mathcal{G}_{\delta}(\theta_{s}\omega)ds-\omega(t)|^{2}\|a\|^{2}_{\lambda} +\sigma\|\tilde{v}\|^{2}+c|\int_{0}^{t}\mathcal{G}_{\delta}(\theta_{s}\omega)ds-\omega(t)|^{2}\|a\|^{2}. \end{split} \end{equation} | (4.6) |
It follows from (4.3)–(4.6) that
\begin{equation} \begin{split} \frac{d}{dt}\|\tilde{\varphi}\|^{2}_{E}\leq c(\|\varphi\|^{2p-2}_{E}+\|\varphi_{\delta}\|^{2p-2}_{E}+1)\|\tilde{\varphi}\|^{2}_{E}+c|\int_{0}^{t}\mathcal{G}_{\delta}(\theta_{s}\omega)ds-\omega(t)|^{2}. \end{split} \end{equation} | (4.7) |
By Lemma 2.1 and Lemma 3.2, there exists \delta_{1} = \delta_{1}(\tau, \omega, T) > 0 and c_{1} = c_{1}(\tau, \omega, T) > 0 such that for all 0 < |\delta| < \delta_{1} and t\in[\tau, \tau+T] ,
\begin{equation} \begin{split}\nonumber \|\varphi_{\delta}(t,\tau,\omega,\varphi_{\delta,\tau})\|^{2}_{E}+\|\varphi(t,\tau,\omega,\varphi_{\tau})\|^{2}_{E}\leq c_{1}, \end{split} \end{equation} |
which along with (4.7) shows that for all 0 < |\delta| < \delta_{1} and t\in[\tau, \tau+T]
\begin{equation} \begin{split} \frac{d}{dt}\|\tilde{\varphi}\|^{2}_{E}\leq c\|\tilde{\varphi}\|^{2}_{E}+c|\int_{0}^{t}\mathcal{G}_{\delta}(\theta_{s}\omega)ds-\omega(t)|^{2}. \end{split} \end{equation} | (4.8) |
Applying Gronwall's inequality and Lemma 3.1 to (4.8), we see that for every \varepsilon\in(0, 1) , there exists \delta_{0} = \delta_{0}(\tau, \omega, T, \varepsilon)\in(0, \delta_{1}) such that for all 0 < |\delta| < \delta_{0} and t\in[\tau, \tau+T]
\begin{equation} \begin{split} \|\tilde{\varphi}(t,\tau,\omega,\tilde{\varphi}_{\tau})\|^{2}_{E}\leq e^{c(t-\tau)}\|\tilde{\varphi}_{\tau}\|^{2}_{E}+c\varepsilon. \end{split} \end{equation} | (4.9) |
On the other hand, we have
\begin{equation} \begin{split}\nonumber \bar{\varphi}_{\delta}(t,\tau,\omega,\bar{\varphi}_{\delta,\tau})-\bar{\varphi}(t,\tau,\omega,\bar{\varphi}_{\tau}) = \tilde{\varphi}+\big(0,a(\int^{t}_{0}\mathcal{G}_{\delta}(\theta_{s})ds-\omega(t))\big)^{T}, \end{split} \end{equation} |
which along with (4.9) implies the desired result.
Finally, we establish the upper semicontinuity of random attractors as \delta\rightarrow0 .
Theorem 4.1. Suppose that (2.3)–(2.9) and (4.1) hold. Then for every \tau\in\mathbb{R} and \omega\in\Omega ,
\begin{equation} \begin{split} \lim\limits_{\delta\rightarrow0}d_{E}(\mathcal{A}_{\delta}(\tau,\omega),\mathcal{A}_{0}(\tau,\omega)) = 0, \end{split} \end{equation} | (4.10) |
where d_{E}(\mathcal{A}_{\delta}(\tau, \omega), \mathcal{A}_{0}(\tau, \omega)) = \mathop{\sup}\limits_{x\in\mathcal{A}_{\delta}(\tau, \omega)}\mathop{\inf}\limits_{y\in\mathcal{A}_{0}(\tau, \omega)}\|x-y\|_{E} .
Proof. Let \delta_{n}\rightarrow0 and \bar{\varphi}_{\delta_{n}, \tau}\rightarrow \bar{\varphi}_{\tau} in E . Then by Lemma 4.1, we find that for all \tau\in\mathbb{R} , t\geq0 and \omega\in\Omega ,
\begin{equation} \begin{split} \Phi_{\delta_{n}}(t,\tau,\omega,\bar{\varphi}_{\delta_{n},\tau})\rightarrow \Phi_{0}(t,\tau,\omega,\bar{\varphi}_{\tau}) \; \; \text{in}\; \; E. \end{split} \end{equation} | (4.11) |
By (3.16)–(3.17) we have, for all \tau\in\mathbb{R} and \omega\in\Omega ,
\begin{equation} \begin{split} \lim\limits_{\delta\rightarrow0}\|K_{\delta}(\tau,\omega)\|_{E}^{2}\leq R_{0}(\tau,\omega). \end{split} \end{equation} | (4.12) |
Then by (4.11), (4.12) and Lemma 3.7, (4.10) follows from Theorem 3.1 in [24] immediately.
In this paper we use similar idea in [30] but apply to second order non-autonomous stochastic lattice dynamical systems with additive noise. we establish the convergence of solutions of Wong-zakai approximations and the upper semicontinuity of random attractors of the approximate random system as the step-length of the Wiener shift approaches zero. In addition, as to the second order non-autonomous stochastic lattice dynamical systems with multiplicative noise, we can use the similar method in [29] to get the corresponding results.
The authors would like to thank anonymous referees and editors for their valuable comments and constructive suggestions.
The authors declare no conflict of interest.
[1] | G. M. Bisci, Some remarks on a recent critical point result of nonsmooth analysis, Le Matematiche, 64 (2009), 97-112. |
[2] | H. Brézis, Analyse Fonctionelle, Théorie et Applications, 1983. |
[3] |
H. Brézis, L. Nirenberg, Remarks on finding critical points, Commun. Pur. Appl. Math., 44 (1991), 939-961. doi: 10.1002/cpa.3160440808
![]() |
[4] |
P. Candito, R. Livrea, D. Motreanu, Bounded Palais-Smale sequences for non-differentiable functions, Nonlinear Anal-Theor., 74 (2011), 5446-5454. doi: 10.1016/j.na.2011.05.030
![]() |
[5] |
K. C. Chang, Variational methods for nondifferentiable functionals and their applications to partial differential equations, J. Math. Anal. Appl., 80 (1981), 102-129. doi: 10.1016/0022-247X(81)90095-0
![]() |
[6] | F. H. Clarke, Optimization and Nonsmooth Analysis, Wiley, New York, 1983. |
[7] |
N. Costea, C. Varga, Multiple critical points for non-differentiable parametrized functionals and applications to differential inclusions, J. Global Optim., 56 (2013), 399-416. doi: 10.1007/s10898-011-9801-3
![]() |
[8] | K. Deimling, Nonlinear Functional Analysis, Springer, Berlin, 1985. |
[9] | J. Dugundji, Topology, Allyn and Bacon, Boston, 1996. |
[10] | F. Faraci, A. Iannizzotto, Three nonzero periodic solutions for a differential inclusion, Discrete Cont. Dyn. S, 5 (2012), 779-788. |
[11] |
A. Iannizzotto, Three critical points for perturbed nonsmooth functionals and applications, Nonlinear Anal-Theor., 72 (2010), 1319-1338. doi: 10.1016/j.na.2009.08.001
![]() |
[12] |
S. T. Kyritsi, N. S. Papageorgiou, Nonsmooth critical point theory on closed convex sets and nonlinear hemivariational inequalities, Nonlinear Anal-Theor., 61 (2005), 373-403. doi: 10.1016/j.na.2004.12.001
![]() |
[13] |
S. T. Kyritsi, N. S. Papageorgiou, An obstacle problem for nonlinear hemivariational inequalities at resonance, J. Math. Anal. Appl., 276 (2002), 292-313. doi: 10.1016/S0022-247X(02)00443-2
![]() |
[14] |
S. J. Li, M. Willem, Applications of local linking to critical point theory, J. Math. Anal. Appl., 189 (1995), 6-32. doi: 10.1006/jmaa.1995.1002
![]() |
[15] | Z. Li, Y. Shen, Y. Zhang, An application of nonsmooth critical point theory, Topol. Method. Nonl. An., 35 (2010), 203-219. |
[16] |
R. Livrea, S. A. Marano, D. Motreanu, Critical points for nondifferential function in presence of splitting, J. Differ. Equations, 226 (2006), 704-725. doi: 10.1016/j.jde.2005.11.001
![]() |
[17] | A. M. Mao, S. X. Luan, Periodic solutions of an infinite-dimensional Hamiltonian system, Appl. Math. Comput., 201 (2008), 800-804. |
[18] | A. M. Mao, M. Xue, Positive solutions of singular boundary value problems, Acta Math. Sin., 44 (2001), 899-908. |
[19] |
A. M. Mao, Y. Chen, Existence and Concentration of Solutions For Sublinear Schrödinger-Poisson Equations, Indian J. Pure Ap. Mat., 49 (2018), 339-348. doi: 10.1007/s13226-018-0272-9
![]() |
[20] |
S. A. Marano, D. Motreanu, Infinitely many critical points of non-differentiable functions and applications to a Neumann-type problem involving the p-Laplacian, J. Differ. Equations, 182 (2002), 108-120. doi: 10.1006/jdeq.2001.4092
![]() |
[21] | S. A. Marano, D. Motreanu, A deformation theorem and some critical point results for nondifferentiale functions, Topol. Method. Nonl. An., 22 (2003), 139-158. |
[22] | D. Motreanu, P. D. Panagiotopoulos, Minimax Theorems and Qualitative properties of the solutions of the Hemivariational Inequalities, 1999. |
[23] | D. Motreanu, V. Radulescu, Variational and Non-variational Methods in Nonlinear Analysis and Boundary Value Problems, Springer Science & Business Media, 2003. |
[24] | P. D. Panagiotopoulos, Hemivariational Inequalities: Applications in Mechanics and Engineering, Springer, Berlin, 1993. |
[25] |
A. Szulkin, Minimax principle for lower semicontinuous functions and applications to nonlinear boundary value problems, Ann. I. H. Poincare-An., 3 (1986), 77-109. doi: 10.1016/S0294-1449(16)30389-4
![]() |
[26] | J. Wang, T. An, F. Zhang, Positive solutions for a class of quasilinear problems with critical growth in \mathbb{R}^N, P. Roy. Soc. Edinb. A, 145 (2015), 411-444. |
[27] |
Y. Wu, T. An, Existence of periodic solutions for non-autonomous second-order Hamiltonian systems, Electron. J. Differ. Eq., 2013 (2013), 1-13. doi: 10.1186/1687-1847-2013-1
![]() |
1. | Ming Huang, Lili Gao, Lu Yang, Regularity of Wong-Zakai approximations for a class of stochastic degenerate parabolic equations with multiplicative noise, 2024, 0, 1937-1632, 0, 10.3934/dcdss.2024097 |