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Abstract: In this paper, we define a class of analytic functions by using the concept of complex
order. This class of analytic functions generalizes the class of Bazilevi¢ functions. In the present
work, we derive various useful properties and characteristics of this class such as coefficient bounds,
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1. Introduction and preliminaries

Let A be the class of functions f of the form
fF@=z2+) a7, (1.1)
n=2

which are analytic in the open unit disk £ = {z:|z] < 1}. If f(z) and g(z) are analytic in E, we
say f(z) is subordinate to g(z), written f < g or f(2) < g(z). If there exists a Schwarz function
w(z), w(0)=0and |w(z)| < 1in E then f (z) = g(w(z)). Let P(b), b # 0 (complex) denote the class
of analytic functions

p@ =1+ p., (1.2)
n=1

such that 1 + % {p (z) — 1} € P, where P is the well-known class of analytic functions with positive real
part. The class P (b) is defined by Nasr and Aouf [15].
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Let S* (y), 0 <vy < 1is the class of starlike univalent functions

g(@) =2+ ) b2, (1.3)
n=2

of order y such that Re=—- Zg (Z) > v, z € E. This class was introduced by Robertson, for details, see [8].

The class of Bazﬂev1c functions in the open unit disc E was first introduced by Bazilevi¢ [3] in
1955. He defined Bazilevi¢ functions by the relation

Z a+if
f@= {(a +1ipB) fg" Op@ tiﬁldt} , (1.4)
0

where p € P, g € S*, @ > 0 and g is any real. The class of Bazilevi¢ function is the largest family
of univalent function. Bazilevi¢ showed that the class of Bazilevi¢ function is univalent in E. Except
this, a very little is known regarding the family as a whole. Indeed, it is easy to verify that, with
special choices of the parameters and and the function g(z), the class of Bazilevi¢ functions reduces
to some well-known subclasses of univalent functions. By choosing g(z) = z and 8 = 0, Singh [21]
studied the class B; (@) of Bazilevi¢ functions. Recently, some authors have find coefficient bounds
for this class of functions. In particular, Cho et al. [6] have studied coefficient difference for the class
of BazileviC functions. Fifth and sixth coefficient bounds for the subclass B; (@) have been found by
Cho and Kumar [5], and Marjono et al. [14]. For some more work, see [1,7,9,11,12,19,20]. In 1979
Campbell and Pearce [4] generalized the class of Bazilevi¢ functions by means of differential equation

2 '@ 8@ @ .

e TP T %0 T e TP ()
They associate each generalized Bazilevic function f with the quadruple (, S, g, p) , where g € S and
p € P, @ > 0 and S any real.

Definition 1.1. Let S* (y) be the class of functions g of the form (1.3) and let P (b), b # O(complex)
be the class of normalized functions p defined by (1.2). Then a function f of the form (1.1), analytic
in E, belongs to the generalized Bazilevi¢ functions associated with the quadruple (o, 8, g, p) if and
only if f satisfies (1.5) or

@ _ (g(z))a( z
@ @)
The above differential equation can be written as
Zl—iﬂf/ (Z)
J17P (2) g7 (2)

Since p € P (b), therefore we can write

—zﬂ/
1+1{ ;@) l}eP,

a+if
) p(), z€E.

=p). (1.6)

f1-@+B) (z) g2 (2)

where g € S*(y), 0 <y <1, @ > 0and B is any real.
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We have the following special cases.
(i) Fory = 0, we have the class of Bazilevi¢ functions of complex order, defined by Noor [16].
(i) Fory =0, b = 1, we obtain the generalized Bazilevi¢ functions defined in [4].
In this paper, we study the class of functions (o, 8, g, p). We study coefficient bounds, inclusion
result, arc length problem and radii problems. Our results generalize some previously proven results.
We need the following lemmas which will be used in our main results.

Lemma 1.1. /8] Letge S*(y), 0 <y < 1. Then
(i) 1bal < 525 T1 (k= 2y).
k=2
(i) G <18@I < g, 2= re®.

These inequalities are sharp for the function g, (z) = (l—z)+“*”

Lemma 1.2. Let p € P (b). Then, for z = re”
2n 12 2_1)2
0) %f‘p (re"’)‘ do < %, see [18],
0

.y 1-2|blr+(2Re b—1)r? 1+2|blr+(2Re b—1)r?
(if) % <|p@l< W

This result is the special case of the one, proved in [2].

Now we introduce the Hypergeometric function. Let a;, b; and ¢; be complex numbers with ¢; #
0,—1,-2,--- . The function

ab; z + ay(a; +1)by (b +1) z

Fi(a,b,c;2) =1+ —
2F1 (a1, b1, 6:2) 1 e+ 2

called, the confluent Gaussian hypergeometric, is analytic in E and satisfies hypergeometric differential
equation
A=W @+[cr = (a1 + b+ Dzlw (@) —aibiw(2) =0

This can be written as

b
2Fy (a1, b1,¢152) = Z(al()écl() 1k IZ(,
k

Some properties of Gaussian hypergeometric are given in the following lemma.

Lemma 1.3. [22] Let ay, by and ¢, # 0,—1,-2--- be complex numbers. Then, for Re ¢, > Re b; > 0

1
. F(Cl) f -1 1 —b—1 -
Fi(a;,by,c132) = PN (1 = (1 = 1) dy,
() 2F(a1,bi,c152) RSN, (I-1 (I-12)
(@) Fi(a;,by,c152) = Fi(bi,a1,c132),
(iii) 2Fy(a1,by,c152) = (1 =207 L F, (a1,cl—b1,c1;zfl)'

Lemma 14. [10, inequality 7, p.10] Let Q be the class of analytic functions w, normalized by
w(0) = 0, satisfying the condition |w ()| < 1. If w € Qand w(z) = wiz +wyz* + -+, 7 € E, then

[wa — twi| < max {1; J¢]},

for any complex number t. The result is sharp for the functions w (z) = z*> or w(z) = z.
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Lemma 1.5. Let p € P(b), b # 0 (complex) and of the form (1.2). Then for u a complex number
|p> = upi| < 2 |blmax {13 2ub — 11}
This result is sharp.

Proof. Since p € P (b), therefore we can write

1+@2b-1)z

=1+2bz+2b7*+---.
1-z2

p(2) <

Thus

1+ipnz": 1+2b(W1Z+W222+...)+2b(W1Z+W2Z2+...)2+....

n=1

Comparing the coefficients of z and z?, we have

p1 = 2bW1
p» = 2bw, + 2bw%

|p2 = pi| = 2 bl |wz = b — 1 wi.

Now using Lemma 1.4 we have the required result. This result is sharp for the functions

1 2b -1
pMz)z%Z)Z:szﬂzbz%m, (1.7)
or b )
1+02b-1
pl(Z):(l_—Zz)Z:1+2bZ2+2bZ4+"'. (18)
O

Lemma 1.6. Let g € S*(y), 0 <y < 1 and of the form (1.3) . Then for u complex
b3 — ub] < (1 = yymax {1:12(1 - ) Qu— D) ~ 1]}
This result is best possible.

This result is a special case of the one, proved in [10].

Lemma 1.7. [16] If N and D are analytic in E, N (0) = D(0) = 0, D maps E onto a many sheeted
region which is starlike with respect to the origin, then

N’ (2) ... N@®@
D) € P (b) implies D)

Lemma 1.8. [13, p. 109] Let 31, ¥1, A € C, with Re [B1 + y1] > 0, and let B € [—1, 0] satisfy

e P(b).

Re[By(1+AB) +y, (1+ B)| > |14 + BB+ By +7)

s BE(_l,O],

or
ReBy(1+A)>0andRe[B; (1 —A)+2y,] >0, B=-1.
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Ifh(z)=1+ io] c,Z" satisfies
n=1
zh' (2) - 1+ Az
Bih(@+yi 1+Bz
then h(z) < q(2) < 42 where q (z) is the best dominant and

1+Bz’°
1 1

1 A
1+ Bz G
¢ (2) :f 1+BzZ P74 B # 0.

h(z) +

with

0
Lemma 1.9. Letge S*(y), 0<y < 1. Then

Z

G (Z) — Lﬁ“‘ft”"ﬁ—lga (t) dt, (19)

Zc+i,8
0

¢ >0, > 0andp any real, belongs to S* (6) , where 6 = rlrllilllReq (z) and
Z =

1 a+if+c )
q(z) =~ b - —(c+ip)y.
@ |,F (1,2&(1 —-y),a+if+c+ 1;1%1)
Proof. From (1.9), we have
(@+iB+c) &] —ap() +(c +iB), (1.10)
G (2)
where zg(g) = p(z). Differentiating (1.10) logarithmically and using the fact that g € S* (y), we have

zp’ (2) - 1+(1-2y)z
ap (2) + (c +iB) 1 -z '

p(2)+

Now using the Lemma 1.8 forA =1 -2y, B= -1, 1 = @, y; = ¢ + i and then Lemma 1.3 we have
the required result. O

Throughout the main results we assume that g belongs to the class of starlike functions of order
v and p € P (b) unless otherwise stated.

2. Main results
Theorem 2.1. Let the generalized Bazilevi¢ function f be represented by the quadruple (a,0, g, p) .

Then, for a > 0
lf@I" <Reb+|b)r" 2F Qa(1-y)+ 1, a,a+1;1),

where ,F | is the Gauss hypergeometric function.
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Proof. Since f is represented by (@, 0, g, ) , therefore from (1.6), we have

2f' (2)

e PO

This implies that

@)= ozft‘lg“ () p (1) dt.
0
Thus

r

If @I* < aft_l lg DI Ip (D] dt.
0
Using the Lemma 1.1 (if) and Lemma 1.2 (ii) , we obtain

a -1 ! “(1+2/b|t+(2Reb— 1)1
|f (Z)l < a,ft ((1 _ t)Z(l—V)) ( =2 dt
0
< a(Reb+|b]) ft"‘l (1 — ¢y Red=1+1) gy
0

Now for ¢ = ru and using Lemma 1.3, we have

1
a(Re b+ |b|) rdfua—l 1- ru)—{20(1—7)+ll du

0
Reb+1b)r* ,F1 Qa1 —=y)+ L,a,a+ 1;r).

If @I

IA

Hence the proof is completed.

O

Theorem 2.2. Let f be generalized Bazilevic¢ function represented by the quadruple (a,0, g, p) . Then

2a(1-y)

coMm(E) 7. 0<as<l,

Lf()< "
/@ { C(b)ym* ' (r) (ﬁ)2 = , a>1,

where m (r) = rlrllin lf (@], M(r)= | |ax |f (2)| and C (b) is constant depending upon b only.
z|=r z|=r

Proof. We know that

2
L,f(z)=f|zf’(z)|d6, z=ré?, 0<r<1,0<6<2n
0

Since f is generalized Bazilevi¢ function represented by the quadruple («, 0, g, i) , therefore

7 @D=f""@e" @pQR.

2.1)
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This implies that

A

2n
Lf() < f If @I g @I Ip ()] 6,
0

IA

2
M () f g QI 1p )] db.
0

Now using Cauchy Schwarz inequality, we have

2 % 2 %
Lf () < 2tM'-® (r>[2i f |g<z>|2“d9] (i f p QP de] . (2.2)
g 2
0 0

By Lemma 1.1(i7) , Lemma 1.2(i) and a subordination result, we obtain

1

1 2&(1—)/)—% 1+ (4 |b|2 _ 1)r2 2
2M' (1) (—1 — r)

1—r2

L.f(2)

IA

IA

2a(1-y)
C (b) M~ (r) (1—) .
—-r

Similarly for @ > 1, we have

2e(1-y)
Lf()<COBm~" (r) (:) )

For y = 1, we have the following result, proved by Noor [16].
Corollary 2.3. Let g€ S* and p € P (b). Then, for0 < a < 1

2a
L.f(z) <CB)YM™(r) (i) )

Theorem 2.4. Let f be generalized Bazilevi¢ function represented by the quadruple («,0, g, p) . Then

o)< ] C1OM ™ @ > 0<a<,
" Cloyme () a>1,

where m, M are the same as in Theorem 2.2 and C, (b) is a constant depending upon b only.

Proof. Since with z = re®, Cauchy theorem gives

2n

f zf (2) e "de.

0

fln = 2mrt

AIMS Mathematics Volume 5, Issue 3, 2448-2460.



2455

Therefore

Now using Theorem 2.2 for 0 < @ < 1, we have

1 2a(1—y)
nla, < =—CbLYM'"™ ()| — :
2mr 1-r
Putting r = 1 — 1, we have
lan < Cy (b)) M~ (n) (n)>*' 71
Similarly we have for @ > 1. O
For y = 1, we have the following result, proved by Noor [16].
Corollary 2.5. Let g€ S* and p € P(b). Then, forO < a <1

lan| < C1 () M'™" (n) (n)**~".
Theorem 2.6. Let the generalized Bazilevic function be represented by the quadruple (a,f, g, p) . Then
3+a+if , < a(l —vy)+2|blmax{1;|b— 1|}

T 2Qta+ip) T 2+a+if]
This result is best possible.

as

Proof. Since f is generalized Bazilevi¢ function, therefore we have

zf" (2) 2f @ 8@ @ .
@ @ o Fre TP

Multiplying both sides by f (z) f* (z) g (z) p (z) , we obtain

1+

+(@+iB-1)

A-iBfRQf @Deg@p@+zf@)f" (2)g@pk)
+a+iB-Dz(f @) g@pR
= zf@Qf @& @p@+zf@f (@Dg@p ().
Since f(z) = z+ E", a,?", g(z) = z+ § b,Z'and p(z) =1+ %0] pn2", therefore comparing the coefficients
n=2 n=2 n=1

of 73, we have

(1 - lﬁ)(3az +b2 +p1) + 2&2 + (a+ lﬁ— 1)(4612 + b2 +p1)
= (Y(3612 +2b2 +p1) + D1

Thus
(1+a+iB)ar = aby + py. 2.3)

Similarly comparing the coeficients of z* and using above inequality, we obtain

2Q+a+if)as=a(2s-b3)+2p - pi+ a3 B +a+iB). (2.4)
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From (2.3) and (2.4), we obtain

3+a+if 5|

a/(b3 - %b%) + (p2 - %p%)
20+a+ip " '

2+a+iB

as —

Now using Lemma 1.5 and Lemma 1.6 for u = %, we have

3+a+if ,

@ (1 =) +2|b|max {1;]b - 1]}
22+a+iB™ '

2 +a+ i

as —

Result is sharp for the function f; represented by the quadruple (a/, B, (1_2)2'2(1—y>’ 1+(f$1)z) or f
represented by the quadruple (a/, B, —= 1+(2”‘1)Z2) _

’ (I_Z)Z(l—y) ’ l—zz

]
Fory =0, b = 1, we have the result proved by Campbell and Pearce [4].
Corollary 2.7. Let g € S* and p € P. Then

a+2
T R+a+ipl

_ 3+a+ip 2
2Q+a+iB) 2

as

Theorem 2.8. (i) If f is generalized Bazilevic¢ function with representation («, 3, g, p) , then for « > 0

2[a (1 —y)+|bl]
N+a+if

|as| <

(ii) If f is in (0,8, g, p) , then

21b] 3408
las| < o+ max{l, l(l - 0 iﬁ)z)b - 1l}

Both the inequalities are sharp.

Proof. (i) From (2.3), we have
(1+a+iB)ar = aby + p;.
This implies that
a|bs| + |pil
laz| € ———.
1 +a+ i

Using Lemma 1.1(i) , we have |b,| < 2 (1 — ) and using the fact that |p;| < 2|b|, we obtain

2[a (1 —y)+|bl]

azﬁ -
a2 |1 +a+ i

Result is sharp for the functions f, defined by the quadruple (a/,,B, (1—Z)Z2“*7>’
(i1) Since f is represented by the quadruple (0,8, g, p) , therefore (2.3) and (2.4) yield

1+(2b—1)z)
1-z :

(I+iB)as = p1,

and
2Q2+iB)asy =2pr— pi + B+if)aj.
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Therefore
il 1 1 1 3+ \ ,
al = ——|pp—=|1l-
T owm” 20 aep)”
1 2
= B |2 — upl|.
Using Lemma 1.5 for 4 = %(1 - (13:5)2), we have the required result. This result is best possible

1+(2b-1)z
1-z

(O’ﬂ’ 8, %;21)22) . O

For y =0 and b = 1, we have the following result proved in [4].

for the function f; represented by the quadruple (O, B, g, ) or f represented by the quadruple

Corollary 2.9. Let g € S* and p € P. Then

2(a+1)
las| £ ———,
|1 +a+ i
and for a =0
’ .
las| < —,max{l, 3+—l'82 }
12 + i) (1+1iB)

Theorem 2.10. Let f be a generalized Bazilevi¢ function represented by («, 3, g, p) . Then

1
a+if

F(2) = 7 P () dt

avipre 03)

0

belongs to the class of generalized Bazilevi¢ functions represented by (a,B,G,p), where
G € §7(0), defined by (1.9) with c > 0, a > 0 and 8 is any real.

Proof. From (2.5), we have
Z
FF () = (@+iB+0) f 1718 (1) dt.
0

This implies that

1—[/5’F/ 1 | | | |
(FZ (Z))l—(fjr)iﬁ) = a+ iﬁ {(C +a+ lﬁ) Z‘tﬂ (f (Z))a+zﬁ _ cZ—t,B (F (Z))aﬂﬁ} .

Using (1.9), we obtain

1 c a+iff 1 c—1 ra+i
Zl—i,BF'/ 2) a+if {Z (f(z)) C{t f B(f) d[}

F@) PG [
0
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e
D(z)

Therefore
N’ (z)
D’ (z)
e (F @) + (@ + i) (f @)™ (@) - e 7 (2)

ZeiB-1g")

B Zl—iﬁf/ (Z)
T B () g () P®).

Z
Since D (z) = f <*B=19% (£) dt is (a + c¢) valent starlike function therefore using Lemma 1.7, we have

0
the required result. O

Corollary 2.11. Let=0andy = 0. Then

Z

+
G ()= 225 [y ar
ZC
0
) A / 22
belongs to S* (6) , where 6| = “(H20 4;1”‘) 8¢ Hence G (z) is starlike, when g € S*, therefore

W@:%ﬁfﬁﬁ@m
0

belongs to the class of Bazilevic function represented by the quadruple (,0, g, p) . This result is proved
by Noor [16].

Theorem 2.12. Let f is generalized Bazilevic function represented by the quadruple («,0, g, p) . Then
fis é-convex for rg € (0, 1), where ry is the least positive root of the equation
At +Brr +Cr*+Dr+a =0,
where
= a(l-2y)(2Reb-1),
= af2[b|(1-2y) -2 -y)(2Re b - 1)} - 21|,

@{(2Reb—1)—4|b|(1 =) + (1 —2y)} —4Re b,
= 2af{lb| - (1 —y)} —21bl.

O A w >
I

Proof. Since f is generalized Bazilevi€ function, therefore

I, z"@ Nz @) 1zp' (@)
a(” f’(z))+(1 )f(z) AT

AIMS Mathematics Volume 5, Issue 3, 2448-2460.
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where p; € P(y), 0 <y <1landp € P(b), b # 0 (complex). Therefore
1 144 1 4 1 ’
Re{—(l Y (Z)) + (1 - —) A (Z)} > Rep) (2) — ~ ‘Zp @
@ 1@ a f@) al p(2)
Using Lemma 1.2(ii) and well-known distortion result for the class P (y), we have

144 , 4 3 2
Re{é(1+Zf (Z))+(1 1)Zf (Z)} S A+ Br* + Cr* + Dr+ «

f (2 o) F@Q Ta-) (A +2/blr+QReb-1)r2)

Since a(l — rz) (1 +2|blr+ Q2Reb - 1) rz) > 0, for Re b > 1, therefore we must have Ar* + Br® +

Cr’+Dr+a>0.Now Q(0)=a>0and Q(1) = -4 (Re b+ |b|) < 0. Hence f is C—ly-convex.

The following result is proved in [17].

Corollary 2.13. Forb=1,y=0anda > 0, fis é-convexfor ro = % V2a+l

3. Conclusion

O

In this paper, we have generalized the class of Bazilevi¢ functions associated with the quadruple
(a,p, g, p) by taking the generalized versions of functions g and p. This generalization unifies and
generalizes certain already known classes of Bazilevi¢ functions. We have explored certain aspects of
this generalized class which includes coefficient bounds, radius problem, inclusion of Bernardi integral

operator and arc length problem. Our results generalize various results in the literature.

There is still more to explore about these functions which includes coefficient bounds, Hankel
determinants and Toeplitz determinants with multiple orders. Moreover, several generalizations can
also be introduced and studied by suitable variation in quadruple (a@,f, g, p). In particular, the
assumption of generalized versions of starlike and caratheodory functions can result the proposed

generalizations.
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