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1. Introduction

The mountain pass theorem of Ambrosetti and Rabinowitz for C1 functions plays an essential role
in the area of nonlinear analysis. We are interested in the monograph [22] of Motreanu and
Panagiotopoulos in which they established a new version of the mounbtain pass
theorem [22, Theorem 3.2] for the functionals f from Banach space X to R ∪ {+∞} satisfying the
following hypothesis:
(H f ) : f (x) = Φ(x) + Ψ(x) for all x ∈ X, where Φ : X → R is locally Lipschitz continuous while
Ψ : X → R ∪ {+∞} is convex, proper, and lower semi-continuous.

We call x ∈ X is a critical point of f if x solves the following problem:

Φ0(x; z − x) + Ψ(z) − Ψ(x) ≥ 0, ∀ z ∈ X, (1.1)

where Φ0(x; z − x) is the generalized directional derivative of Φ at x in the direction z − x (see [6] for
detail).

Recall that f satisfies the (PS )c condition if any sequence {xn} ⊂ X for which lim
n→+∞

f (xn) = c and

Φ0(xn; z − xn) + Ψ(z) − Ψ(xn) ≥ −εn‖z − xn‖, ∀n ∈ N, z ∈ X
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where εn → 0+, possesses a convergent subsequence.
When (PS )c holds true at any level c we simply write (PS ) f in place of (PS )c.
Inequality (1.1) is usually called variational-hemivariational inequality, which has been exploited

for mathematically formulating several engineering, besides mechanical questions and extensively
studied from many points of view in the latest years [1, 22, 23].

Variational-hemivariational inequalities can be studied in the framework of a general critical point
theory which combines features of the classical convex analysis and of the theory of generalized
gradients for locally Lipschitz functions. Such inequalities represent a very general pattern for several
kinds of variational problems. Indeed, if Φ ∈ C1(X,R), the problem (1.1) is reduced to a variational
inequality and the relevant critical point theory as well as significant applications are developed
in [25]; if Ψ ≡ 0, then (1.1) coincides with the problem treated by Chang in [5] which is called
differential equations with discontinuous nonlinearities; differential inclusions (see [12]) and special
non-smooth problems with constraints (see [13]) can be considered as special cases of
variational-hemivariational inequality. Finally, when both Φ ∈ C1(X,R) and Ψ ≡ 0, the problem (1.1)
becomes the Euler equation Φ′(u) = 0 and the theory is classical. For the new results on this topic, see
the excellent overview in [4, 7, 10, 11, 14, 15, 17–19, 26, 27].

Chang in [5] established the critical point theory for non-differentiable functionals and represented
some applications to partial differential equations with discontinuous nonlinearities. Marano and
Motreanu [20] obtained a critical points theorem which extends the variational principle of Ricceri to
variational-hemivariational inequalities and semilinear elliptic eigenvalue problems with
discontinuous nonlinearities. The critical point theorem in presence of splitting was established by
Brèzis-Nirenberg [3]. Subsequently Livrea, Marano and Motreanu [16] extended it to
Motreanu-Panagiotopoulos’ setting under the the following structural hypothesis (H f )′:

(H f )′: f (x) = Φ(x) + Ψ(x) for all x ∈ X, where Φ : X → R is locally Lipschitz continuous
while Ψ : X → R ∪ {+∞} is convex, proper, and lower semi-continuous, and Ψ is continuous on any
nonempty compact set A ⊆ X such that sup

x∈A
Ψ(x) < +∞.

And they applied the conclusions to an elliptic variational-hemivariational inequality.
Motivatied by the above cited papers, we try to prove a multiplicity theorem of functions f fulfilling

the structural hypothesis (H f ), mountain pass geometry and the bounded from below conditions. In
Section 2, we will recall some basic definitions and preliminaries. The essential tool used in the proof
is a general deformation lemma, which will be set forth in Section 3. Section 4 presents our main
result, a new critical point theorem.

In the last section we consider an application to the elliptic variational-hemivariational inequality:
(Pλ) : Find u ∈ Kλ such that for all v ∈ Kλ,

−

∫
Ω

∇u(x)∇(v − u)(x)dx −
∫

Ω

a(x)u(x)(v − u)(x)dx ≤ λG0(u; v − u),

where λ > 0, Kλ is convex and closed in H1
0(Ω), g : R→ R is locally bounded and measurable, and the

functions G : R→ R and G : H1
0(Ω)→ R given by

G(ξ) =

∫ ξ

0
−g(t)dt, ∀ ξ ∈ R, G(u) =

∫
Ω

G(u(x))dx, ∀ u ∈ H1
0(Ω),

respectively, are well defined and locally Lipschitz continuous. Some results of [16] are improved.
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2. Preliminaries

Let (X, ‖ · ‖) be a reflexive Banach space. Denote by B(x, δ) := {z ∈ X : ‖z − x‖ < δ} as well as
Bδ := B(0, δ). The symbol [x, z] denote the segment joining x to z, namely [x, z] := {(1 − t)x + tz :
t ∈ [0, 1]}, and (x, z] := [x, z]\{x}. We denote by X∗ the dual space of X, while 〈·, ·〉 stands for the
duality pairing between X and X∗. A functional ϕ : X → R ∪ {+∞} is proper if Dϕ = {x ∈ X : ϕ(x) <
∞} , ∅. Functional Φ : X → R is called locally Lipchitz continuous if for every x ∈ X there exists a
neighborhood Vx of x and a constant Lx ≥ 0 such that

|Φ(z) − Φ(w)| ≤ Lx‖z − w‖, ∀z,w ∈ Vx.

Let Φ0(x; z) be the generalized directional derivative of Φ at x along the direction z, i.e.,

Φ0(x; z) := lim sup
w→x,t→0+

Φ(w + tz) − Φ(w)
t

.

The generalized gradient of the function Φ at x, denoted by ∂Φ(x), is the set

∂Φ(x) := {x∗ ∈ X∗ : 〈x∗, z〉 ≤ Φ0(x; z), ∀z ∈ X}.

The mapping z 7→ Φ0(x; z) is positively homogeneous and sub-additive, thus, due to the Hahn-Banach
theorem, the set ∂Φ(x) is nonempty. In the sequel, we state the main properties of the generalized
directional derivatives and the generalized gradients:

1) For each x ∈ X, ∂Φ(x) is a nonempty, convex in addition to weak∗ compact subset of X∗.
2) For each x, z ∈ X, Φ0(x, z) is upper semicontinuous on X × X.
3) For each x, z ∈ X, we have Φ0(x; z) = max{〈x∗, z〉; x∗ ∈ ∂Φ(x)}.
4) If Φ attains a local minimum or maximum at x, then 0 ∈ ∂Φ(x).
5) The function mΦ(x) = min{‖x∗‖X∗ , x∗ ∈ ∂Φ(x)} exists and is lower semi-continuous.

Let Ψ : X → R∪ {+∞} be convex, proper, and lower semi-continuous. Set DΨ = {x ∈ X : Φ(x) < +∞},
then Ψ is continuous in int(DΨ) (see [8]). To simplify notation, denote by ∂Ψ(x) the subdifferential
of Ψ at the point x ∈ X in the sense of convex analysis, while D∂Ψ = {x ∈ X : ∂Ψ(x) , ∅}. By [8],
int(DΨ) = int(D∂Ψ), ∂Ψ(x) is convex and weak∗ closed.

Let f be a function on X satisfying the hypothesis(H f ), a ∈ R. Define

Ka( f ) = {x ∈ X : f (x) = a, x is a critical point of f },

f a = {x ∈ X : f (x) ≥ a}, fa = {x ∈ X : f (x) ≤ a}.

For every ε, r > 0, we introduce the set

Fr
a,ε = {x ∈ X : ‖x‖ ≤ r + 1, and | f (x) − a| ≤ ε},

it is easy to see that Fr
a,ε is closed.
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3. A deformation result

In this section we establish a deformation lemma for the functions satisfying the hypothesis (H f ).

Lemma 3.1. Suppose x ∈ int(DΨ). Then for every xn → x in X and every z∗n ∈ ∂Ψ(xn), n ∈ N, there
exists z∗ ∈ ∂Ψ(x) as well as a subsequence {z∗rn

} of {z∗n} such that z∗rn
⇀ z∗ in X∗.

For the proof the reader could refer to [21, Remark 2.1].

Lemma 3.2. Let f be a function satisfying (H f ). Assume that there exist constants ε > 0, r > 0 and
a ∈ R such that Fr

a,ε , ∅, Fr
a,ε ⊆ int(DΨ), and

inf{‖x∗ + z∗‖ : x∗ ∈ ∂Φ(x), z∗ ∈ ∂Ψ(x), x ∈ Fr
a,ε} > 2ε.

Then for every x ∈ Fr
a,ε , there exists ξx ∈ X such that

‖ξx‖ = 1, 〈x∗ + z∗, ξx〉 > 2ε, for all x∗ ∈ ∂Φ(x), z∗ ∈ ∂Ψ(x). (3.1)

Proof . Since inf{‖x∗ + z∗‖ : x∗ ∈ ∂Φ(x), z∗ ∈ ∂Ψ(x), x ∈ Fr
a,ε} > 2ε, there exists an ε0 > 0 such that

for every x ∈ Fr
a,ε , x

∗ ∈ ∂Φ(x), z∗ ∈ ∂Ψ(x), we have ‖x∗ + z∗‖X∗ ≥ 2ε + ε0.
Fix an x ∈ Fr

a,ε , since ∂Φ(x) and ∂Ψ(x) are nonempty and convex, so is ∂Φ(x) + ∂Ψ(x). As X is
reflexive, ∂Φ(x) is weak∗ compact and ∂Ψ(x) is weak∗ closed, then ∂Φ(x) + ∂Ψ(x) is closed.

Note that 0 < ∂Φ(x) + ∂Ψ(x). By [2, Corollary 3.20], we have u∗ ∈ ∂Φ(x), v∗ ∈ ∂Ψ(x) satisfying

Bδ∗ ∩ (∂Φ(x) + ∂Ψ(x)) = ∅, where δ∗ = ‖u∗ + v∗‖X∗ > 0.

Now the Hahn-Banach theorem provides a point ξx ∈ X with ‖ξx‖ = 1 and whenever x∗ ∈ ∂Φ(x), z∗ ∈
∂Ψ(x),

〈x∗ + z∗, ξx〉 ≥ 〈w∗, ξx〉, ∀ w∗ ∈ Bδ∗ .

Since ‖u∗ + v∗‖X∗ = ‖u∗ + v∗‖X∗‖ξx‖ = max
{
〈w∗, ξx〉,w∗ ∈ Bδ∗

}
, the above inequality and Lemma 3.1

lead to
〈x∗ + z∗, ξx〉 ≥ ‖u∗ + v∗‖X∗ ≥ 2ε + ε0 > 2ε, ∀ x∗ ∈ ∂Φ(x), z∗ ∈ ∂Ψ(x).

The proof is completed. �

Lemma 3.3 Under the conditions of Lemma 3.2, for every x ∈ Fr
a,ε , there exists a δx > 0 such that

〈x∗ + z∗, ξx〉 > 2ε, ∀ x∗ ∈ ∂Φ(x′), z∗ ∈ ∂Ψ(x′′), ∀ x′, x′′ ∈ B(x, δx), (3.2)

where ξx is given by Lemma 3.2.
Proof . If the conclusion were false, then we could find x ∈ Fr

a,ε , {x
′

n}, {x
′′
n } ⊆ X and {x∗n}, {z

∗
n} ⊆ X∗ such

that
x
′

n → x, x∗n ∈ ∂Φ(x′n), ∀ n ∈ N; (3.3)

x
′′

n → x, z∗n ∈ ∂Ψ(x′′n ), ∀ n ∈ N; (3.4)

〈x∗n + z∗n, ξx〉 ≤ 2ε, ∀ n ∈ N. (3.5)
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Due to the reflexivity of X and (3.3), Proposition 2.1.2 of [22] yields x∗ ∈ X∗ such that x∗n ⇀ x∗ in X∗,
where a subsequence is considered when necessary, while Proposition 2.1.5 of [22] forces x∗ ⊆ ∂Φ(x).
Since x ∈ Fr

a,ε ⊆ int(DΨ) = int(D∂Ψ), combining (3.4) with Lemma 3.1, we obtain, up to
subsequences, z∗n ⇀ z∗ for some z∗ ∈ ∂Ψ(x). Now from (3.5) it follows, as n→ +∞, 〈x∗ + z∗, ξx〉 ≤ 2ε.
However, this contradicts (3.1). �

Theorem 3.4 Let f be a function satisfying (H f ), assume that there exist constants ε > 0, r > 0 and
a ∈ R such that Fr

a,ε , ∅, F
r
a,ε ⊆ int(DΨ), and

inf{‖x∗ + z∗‖ : x∗ ∈ ∂Φ(x), z∗ ∈ ∂Ψ(x), x ∈ Fr
a,ε} > 2ε.

Then there exists a continuous mapping η : X → X with the following properties:

(1) η : X → X is a homeomorphism;

(2) η(x) = x whenever | f (x) − a| ≥ 2ε;
(3) ‖η(x) − x‖ ≤ 1, ∀x ∈ X;
(4) f (η(x)) ≤ f (x), ∀x ∈ X;
(5) η(DΨ) ⊆ DΨ;
(6) f (η(x)) ≤ a − ε, ∀ x ∈ X provided ‖x‖ ≤ r and f (x) ≤ a + ε.

Proof . The family of balls B = {B(x, δx) : x ∈ Fr
a,ε} constructed through Lemma 3.3 represents an

open covering of Fr
a,ε , and the assumptions ensure that Fr

a,ε is a nonempty para-compact set because it
is closed. So B possesses an open locally finite refinement V = {Vi; i ∈ I}. Moreover, to each i ∈ I
there corresponds ξi ∈ X such that ‖ξi‖ = 1 as well as

〈x∗ + z∗, ξi〉 > 2ε, ∀ x∗ ∈ ∂Φ(x′), z∗ ∈ ∂Ψ(x′′), ∀ x′, x′′ ∈ Vi. (3.6)

Shrink V to an open locally finite covering W = {Wi; i ∈ I} fulfilling for every i ∈ I, Wi ⊆ Vi

( [9, Theorems VIII 2.2 and Theorems VII 6.1]) with Wi is convex, and f |Wi(·) is Lipschitz continuous
satisfying

a − 2ε < f (x) < a + 2ε, ∀ x ∈ Wi. (3.7)

Set

W =
⋃
i∈I

Wi, di(x) = d(x, X\Wi),

ρi(x) =
di(x)∑
j∈I d j(x)

, ∀ x ∈ W, i ∈ I,

Θ(x) =


∑
i∈I

ρi(x)ξi, if x ∈ W,

0, otherwise,

l(x) =
d(x, X\W)

d(x, X\W) + d(x, Fr
a,ε)

, ∀ x ∈ X,

V(x) = l(x)Θ(x), ∀ x ∈ X,
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V(x) = l(x)Θ(x), ∀ x ∈ X.

We observe that V : X → X is locally Lipschitz continuous and

‖V(x)‖ ≤ 1, ∀ x ∈ X. (3.8)

The existence-uniqueness theorem for ordinary differential equations provides a mapping σ ∈ C0(R ×
X, X) such that

dσ(t, x)
dt

= −V(σ(t, x)), ∀ (t, x) ∈ R × X, σ(0, x) = x.

We claim that

for every x ∈ X, the function t 7→ f (σ(t, x)) is non-increasing on R. (3.9)

In fact, if x ∈ X \ W, V(x) = 0 and thus σ(·, x) is constant and (3.9) holds true. In the case x ∈ W,
we start by noting that σ(R, x) ⊆ W. Indeed setting T = sup{t > 0 : σ((−t, t), x) ⊆ W}, assume by
contradiction that T < +∞. Hence we have Wx = σ(T, x) = limt→T− σ(t, x) ∈ ∂W. Then the Cauchy
problem

dσ̃(t)
dt

= −V(σ̃(t)), ∀ t ∈ R, σ̃(T ) = Wx

admits the constant solution σ̃(·) ≡ Wx, as does t 7→ σ(t, x) for t ≤ T , which is against the uniqueness
of solutions.

Fixing t ∈ R, we know that σ(t, x) ∈ W and due to the local finiteness of W, the set J = {i ∈ I :
σ(t, x) ∈ Wi} is finite. It follows that W̃ = ∩i∈JWi is a convex, open neighborhood of σ(t, x), and there
exists δ > 0 such that

σ((t − δ, t + δ), x) ⊆ W̃, and σ((t − δ, t + δ), x)
⋂

(
⋃
i∈I\J

Wi) = ∅. (3.10)

For arbitrary t′, t′′ ∈ (t − δ, t + δ) with t′ < t′′. Lebourg’s mean value theorem provides
y ∈ (σ(t′, x), σ(t′′, x)), x∗ ∈ ∂Φ(y), z∗ ∈ ∂Ψ(y) satisfying

f (σ(t′, x)) − f (σ(t′′, x)) = 〈x∗ + z∗, σ(t′′, x) − σ(t′, x)〉

= −

∫ t′′

t′
〈x∗ + z∗,V(σ(τ, x))〉dτ

< −2ε
∫ t′′

t′
l(σ(τ, x))

∑
j∈J

ρ j(σ(τ, x))dτ

= −2ε
∫ t′′

t′
l(σ(τ, x))dτ,

where (3.6) and (3.10) have been used. Given p, q ∈ [t, t + 1] with p < q, a standard compactness
argument and the above estimate enable us to find t1, t2, ..., ts ∈ [t, t + 1] with p = t1 < t2 < ... < ts = q
such that

f (σ(ti, x)) − f (σ(ti−1, x)) < −2ε
∫ ti

ti−1

l(σ(τ, x))dτ,

AIMS Mathematics Volume 5, Issue 5, 4466–4481.



4472

for all i = 1, 2, ..., s. It turns out that

f (σ(q, x)) − f (σ(p, x)) =

s∑
i=1

[ f (σ(ti, x)) − f (σ(ti−1, x))]

< −2ε
∫ q

p
l(σ(τ, x))dτ < 0,

(3.11)

which establish (3.9). Now we define

η(x) = σ(1, x), ∀ x ∈ X.

From the general theory of ordinary differential equations it is well known that η : X → X is a
homeomorphism.

Since (3.7) renders {x ∈ X : | f (x) − a| ≥ 2ε} ⊆ X \ W when x ∈ X \ W, V(x) = 0, thus σ(·, x) is
constant, and η(x) = σ(1, x) = σ(0, x) = x. We then deduce property (2).

From (3.8), for all x ∈ X, we have

‖η(x) − x‖ = ‖σ(1, x) − σ(0, x)‖ = ‖

∫ 1

0
V(σ(τ, x))dτ‖

≤

∫ 1

0
‖V(σ(τ, x))‖dτ ≤ 1,

i.e., property (3) holds true.
Since f (η(x)) = f (σ(1, x)) ≤ f (σ(0, x)) = f (x), for all x ∈ X, the property (4) holds true.
For every x ∈ DΨ, there is f (x) < +∞. Since (4) holds, f (η(x)) ≤ f (x) < +∞, so η(x) ∈ DΨ. i.e.

η(DΨ) ⊆ DΨ, (5) holds true.
In order to prove (6), let x ∈ X with ‖x‖ ≤ r and f (x) ≤ a + ε. If f (x) ≤ a − ε, (6) follows from (4)

immediately. In case a − ε < f (x) ≤ a + ε, we argue by contradiction. Suppose

a − ε < f (η(x)) = f (σ(1, x)) ≤ f (σ(t, x)) ≤ f (x) ≤ a + ε, ∀ t ∈ [0, 1]. (3.12)

In addition, through (3.8), for all t ∈ [0, 1] we have

‖σ(t, x)‖ ≤ ‖x‖ + ‖σ(t, x) − x‖ ≤ r + ‖

∫ t

0

dσ(τ, x)
dτ

dτ‖

≤ r +

∫ t

0
‖V(σ(τ, x))‖dτ ≤ r + 1.

Consequently, σ([0, 1], x) ⊆ Fr
a,ε , which forces l(σ(·, x))|[0,1] ≡ 1. Then (3.11) with p = 0 and q = 1

reads as
f (η(x)) − f (x) < −2ε. (3.13)

Combining (3.12) and (3.13) gives

a − ε < f (η(x)) < f (x) − 2ε ≤ a − ε,

which is a contradiction. �
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4. Existence of critical points

Fix v0, v1 ∈ DΨ. Consider the following set of paths

Γ = {γ ∈ C0([0, 1], X) : γ(0) = v0, γ(1) = v1}, (4.1)

and a function f : X → R ∪ {+∞} which verifies hypothesis (H f ). Set

c = inf
γ∈Γ

sup
t∈[0,1]

f (γ(t)). (4.2)

Theorem 4.1 Suppose f : X → R ∪ {+∞} satisfies (H f ) and (PS ) f . Assume in addition that

(i1) f is bounded below and coercive, and put α = infx∈X f (x);
(i2) α < max{ f (v0), f (v1)} ≤ c, v0 , v1 and for every γ ∈ Γ, there exists t ∈ (0, 1) such that

f (γ(t)) ≥ max{ f (v0), f (v1)};
(i3) for every a ∈ R, there exist r > 0 and ε0 > 0 such that Fr

a,ε0
⊆ int(DΨ).

Then the function f possesses at least two critical points.
Proof. Since f is coercive, for every x ∈ X with c− 1 ≤ f (x) ≤ c + 1, there exists a constant k such that

‖x‖ ≤ k. (4.3)

From (i3), for c and k > 0, there is ε0 > 0 such that

Fk
c,ε0
⊆ int(DΨ). (4.4)

Without loss of generality, we assume ε0 < 1. Let

cε = inf
γ∈Γ

sup
t∈[0,1]

[ f (γ(t)) + εd(t)], (4.5)

where 0 < ε < 1
2ε0 is arbitrary, and d(t) = min{t, 1 − t}, t ∈ [0, 1].

From (i2), we can easily verify that
c ≤ cε < c + ε.

Since for every γ ∈ Γ, there exists t0 ∈ (0, 1) such that f (γ(t0)) ≥ max{ f (v0), f (v1)}, one has

sup
t∈[0,1]

( f (γ(t)) + εd(t)) ≥ f (γ(t0)) + εd(t0) > f (γ(t0)) ≥ max{ f (v0), f (v1)},

thus cε > max{ f (v0), f (v1)} for every ε ∈ (0, 1
2ε0).

We claim that for every ε ∈ (0, 1
2ε0) satisfying that ε < 1

2 (cε −max{ f (v0), f (v1)}) there holds

inf{‖x∗ + z∗‖ : x∗ ∈ ∂Φ(x), z∗ ∈ ∂Ψ(x), x ∈ Fk
cε ,ε} ≤ 2ε. (4.6)

Due to the definition of ε̂, for every ε ∈ (0, ε̂), we have

c − ε0 < c − ε < cε − ε ≤ f (x) ≤ cε + ε < c + 2ε < c + ε0

and ‖x‖ ≤ k. It is straightforward to verify that Fk
cε ,ε ⊆ int(DΨ).
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To show (4.6), we argue by contradiction. If it was not true, then we would find ε ∈ (0, ε̂) for
which Theorem 3.4 can be applied with a = cε and r = k. So there would exist a continuous mapping
η : X → X with the properties (1)–(6) formulated in Theorem 3.4. By the definition of ε̂, there is γε ∈ Γ

such that
cε ≤ sup

t∈[0,1]
[ f (γε(t)) + εd(t)] < cε + ε,

which easy to verify that
cε − ε < sup

t∈[0,1]
f (γε(t)) < cε + ε,

and use the definition of ε̂ again, it is straightforward to verify that η(γε(·)) ∈ Γ for every ε. Hence, in
view of (4.5), we may consider a sequence {sε} in [0, 1] such that

cε − ε < f (η(γε(sε))), cε − ε < f (γε(sε)) < cε + ε. (4.7)

Since cε + ε < c + 2ε < c + 1 and cε − ε > c − ε > c − 1, it implies that ‖γε(sε)‖ ≤ k.
Exploiting (4.7) and property (6), we achieve the contradiction

cε − ε < f (η(γε(sε))) ≤ cε − ε.

thereby (4.6) holds true.
By virtue of (4.6), for every x ∈ X and all n ∈ N sufficiently large, there exists xn ∈ Fk

c 1
n
, 1

n
, x∗n ∈

∂Φ(xn), z∗n ∈ ∂Ψ(xn) such that

‖x∗n + z∗n‖ <
3
n
,

and
c −

1
n
< c 1

n
−

1
n
≤ f (xn) ≤ c 1

n
+

1
n
< c +

2
n
.

This guarantees that

‖xn‖ ≤ k + 1, c −
1
n
< f (xn) < c +

2
n
,

and
Φ0(xn; x − xn) + Ψ(x) − Ψ(xn) ≥ 〈x∗n + z∗n, x − xn〉

≥ −‖x∗n + z∗n‖‖x − xn‖

> −
3
n
‖x − xn‖.

Since f satisfies the (PS ) f condition, there is an x ∈ X such that xn → x in X, where a subsequence
is considered when necessary. At this point, x is a critical point of f , and x ∈ Kc( f ).

Next we prove that f possesses a global minimum point x0 ∈ X. Since by (i1) and the condition
(PS ) f , each minimizing sequence for f possesses a convergent subsequence (see [16]), the function f
must attain its minimum at some point x0 ∈ X.

Due to f (x0) = α < c = f (x̄), x0 , x̄, which completes the proof. �

Remark 4.2 By the above proof, one can find that under the conditions of Theorem 4.1, when a ≥ α,
there exist r > 0, ε > 0 such that Fr

a,ε , ∅. By the coercivity of f , if Ψ is convex and continuous, the
condition (i3) obviously holds.
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5. An application

In this section we use Theorem 4.1 to discuss an elliptic variational-hemivariational inequality in
the sense of Panagiotopoulos [24].

Let Ω be a nonempty, bounded, open subset of RN (N ≥ 3) with smooth boundary ∂Ω. Denote by
H1

0(Ω) the usual Sobolev space with norm

‖u‖ = (
∫

Ω

|∇u(x)|2dx)
1
2 .

It’s well known that for p ∈ [1, 2∗], 2∗ = 2N/(N − 2), there exists a positive constant Cp such that

‖u‖Lp(Ω) ≤ Cp‖u‖, u ∈ H1
0(Ω). (5.1)

Given a function a ∈ L∞(Ω) satisfying a(x) ≥ 0 for a.e. x ∈ Ω. Let

β = ess inf
x∈Ω

a(x) ≥ 0.

If g : R→ R satisfies the condition

(g1) g is locally bounded and measurable.

Then the functions G : R→ R and G : H1
0(Ω)→ R given by

G(ξ) =

∫ ξ

0
−g(t)dt, ∀ ξ ∈ R,

G(u) =

∫
Ω

G(u(x))dx, ∀ u ∈ H1
0(Ω),

respectively, are well defined and locally Lipschitz continuous. So it makes sense to consider their
generalized directional derivatives G0 and G0. On account of [22, formula(9), P.84] one has

G0(u; v) ≤
∫

Ω

G0(u(x); v(x))dx, u, v ∈ H1
0(Ω). (5.2)

We will further assume

(g2) lim
t→0

g(t)
t = 0;

(g3) lim sup
|t|→+∞

g(t)
t ≤ 0;

(g4) there exists a ξ0 ∈ R such that G(ξ0) < 0.

Through (g3) for every ε > 0 there exists a constant r > 0 such that

g(t) ≤ εt, for all |t| ≥ r. (5.3)

Since g is locally bounded, we also have

M = sup
t∈[−r,r]

|g(t)| < +∞. (5.4)

Let λ > 0, µ(Ω) be the Lebesgue measure of Ω. Define

rλ =
√

4λ + 2Mrµ(Ω).

A set Kλ ⊆ H1
0(Ω) is called of type (Kg

λ) provided
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(Kg
λ) : Kλ is convex and closed in H1

0(Ω). Moreover, Brλ ⊆ Kλ.

Given λ > 0 and Kλ satisfying (Kg
λ), consider the elliptic variational-hemivariational inequality

problems:
(Pλ) : Find u ∈ Kλ such that for all v ∈ Kλ,

−

∫
Ω

∇u(x)∇(v − u)(x)dx −
∫

Ω

a(x)u(x)(v − u)(x)dx ≤ λG0(u; v − u).

Due to (5.2), any solution u of (Pλ) also fulfills the inequality

−

∫
Ω

∇u(x)∇(v − u)(x)dx −
∫

Ω

a(x)u(x)(v − u)(x)dx

≤ λ

∫
Ω

G0(u(x); (v − u)(x))dx, for all v ∈ Kλ.

If g is continuous and Kλ = H1
0(Ω), the function u ∈ H1

0(Ω) turns out a weak solution to the Dirichlet
problem  − 4u + a(x)u = λg(u), in Ω,

u = 0, on ∂Ω,

which has been previously investigated in [3, 14] under more restrictive conditions.

Theorem 5.1 Suppose (g1)− (g4) hold true. Then, for every λ sufficiently large, problem (Pλ) possesses
at least two solutions.
Proof . Let X = H1

0(Ω), p ∈ (2, 2∗). Define a functional f (u) = Φ(u) + Ψ(u) on X as follows:

Φ(u) =
1
2

∫
Ω

(|∇u(x)|2 + a(x)u(x)2)dx + λG(u)

as well as

Ψ(u) =

 0, if u ∈ Kλ,

+∞, otherwise,

where λ > 0 and Kλ ⊆ H1
0(Ω) is of type (Kg

λ). Owing to (g1) the function Φ : X → R turns out locally
Lipschitz continuous. Consequently, f satisfies condition (H f ).

We shall prove that f is bounded from below and coercive.
By (5.3) and (5.4), one has ∫ ξ

0
g(t)dt ≤ Mr +

ε

2
ξ2, ∀ ξ ∈ R. (5.5)

Which clearly implies
G(u) ≥ −Mrµ(Ω) −

ε

2
‖u‖2L2(Ω), ∀ u ∈ X.

Then we obtain
f (u) ≥ Φ(u) ≥

1
2
‖u‖2 +

β

2
‖u‖2L2(Ω) −

λε

2
‖u‖2L2(Ω) − λMrµ(Ω)

=
ε

2
‖u‖2 +

1
2

(β − ελ)‖u‖2L2(Ω) − λMrµ(Ω).
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Setting ε ∈ (0, β
λ
), then we have

f (u) ≥
1
2
‖u‖2 − λMrµ(Ω), ∀ u ∈ X, (5.6)

which shows the claim.
Let us next show that the function f satisfies condition (PS ) f . Pick a sequence {un} ⊆ X such that

{ f (un)} is bounded and
Φ0(un; v − un) + Ψ(v) − Ψ(un) ≥ −εn‖v − un‖. (5.7)

for all n ∈ N, v ∈ X, where εn → 0+.
By (5.7) one evidently has {un} ⊆ Kλ, and { f (un)} is bounded. Since f is coercive, the sequence {un}

turns out bounded. Passing to a subsequence if necessary, we suppose un ⇀ u in X and un → u in
L2(Ω). The point u belongs to Kλ because this set is weakly closed.

Exploiting (5.7) with v = u, we then get∫
Ω

∇un(x)∇(u − un)(x)dx +

∫
Ω

a(x)un(x)(u − un)(x)dx

+ λG0(un; u − un) ≥ −εn‖u − un‖,

(5.8)

for all n ∈ N.
From un ⇀ u in X it follows

lim
n→+∞

∫
Ω

a(x)un(x)(u − un)(x)dx = 0. (5.9)

The upper semi-continuity of G0 on L2(Ω) × L2(Ω) forces

lim sup
n→+∞

G0(un; u − un) ≤ G0(u; 0) = 0. (5.10)

Taking account of (5.9), (5.10) besides {‖u − un‖} is bounded, and letting n → +∞, inequality (5.8)
yields

lim sup
n→+∞

∫
Ω

|∇un(x)|2dx ≤
∫

Ω

∇|u(x)|2dx.

Hence, thanks to [2, Proposition III.3], un → u in X. i.e., (PS )a holds.
By (g4), we can construct an u0 ∈ X such that G(u0) < 0. Moreover, u0 ∈ Brλ for any λ ≥ 1

4‖u0‖
2.

Therefore, infu∈X f (u) ≤ f (u0) < 0 provided

λ > max
{1
4
‖u0‖

2,−
1

2G(u0)

∫
Ω

(|∇u0(x)|2 + a(x)u0(x)2)dx
}
,

while f (0) = λG(0) = 0.
Our next objective is to verify (i1). From (g2), there exists σ ∈ (0, r) such that∫

|u(x)|<σ
[
∫ u(x)

0
g(t)dt]dx ≤

ε

2

∫
Ω

|u(x)|2dx. (5.11)
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Due to (5.5), one has

G(ξ) ≥ −Mr −
ε

2
ξ2 ≥ −(

Mr
σp +

ε

2σp−2 )|ξ|p,

provided |ξ| ≥ σ.
The Sobolev embedding theorem gives∫

|u(x)|≥σ
G(u(x))dx ≥ −(

Mr
σp +

ε

2σp−2 )‖u‖p
Lp(Ω) ≥ −C∗‖u‖p, (5.12)

where C∗ = ( Mr
σp + ε

2σp−2 )Cp
p. Then by (5.11) (5.12) and (5.1) we get

G(u) =

∫
|u(x)|<σ

[
∫ u(x)

0
−g(t)dt]dx +

∫
|u(x)|≥σ

G(u(x))dx

≥ −
ε

2
C2

2‖u‖
2 −C∗‖u‖p

= −‖u‖2(
ε

2
C2

2 + C∗‖u‖p−2),∀u ∈ X.

(5.13)

Let us next prove that for a suitable constant θ > 0,∫
Ω

(|∇u(x)|2 + a(x)u(x)2)dx ≥ θ
∫

Ω

|∇u(x)|2dx, ∀ u ∈ X. (5.14)

Indeed, if it’s not true, there exists a sequence {un} ⊆ X enjoying the properties

‖un‖ = 1, n ∈ N,∫
Ω

(|∇un(x)|2 + a(x)un(x)2)dx <
1
n
, ∀ n ∈ N. (5.15)

Passing to a subsequence if necessary, we may suppose un ⇀ u in X as well as un → u in L2(Ω). Thus,
letting n→ +∞ in (5.15) yields ∫

Ω

(|∇u(x)|2 + a(x)u(x)2)dx ≤ 0. (5.16)

Using the sobolev embedding theorem and β = ess infx∈Ω a(x) ≥ 0 we obtain

(
1

C2
2

+ β)‖u‖2L2(Ω) ≤

∫
Ω

(|∇u(x)|2 + a(x)u(x)2)dx. (5.17)

Gathering (5.16) and (5.17) together, leads to u = 0. By (5.15) this forces un → 0 in X, against to
‖un‖ = 1,∀n ∈ N.

Combining (5.14) with (5.13), provides

f (u) ≥ ‖u‖2(
θ

2
− λ(

ε

2
C2

2 + C∗‖u‖p−2)), ∀ u ∈ X. (5.18)

Pick ε > 0 and R ∈ (0, 1
2‖u0‖) sufficiently small such that

θ

2
− λ(

ε

2
C2

2 + C∗Rp−2) > 0.
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Then by (5.18) we have
f (u) ≥ 0, ∀ u ∈ BR. (5.19)

Furthermore, it is easy to prove that R < 1
2‖u0‖ < rλ.

Now, let v0 = 0, v1 = u0. Define

Γ = {γ ∈ C0([0, 1], X) : γ(0) = v0, γ(1) = v1},

c = inf
γ∈Γ

sup
t∈[0,1]

f (γ(t)).

Thanks to (5.19) and the definition of c, one has

c ≥ 0 = max{ f (v0), f (v1)},

and for every γ ∈ Γ, there exists a t ∈ (0, 1) such that γ(t) ∈ X and ‖γ(t)‖ = R. Then by (5.19) again,
we obtain f (γ(t)) ≥ 0. Hence hypothesis (i1) of Theorem 4.1 is fulfilled.

Finally, let us prove that (i3) holds. Since f is bounded below, put α = infx∈X f (x), then α < 0 ≤ c.
For every a ≥ α suppose that a < λ, then there exist r > 0 and ε0 > 0 such that

Fr
a,ε0
⊆ int(DΨ). (5.20)

Indeed, there is ε0 > 0 such that a + ε0 ≤ λ < 2λ.
Inequality (5.6) ensures that

{u ∈ X : f (u) ≤ a + ε0} ⊆ {u ∈ X : f (u) ≤ λ}

$ {u ∈ X : ‖u‖ < rλ} ⊆ Brλ ⊆ DΨ.

So we immediately have {u ∈ X : f (u) ≤ a + ε0} ⊆ int(DΨ).
Since f is coercive, there exists r > 0 such that every u ∈ X satisfies a − ε0 ≤ f (u) ≤ a + ε0, and

‖u‖ ≤ r + 1, which leads to (5.20), i.e., condition (i3) holds true.
We are now in a position to apply Theorem 4.1. By this theorem, there exist at least two points

u1, u2 ∈ X such that
Φ0(ui; v − ui) + Ψ(v) − Ψ(ui) ≥ 0, ∀ v ∈ X, i = 1, 2.

The choice of Ψ gives both ui ∈ Kλ and Φ0(ui; v − ui) ≥ 0, v ∈ Kλ, i = 1, 2. Namely, u1, u2 are
solutions to the problem (Pλ). �

Example 5.2 The aim of this example is to exhibit a nontrivial case of set in H1
0(Ω) of type (Kg

λ). Let
h : H1

0(Ω)→ R be a weakly continuous and convex function. For r̄ > 0 fixed, λ > 0, put

r̄λ =
√

4λ + 2Mr̄µ(Ω),

with the same notation as before. The ball B̄(0, r̄λ) is a weakly compact subset of H1
0(Ω), since h is

weakly continuous, there exists u0 ∈ B̄(0, r̄λ) such that

γ = max
u∈B̄(0,r̄λ)

h(u) = h(u0),
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i.e., hB̄(0,r̄λ) admits a global maximum. Then the set

Kλ := {u ∈ H1
0(Ω) : h(u) ≤ γ + 1}

is a subset of H1
0(Ω) of type (Kg

λ).

Example 5.3 There exist functionals satisfying the conditions of Theorem 5.1. For example

g(t) =

|t|(1 − e−t2), |t| ≤ 1,

t(e−t2 − 1), |t| > 1.
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