Research article

Subclass of Bazilevič functions of complex order

  • Received: 16 October 2019 Accepted: 26 February 2020 Published: 06 March 2020
  • MSC : 30C45, 30C50

  • In this paper, we define a class of analytic functions by using the concept of complex order. This class of analytic functions generalizes the class of Bazilevič functions. In the present work, we derive various useful properties and characteristics of this class such as coefficient bounds, Fekete-Szegö type inequality, arclength, integral preserving property, radius problem and some other interesting properties. Relevant connections of the results presented here with those obtained in earlier works are pointed.

    Citation: Mohsan Raza, Khalida Inayat Noor. Subclass of Bazilevič functions of complex order[J]. AIMS Mathematics, 2020, 5(3): 2448-2460. doi: 10.3934/math.2020162

    Related Papers:

    [1] K. R. Karthikeyan, G. Murugusundaramoorthy, N. E. Cho . Some inequalities on Bazilevič class of functions involving quasi-subordination. AIMS Mathematics, 2021, 6(7): 7111-7124. doi: 10.3934/math.2021417
    [2] Sadaf Umar, Muhammad Arif, Mohsan Raza, See Keong Lee . On a subclass related to Bazilevič functions. AIMS Mathematics, 2020, 5(3): 2040-2056. doi: 10.3934/math.2020135
    [3] Ala Amourah, B. A. Frasin, G. Murugusundaramoorthy, Tariq Al-Hawary . Bi-Bazilevič functions of order ϑ+iδ associated with (p,q) Lucas polynomials. AIMS Mathematics, 2021, 6(5): 4296-4305. doi: 10.3934/math.2021254
    [4] S. M. Madian . Some properties for certain class of bi-univalent functions defined by q-Cătaş operator with bounded boundary rotation. AIMS Mathematics, 2022, 7(1): 903-914. doi: 10.3934/math.2022053
    [5] Haiyan Zhou, K. A. Selvakumaran, S. Sivasubramanian, S. D. Purohit, Huo Tang . Subordination problems for a new class of Bazilevič functions associated with k-symmetric points and fractional q-calculus operators. AIMS Mathematics, 2021, 6(8): 8642-8653. doi: 10.3934/math.2021502
    [6] Muajebah Hidan, Abbas Kareem Wanas, Faiz Chaseb Khudher, Gangadharan Murugusundaramoorthy, Mohamed Abdalla . Coefficient bounds for certain families of bi-Bazilevič and bi-Ozaki-close-to-convex functions. AIMS Mathematics, 2024, 9(4): 8134-8147. doi: 10.3934/math.2024395
    [7] Gangadharan Murugusundaramoorthy, Luminiţa-Ioana Cotîrlă . Bi-univalent functions of complex order defined by Hohlov operator associated with legendrae polynomial. AIMS Mathematics, 2022, 7(5): 8733-8750. doi: 10.3934/math.2022488
    [8] Khalida Inayat Noor, Nazar Khan, Qazi Zahoor Ahmad . Coeffcient bounds for a subclass of multivalent functions of reciprocal order. AIMS Mathematics, 2017, 2(2): 322-335. doi: 10.3934/Math.2017.2.322
    [9] A. A. Azzam, Daniel Breaz, Shujaat Ali Shah, Luminiţa-Ioana Cotîrlă . Study of the fuzzy qspiral-like functions associated with the generalized linear operator. AIMS Mathematics, 2023, 8(11): 26290-26300. doi: 10.3934/math.20231341
    [10] Halit Orhan, Nanjundan Magesh, Chinnasamy Abirami . Fekete-Szegö problem for Bi-Bazilevič functions related to Shell-like curves. AIMS Mathematics, 2020, 5(5): 4412-4423. doi: 10.3934/math.2020281
  • In this paper, we define a class of analytic functions by using the concept of complex order. This class of analytic functions generalizes the class of Bazilevič functions. In the present work, we derive various useful properties and characteristics of this class such as coefficient bounds, Fekete-Szegö type inequality, arclength, integral preserving property, radius problem and some other interesting properties. Relevant connections of the results presented here with those obtained in earlier works are pointed.


    Let A be the class of functions f of the form

    f(z)=z+n=2anzn, (1.1)

    which are analytic in the open unit disk E={z:|z|<1}. If f(z) and g(z) are analytic in E, we say f(z) is subordinate to g(z), written fg or f(z)g(z). If there exists a Schwarz function w(z), w(0)=0 and |w(z)|<1 in E then f(z)=g(w(z)). Let P(b), b0 (complex) denote the class of analytic functions

    p(z)=1+n=1pnzn, (1.2)

    such that 1+1b{p(z)1}P, where P is the well-known class of analytic functions with positive real part. The class P(b) is defined by Nasr and Aouf [15].

    Let S(γ), 0γ<1 is the class of starlike univalent functions

    g(z)=z+n=2bnzn, (1.3)

    of order γ such that Rezg(z)g(z)>γ, zE. This class was introduced by Robertson, for details, see [8].

    The class of Bazilevič functions in the open unit disc E was first introduced by Bazilevič [3] in 1955. He defined Bazilevič functions by the relation

    f(z)={(α+iβ)z0gα(t)p(t)tiβ1dt}1α+iβ, (1.4)

    where pP, gS, α>0 and β is any real. The class of Bazilevič function is the largest family of univalent function. Bazilevič showed that the class of Bazilevič function is univalent in E. Except this, a very little is known regarding the family as a whole. Indeed, it is easy to verify that, with special choices of the parameters and and the function g(z), the class of Bazilevič functions reduces to some well-known subclasses of univalent functions. By choosing g(z)=z and β=0, Singh [21] studied the class B1(α) of Bazilevič functions. Recently, some authors have find coefficient bounds for this class of functions. In particular, Cho et al. [6] have studied coefficient difference for the class of Bazilevič functions. Fifth and sixth coefficient bounds for the subclass B1(α) have been found by Cho and Kumar [5], and Marjono et al. [14]. For some more work, see [1,7,9,11,12,19,20]. In 1979 Campbell and Pearce [4]generalized the class of Bazilevi č functions by means of differential equation

    1+zf(z)f(z)+(α+iβ1)zf(z)f(z)=αzg(z)g(z)+zp(z)p(z)+iβ. (1.5)

    They associate each generalized Bazilevič function f with the quadruple (α,β,g,p), where gS and pP, α>0 and β any real.

    Definition 1.1. Let S(γ) be the class of functions g of the form (1.3) and let P(b), b0 (complex) be the class of normalized functions p defined by (1.2). Then a function f of the form (1.1), analytic in E, belongs to the generalized Bazilevič functions associated with the quadruple (α,β,g,p) if and only if f satisfies (1.5) or

    zf(z)f(z)=(g(z)z)α(zf(z))α+iβp(z),zE.

    The above differential equation can be written as

    z1iβf(z)f1(α+iβ)(z)gα(z)=p(z). (1.6)

    Since pP(b), therefore we can write

    1+1b{z1iβf(z)f1(α+iβ)(z)gα(z)1}P,

    where gS(γ), 0γ<1, α>0  and β is any real.

    We have the following special cases.

    (ⅰ) For γ=0, we have the class of Bazilevič functions of complex order, defined by Noor [16].

    (ⅱ) For γ=0, b=1, we obtain the generalized Bazilevič functions defined in [4].

    In this paper, we study the class of functions (α,β,g,p). We study coefficient bounds, inclusion result, arc length problem and radii problems. Our results generalize some previously proven results.

    We need the following lemmas which will be used in our main results.

    Lemma 1.1. [8] Let gS(γ), 0γ<1. Then

    (i)   |bn|1(n1)!nk=2(k2γ).

    (ii)   r(1+r)2(1γ)|g(z)|r(1r)2(1γ), z=reiθ.

    These inequalities are sharp for the function g0(z)=z(1z)2(1γ).

    Lemma 1.2. Let pP(b). Then, for z=reiθ

    (i)   12π2π0|p(reiθ)|2dθ1+(4|b|21)r21r2,   see [18],

    (ii)   12|b|r+(2Re b1)r21r2|p(z)|1+2|b|r+(2Re b1)r21r2.

    This result is the special case of the one, proved in [2].

    Now we introduce the Hypergeometric function. Let a1, b1 and c1 be complex numbers with c10,1,2,. The function

    2F1(a1,b1,c;z)=1+a1b1cz1!+a1(a1+1)b1(b1+1)c1(c1+1)z22!+.

    called, the confluent Gaussian hypergeometric, is analytic in E and satisfies hypergeometric differential equation

    z(1z)w(z)+[c1(a1+b1+1)z]w(z)a1b1w(z)=0.

    This can be written as

    2F1(a1,b1,c1;z)=k=0(a1)k(b1)k(c1)kzkk!.

    Some properties of Gaussian hypergeometric are given in the following lemma.

    Lemma 1.3. [22] Let a1, b1 and c10,1,2 be complex numbers. Then, for Re c1>Re b1>0

    (i)   2F1(a1,b1,c1;z)=Γ(c1)Γ(c1b1)Γ(b1)10tb11(1t)c1b11(1tz)a1dt,(ii)   2F1(a1,b1,c1;z)= 2F1(b1,a1,c1;z),(iii)  2F1(a1,b1,c1;z)=(1z)a1 2F1(a1,c1b1,c1;zz1).

    Lemma 1.4. [10,inequality 7,p.10] Let Ω be the class of analytic functions w, normalized by w(0)=0, satisfying the condition |w(z)|<1. If wΩ and w(z)=w1z+w2z2+, zE, then

    |w2tw21|max{1;|t|},

    for any complex number t. The result is sharp for the functions w(z)=z2 or w(z)=z.

    Lemma 1.5. Let pP(b), b0 (complex) and of the form (1.2). Then for μ a complex number

    |p2μp21|2|b|max{1;|2μb1|}.

    This result is sharp.

    Proof. Since pP(b), therefore we can write

    p(z)1+(2b1)z1z=1+2bz+2bz2+.

    Thus

    1+n=1pnzn=1+2b(w1z+w2z2+)+2b(w1z+w2z2+)2+.

    Comparing the coefficients of z and z2, we have

    p1=2bw1p2=2bw2+2bw21
    |p2μp21|=2|b||w2(2μb1)w21|.

    Now using Lemma 1.4 we have the required result. This result is sharp for the functions

    p0(z)=1+(2b1)z1z=1+2bz+2bz2+, (1.7)

    or

    p1(z)=1+(2b1)z21z2=1+2bz2+2bz4+. (1.8)

    Lemma 1.6. Let gS(γ), 0γ<1 and of the form (1.3). Then for μ complex

    |b3μb22|(1γ)max{1;|2(1γ)(2μ1)1|}.

    This result is best possible.

    This result is a special case of the one, proved in [10].

    Lemma 1.7. [16] If N and D are analytic in E, N(0)=D(0)=0, D maps E onto a many sheeted region which is starlike with respect to the origin, then

    N(z)D(z)P(b) implies N(z)D(z)P(b).

    Lemma 1.8. [13,p. 109] Let β1, γ1, AC, with Re[β1+γ1]>0, and let B[1,0] satisfy

    Re[β1(1+AB)+γ1(1+B2)]|β1A+_β1B+B(γ1+_γ1)|,  B(1,0],

    or

    Reβ1(1+A)>0andRe[β1(1A)+2γ1]0,B=1

    If h(z)=1+n=1cnzn  satisfies

    h(z)+zh(z)β1h(z)+γ11+Az1+Bz,

    then h(z)q(z)1+Az1+Bz,  where q(z) is the best dominant and

    q(z)=1β1{1g(z)γ1},

    with

    g(z)=10[1+Btz1+Bz]β1(AB1)tβ1+γ11dt,  B0.

    Lemma 1.9. Let gS(γ), 0γ<1.  Then

    Gα(z)=α+iβ+czc+iβz0tc+iβ1gα(t)dt, (1.9)

    c>0, α>0 and β any real, belongs to S(δ), where δ=min|z|=1Req(z) and

    q(z)=1α{α+iβ+c2F1(1,2α(1γ),α+iβ+c+1;zz1)(c+iβ)}.

    Proof. From (1.9), we have

    (α+iβ+c)[g(z)G(z)]α=αp(z)+(c+iβ), (1.10)

    where zG(z)G(z)=p(z). Differentiating (1.10) logarithmically and using the fact that gS(γ), we have

    p(z)+zp(z)αp(z)+(c+iβ)1+(12γ)z1z.

    Now using the Lemma 1.8 for A=12γ, B=1, β1=α, γ1=c+iβ and then Lemma 1.3 we have the required result .

    Throughout the main results we assume that g belongs to the class of starlike functions of order γ and pP(b) unless otherwise stated.

    Theorem 2.1. Let the generalized Bazilevič function f be represented by the quadruple (α,0,g,p). Then, for α>0

    |f(z)|α(Re b+|b|)rα 2F1(2α(1γ)+1,α,α+1;r),

    where 2F1 is the Gauss hypergeometric function.

    Proof. Since f is represented by (α,0,g,h), therefore from (1.6), we have

    zf(z)f1α(z)gα(z)=p(z).

    This implies that

    fα(z)=αz0t1gα(t)p(t)dt.

    Thus

    |f(z)|ααr0t1|g(t)|α|p(t)|dt.

    Using the Lemma 1.1(ii) and Lemma 1.2(ii), we obtain

    |f(z)|ααr0t1(t(1t)2(1γ))α(1+2|b|t+(2Re b1)t21t2)dtα(Re b+|b|) r0tα1(1t){2α(1γ)+1}dt.

    Now for t=ru and using Lemma 1.3, we have

    |f(z)|α α(Re b+|b|)rα10uα1(1ru){2α(1γ)+1}du=(Re b+|b|)rα 2F1(2α(1γ)+1,α,α+1;r).

    Hence the proof is completed.

    Theorem 2.2. Let f be generalized Bazilevič function represented by the quadruple (α,0,g,p). Then

    Lrf(z){C(b)M1α(r)(11r)2α(1γ),   0<α1,C(b)mα1(r)(11r)2α(1γ),          α>1, (2.1)

    where m(r)=min|z|=r|f(z)|, M(r)=max|z|=r|f(z)|  and C(b) is constant depending upon b only.

    Proof. We know that

    Lrf(z)=2π0|zf(z)|dθ,   z=reiθ, 0<r<1, 0θ2π.

    Since f is generalized Bazilevič function represented by the quadruple (α,0,g,h), therefore

    zf(z)=f1α(z)gα(z)p(z).

    This implies that

    Lrf(z)2π0|f(z)|1α|g(z)|α|p(z)|dθ,M1α(r)2π0|g(z)|α|p(z)|dθ.

    Now using Cauchy Schwarz inequality, we have

    Lrf(z)2πM1α(r)(12π2π0|g(z)|2αdθ)12(12π2π0|p(z)|2dθ)12. (2.2)

    By Lemma 1.1(ii), Lemma 1.2(i) and a subordination result, we obtain

    Lrf(z)2πM1α(r)(11r)2α(1γ)12(1+(4|b|21)r21r2)12C(b)M1α(r)(11r)2α(1γ).

    Similarly for α>1, we have

    Lrf(z)C(b)mα1(r)(11r)2α(1γ).

    For γ=1, we have the following result, proved by Noor [16].

    Corollary 2.3. Let gS and pP(b). Then, for 0<α1

    Lrf(z)C(b)M1α(r)(11r)2α.

    Theorem 2.4. Let f be generalized Bazilevič function represented by the quadruple (α,0,g,p). Then

    |an|{C1(b)M1α(n)(n)2α(1γ)1,       0<α1,C1(b)mα1(n)(n)2α(1γ)1,             α>1,

    where m, M are the same as in Theorem 2.2 and C1(b) is a constant depending upon b only.

    Proof. Since with z=reiθ, Cauchy theorem gives

    nan=12πrn2π0zf(z)einθdθ.

    Therefore

    n|an|12πrnLrf(z).

    Now using Theorem 2.2 for 0<α1, we have

    n|an|12πrnC(b)M1α(r)(11r)2α(1γ).

    Putting r=11n, we have

    |an|C1(b)M1α(n)(n)2α(1γ)1.

    Similarly we have for α>1.

    For γ=1, we have the following result, proved by Noor [16].

    Corollary 2.5. Let gS and pP(b). Then, for 0<α1

    |an|C1(b)M1α(n)(n)2α1.

    Theorem 2.6. Let the generalized Bazilevič function be represented by the quadruple (α,β,g,p). Then

    |a33+α+iβ2(2+α+iβ)a22|α(1γ)+2|b|max{1;|b1|}|2+α+iβ|.

    This result is best possible.

    Proof. Since f is generalized Bazilevič function, therefore we have

    1+zf(z)f(z)+(α+iβ1)zf(z)f(z)=αzg(z)g(z)+zp(z)p(z)+iβ.

    Multiplying both sides by f(z)f(z)g(z)p(z), we obtain

    (1iβ)f(z)f(z)g(z)p(z)+zf(z)f(z)g(z)p(z)+(α+iβ1)z(f(z))2g(z)p(z)=αzf(z)f(z)g(z)p(z)+zf(z)f(z)g(z)p(z).

    Since f(z)=z+n=2anzn, g(z)=z+n=2bnzn and p(z)=1+n=1pnzn, therefore comparing the coefficients of z3, we have

    (1iβ)(3a2+b2+p1)+2a2+(α+iβ1)(4a2+b2+p1)=α(3a2+2b2+p1)+p1.

    Thus

    (1+α+iβ)a2=αb2+p1. (2.3)

    Similarly comparing the coefficients of z4 and using above inequality, we obtain

    2(2+α+iβ)a3=α(2b3b22)+2p2p21+a22(3+α+iβ). (2.4)

    From (2.3) and (2.4), we obtain

    |a33+α+iβ2(2+α+iβ)a22|=|α(b312b22)+(p212p21)2+α+iβ|.

    Now using Lemma 1.5 and Lemma 1.6 for μ=12, we have

    |a33+α+iβ2(2+α+iβ)a22|α(1γ)+2|b|max{1;|b1|}|2+α+iβ|.

    Result is sharp for the function f0 represented by the quadruple (α,β,z(1z)2(1γ),1+(2b1)z1z) or f1 represented by the quadruple (α,β,z(1z)2(1γ),1+(2b1)z21z2).

    For γ=0, b=1, we have the result proved by Campbell and Pearce [4].

    Corollary 2.7. Let gS and pP. Then

    |a33+α+iβ2(2+α+iβ)a22|α+2|2+α+iβ|.

    Theorem 2.8. (i) If f is generalized Bazilevič function with representation (α,β,g,p), then for α0

    |a2|2[α(1γ)+|b|]|1+α+iβ|.

    (ii) If f is in (0,β,g,p), then

    |a3|2|b||2+iβ|max{1,|(13+iβ(1+iβ)2)b1|}.

    Both the inequalities are sharp.

    Proof. (ⅰ) From (2.3), we have

    (1+α+iβ)a2=αb2+p1.

    This implies that

    |a2|α|b2|+|p1||1+α+iβ|.

    Using Lemma 1.1(i), we have |b2|2(1γ) and using the fact that |p1|2|b|, we obtain

    |a2|2[α(1γ)+|b|]|1+α+iβ|.

    Result is sharp for the functions f0 defined by the quadruple (α,β,z(1z)2(1γ),1+(2b1)z1z).

    (ⅱ) Since f is represented by the quadruple (0,β,g,p), therefore (2.3) and (2.4) yield

    (1+iβ)a2=p1,

    and

    2(2+iβ)a3=2p2p21+(3+iβ)a22.

    Therefore

    |a3|=1|2+iβ||p212(13+iβ(1+iβ)2)p21|=1|2+iβ||p2μp21|.

    Using Lemma 1.5 for μ=12(13+iβ(1+iβ)2), we have the required result. This result is best possible for the function f0 represented by the quadruple (0,β,g,1+(2b1)z1z) or f1 represented by the quadruple (0,β,g,1+(2b1)z21z2).

    For γ=0 and b=1, we have the following result proved in [4].

    Corollary 2.9. Let gS and pP. Then

    |a2|2(α+1)|1+α+iβ|,

    and for α=0

    |a3|2|2+iβ|max{1,|3+iβ(1+iβ)2|}.

    Theorem 2.10. Let f be a generalized Bazilevič function represented by (α,β,g,p). Then

    F(z)=[α+iβ+czcz0tc1fα+iβ(t)dt]1α+iβ (2.5)

    belongs to the class of generalized Bazilevič functions represented by (α,β,G,p), where GS(δ), defined by (1.9) with c>0, α>0 and β is any real.

    Proof. From (2.5), we have

    zcFα+iβ(z)=(α+iβ+c)z0tc1fα+iβ(t)dt.

    This implies that

    z1iβF(z)(F(z))1(α+iβ)=1α+iβ{(c+α+iβ)ziβ(f(z))α+iβcziβ(F(z))α+iβ}.

    Using (1.9), we obtain

    z1iβF(z)(F(z))1(α+iβ)Gα(z)=1α+iβ{zc(f(z))α+iβcz0tc1fα+iβ(t)dt}z0tc+iβ1gα(t)dt=N(z)D(z).

    Therefore

    N(z)D(z)=1α+iβ{czc1(f(z))α+iβ+(α+iβ)zc(f(z))α+iβ1f(z)czc1fα+iβ(z)}zc+iβ1gα(z)=z1iβf(z)f1(α+iβ)(z)gα(z)P(b).

    Since D(z)=z0tc+iβ1gα(t)dt is (α+c) valent starlike function therefore using Lemma 1.7, we have the required result.

    Corollary 2.11. Let β=0 and γ=0. Then

    Gα(z)=α+czcz0tc1fα(t)dt

    belongs to S(δ1), where δ1=(1+2c)+(1+2c)2+8α4α.  Hence G(z) is starlike, when gS,therefore

    Fα(z)=α+czcz0tc1fα(t)dt

    belongs to the class of Bazilevič function represented by the quadruple (α,0,g,p). This result is proved by Noor [16].

    Theorem 2.12. Let f is generalized Bazilevič function represented by the quadruple (α,0,g,p). Then f is 1α-convex for r0(0,1), where r0 is the least positive root of the equation

    Ar4+Br3+Cr2+Dr+α=0,

    where

    A=α(12γ)(2Re b1),B=α{2|b|(12γ)2(1γ)(2Re b1)}2|b|,C=α{(2Re b1)4|b|(1γ)+(12γ)}4Re b,D=2α{|b|(1γ)}2|b|.

    Proof. Since  f is generalized Bazilevič function, therefore

    1α(1+zf(z)f(z))+(11α)zf(z)f(z)=p1(z)+1αzp(z)p(z),

    where p1P(γ), 0γ<1 and pP(b), b0 (complex). Therefore

    Re{1α(1+zf(z)f(z))+(11α)zf(z)f(z)}Rep1(z)1α|zp(z)p(z)|.

    Using Lemma 1.2(ii) and well-known distortion result for the class P(γ), we have

    Re{1α(1+zf(z)f(z))+(11α)zf(z)f(z)}Ar4+Br3+Cr2+Dr+αα(1r2)(1+2|b|r+(2Re b1)r2).

    Since α(1r2)(1+2|b|r+(2Re b1)r2)>0, for Re b1,  therefore we must have Ar4+Br3+Cr2+Dr+α>0. Now Q(0)=α>0 and Q(1)=4(Re b+|b|)<0. Hence f is 1α-convex.

    The following result is proved in [17].

    Corollary 2.13. For b=1,γ=0 and α>0, f is 1α-convex for r0=(α+1)2α+1α.

    In this paper, we have generalized the class of Bazilevi č functions associated with the quadruple (α,β,g,p) by taking the generalized versions of functions g and p. This generalization unifies and generalizes certain already known classes of Bazilevič functions. We have explored certain aspects of this generalized class which includes coefficient bounds, radius problem, inclusion of Bernardi integral operator and arc length problem. Our results generalize various results in the literature.

    There is still more to explore about these functions which includes coefficient bounds, Hankel determinants and Toeplitz determinants with multiple orders. Moreover, several generalizations can also be introduced and studied by suitable variation in quadruple (α,β,g,p). In particular, the assumption of generalized versions of starlike and caratheodory functions can result the proposed generalizations.

    Authors are thankful to the anonymous referees for their valuable comments and suggestions.

    Authors declare that they have no conflict of interest.



    [1] M. K. Aouf, T. M. Seoudy, Some properties of certain subclasses of p-valent Bazilevič functions associated with the generalized operator, Appl. Math. Lett., 24 (2011), 1953-1958. doi: 10.1016/j.aml.2011.05.029
    [2] A. A. Attiya, On a generalization class of bounded starlike functions of complex order, Appl. Math. Comp., 187 (2007), 62-67. doi: 10.1016/j.amc.2006.08.103
    [3] I. E. Bazilevič, On a class of integrability in quadratures of the Loewner-Kufarev equation, Math. Sb., 37 (1955), 471-476.
    [4] D. M. Campbell, K. Pearce, Generalized Bazilevič functions, Rocky Moun. J. Math., 9 (1979), 197-226. doi: 10.1216/RMJ-1979-9-2-197
    [5] N. E. Cho, V. Kumar, On a coefficient conjecture for Bazilevi č functions, Bull. Malays. Math. Sci. Soc., 2019.
    [6] N. E. Cho, Y. J. Sim, D. K. Thomas, On the difference of coefficients of Bazilevič functions, Comp. Meth. Fun. Theo., 19 (2019), 671-685. doi: 10.1007/s40315-019-00287-8
    [7] Q. Deng, On the coefficients of Bazilevič functions and circularly symmetric functions, Appl. Math. Lett., 24 (2011), 991-995. doi: 10.1016/j.aml.2011.01.012
    [8] A. W. Goodman, Univalent Functions, Mariner Publishing Company, 1983.
    [9] H. Irmak, T. Bulboacă, N. Tuneski, Some relations between certain classes consisting of α-convex type and Bazilević type functions, Appl. Math. Lett., 24 (2011), 2010-2014. doi: 10.1016/j.aml.2011.05.034
    [10] F. R. Keogh, E. P. Merks, A coefficient inequality for certain classes of analytic functions, Proc. Amer. Math. Soc., 20 (1969), 8-12. doi: 10.1090/S0002-9939-1969-0232926-9
    [11] Y. C. Kim, A note on growth theorem of Bazilevič functions, Appl. Math. Comp., 208 (2009), 542-546. doi: 10.1016/j.amc.2008.12.027
    [12] Y. C. Kim, H. M. Srivastava, The Hardy space for a certain subclass of Bazilevič functions, Appl. Math. Comp., 183 (2006), 1201-1207. doi: 10.1016/j.amc.2006.06.044
    [13] S. S. Miller, P. T. Mocanu, Differential subordinations, Marcel Dekker, Inc., New York, Basel, 2000.
    [14] J. Sokół, D. K. Thomas, The fifth and sixth coefficients for Bazilevič functions B1(α), Mediterr. J. Math., 14 (2017), 158.
    [15] M. A. Nasr, M. K. Aouf, Starlike function of complex order, J. Natur. Sci. Math., 25 (1985), 1-12.
    [16] K. I. Noor, On Bazilevič functions of complex order, Nihon. Math. J., 3 (1992), 115-124.
    [17] K. I. Noor, S. A. Al-Bany, On Bazilevič functions, Int. J. Math. Math. Sci., 10 (1987), 79-88. doi: 10.1155/S0161171287000103
    [18] K. I. Noor, S. Z. H. Bukhari, On analytic functions related with generalized Robertson functions, Appl. Math. Comput., 215 (2009), 2965-2970.
    [19] M. Raza, W. U. Haq, Rabia, On a subclass of Bazilevič functions, Math. Slovaca, 67 (2017), 1043-1053.
    [20] M. Raza, S. N. Malik, K. I. Noor, On some inequalities of certain class of analytic functions, J. Inequal. Appl., 2012 (2012), 1-15. doi: 10.1186/1029-242X-2012-1
    [21] R. Singh, On Bazilevič functions, Proc. Amer. Math. Soc., 38 (1973), 261-271.
    [22] E. T. Whittaker, G. N. Watson, A course of modern analysis, Cambridge Univ. Press, 1958.
  • This article has been cited by:

    1. Afis Saliu, Khalida Inayat Noor, Saqib Hussain, Maslina Darus, Some results for the family of univalent functions related with Limaçon domain, 2021, 6, 2473-6988, 3410, 10.3934/math.2021204
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3615) PDF downloads(325) Cited by(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog