Research article

On oscillatory second order impulsive neutral difference equations

  • Received: 12 October 2019 Accepted: 01 March 2020 Published: 06 March 2020
  • MSC : 39A10, 39A12, 39A21

  • The present paper deals with the problem of oscillation for a class of second order nonlinear neutral impulsive difference equations with fixed moments of impulse effect. The technique employed here is due to the classical impulsive inequalities. Some examples are given to illustrate our results.

    Citation: Gokula Nanda Chhatria. On oscillatory second order impulsive neutral difference equations[J]. AIMS Mathematics, 2020, 5(3): 2433-2447. doi: 10.3934/math.2020161

    Related Papers:

  • The present paper deals with the problem of oscillation for a class of second order nonlinear neutral impulsive difference equations with fixed moments of impulse effect. The technique employed here is due to the classical impulsive inequalities. Some examples are given to illustrate our results.


    加载中


    [1] R. P. Agarwal, M. Bohner, S. R. Grace, et al. Discrete Oscillation Theory, Hindawi Publishing Corporation, New York, 2005.
    [2] M. Bohner, T. Li, Oscillation of second order p-Laplace dynamic equations with a nonpositive neutral coefficient, Appl. Math. Lett., 37 (2014), 72-76. doi: 10.1016/j.aml.2014.05.012
    [3] Y. Huang, J. Wang, T. Li, Oscillation of second order difference equations, J. Nonlinear Sci. Appl., 10 (2017), 1238-1243. doi: 10.22436/jnsa.010.03.32
    [4] V. Lakshmikantham, D. D. Bainov, P. S. Simieonov, Oscillation Theory of Impulsive Differential Equations, World Scientific, Singapore, 1989.
    [5] Q. L. Li, Z. G. Zhang, F. Gou, et al. Oscillation criteria for third-order difference equations with impulses, J. Comput. Appl. Math., 225 (2009), 80-86. doi: 10.1016/j.cam.2008.07.002
    [6] T. Li, S. H. Saker, A note on oscillation criteria for second-order neutral dynamic equations on isolated time scales, Commun. Nonlinear Sci. Numer. Simul., 19 (2014), 4185-4188. doi: 10.1016/j.cnsns.2014.04.015
    [7] W. Lu, W. G. Ge, Z. H. Zhao, Oscillatory criteria for third-order nonlinear difference equations with impulses, J. Comput. Appl. Math., 234 (2010), 3366-3372. doi: 10.1016/j.cam.2010.04.037
    [8] M. Peng, Oscllation theorems for second order nolnlinear neutral dealy difference equations with impulses, Comput. Math. Appl., 44 (2002), 741-749. doi: 10.1016/S0898-1221(02)00187-6
    [9] M. Peng, Oscillation criteria for second-order impulsive delay difference equations, Appl. Math. Comput., 146 (2003), 227-235.
    [10] I. Stamova, G. Stamov, Applied Impulsive Mathematical Models, MS Books in Mathematics, Springer, Switzerland, 2016.
    [11] Y. Tian, Y. Cai, T. Li, Existence of nonoscillatory solutions to second-order nonlinear neutral difference equations, J. Nonlinear Sci. Appl., 8 (2015), 884-892. doi: 10.22436/jnsa.008.05.38
    [12] A. K. Tripathy, On the oscillation of second order nonlinear neutral delay difference equations, Electron J. Qual. Theory Differ. Equ., 11 (2008), 1-12.
    [13] A. K. Tripathy, S. Panigrahi, On the oscillatory behaviour of a class of nonlinear delay difference equations of second order, Indian J. Pure Appl. Math., 42 (2011), 27-40. doi: 10.1007/s13226-011-0002-z
    [14] A. K. Tripathy, Oscillation criteria for a class of first order neutral impulsive differential-difference equations, J. Appl. Anal. Comput., 4 (2014), 89-101.
    [15] A. K. Tripathy, G. N. Chhatria, Oscillation criteria for forced first order nonlinear neutral impulsive difference system, Tatra Mt. Math. Publ., 71 (2018), 175-193.
    [16] A. K. Tripathy, G. N. Chhatria, On oscillatory first order neutral impulsive difference equations, Math. Bohem., 2019, 1-15.
    [17] A. K. Tripathy, G. N. Chhatria, Oscillation criteria for first order neutral impulsive difference equations with constant coefficients, Differ. Equ. Dyn. Syst., 2019, 1-14.
    [18] G. P. Wei, The persistance of nonoscillatory solutions of difference equation under impulsive perturbations, Comput. Math. Appl., 50 (2005), 1579-1586. doi: 10.1016/j.camwa.2005.08.025
    [19] H. Zhang, L. Chen, Oscillations criteria for a class of second-order impulsive delay difference equations, Adv. Complex Syst., 9 (2006), 69-76. doi: 10.1142/S0219525906000677
    [20] C. Zhang, R. P. Agarwal, M. Bohner, et al. New oscillation results for second-order neutral delay dynamic equations, Adv. Difference Equ., 2012 (2012), 1-14. doi: 10.1186/1687-1847-2012-1
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3042) PDF downloads(369) Cited by(1)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog