In this article, we introduce and investigate a new class of Bazilevič functions with respect to $ k $-symmetric points defined by using fractional $ q $-calculus operators that are analytic in the open unit disk $ \mathbb{D} $. Several interesting subordination problems are also derived for the functions belonging to this new class.
Citation: Haiyan Zhou, K. A. Selvakumaran, S. Sivasubramanian, S. D. Purohit, Huo Tang. Subordination problems for a new class of Bazilevič functions associated with $ k $-symmetric points and fractional $ q $-calculus operators[J]. AIMS Mathematics, 2021, 6(8): 8642-8653. doi: 10.3934/math.2021502
In this article, we introduce and investigate a new class of Bazilevič functions with respect to $ k $-symmetric points defined by using fractional $ q $-calculus operators that are analytic in the open unit disk $ \mathbb{D} $. Several interesting subordination problems are also derived for the functions belonging to this new class.
[1] | M. H. Abu Risha, M. H. Annaby, M. E. H. Ismail, Z. S. Mansour, Linear $q$-difference equations, Z. Anal. Anwend., 26 (2007), 481-494. |
[2] | D. Albayrak, S. D. Purohit, F. Uçar, On $q$-analogues of Sumudu transforms, An. Şt. Univ. Ovidius Constanţa, 21 (2013), 239-260. |
[3] | F. M. Al-Oboudi, On univalent functions defined by a generalized Sălăgean operator, Int. J. Math. Math. Sci., 27 (2004), 1429-1436. |
[4] | G. Bangerezako, Variational calculus on $q$-nonuniform lattices, J. Math. Anal. Appl., 306 (2005), 161-179. doi: 10.1016/j.jmaa.2004.12.029 |
[5] | T. Ernst, A Comprehensive Treatment of $q$-Calculus, Basel: Birkhäuser, 2012. |
[6] | G. Gasper, M. Rahman, Basic hypergeometric series, Encyclopedia of Mathematics and its Applications, Cambridge: Cambridge University Press, 1990. |
[7] | D. J. Hallenbeck, S. Ruscheweyh, Subordination by convex functions, Proc. Am. Math. Soc., 52 (1975), 191-195. doi: 10.1090/S0002-9939-1975-0374403-3 |
[8] | V. Kac, P. Cheung, Quantum Calculus, New York: Springer, 2002. |
[9] | Z. S. I. Mansour, Linear sequential $q$-difference equations of fractional order, Fractional Calculus Appl. Anal., 12 (2009), 159-178. |
[10] | S. S. Miller, P. T. Mocanu, Differential Subordinations: Theory and Applications, Series in Pure and Applied Mathematics, New York, 2000. |
[11] | S. D. Purohit, R. K. Raina, Certain subclasses of analytic functions associated with fractional $q$-calculus operators, Math. Scand., 109 (2011), 55-70. doi: 10.7146/math.scand.a-15177 |
[12] | S. D. Purohit, A new class of multivalently analytic functions associated with fractional $q$-calculus operators, Fractional Differ. Calculus, 2 (2012), 129-138. |
[13] | S. D. Purohit, K. A. Selvakumaran, On certain generalized $q$-integral operators of analytic functions, Bull. Korean Math. Soc., 52 (2015), 1805-1818. doi: 10.4134/BKMS.2015.52.6.1805 |
[14] | P. M. Rajković, S. D. Marinković, M. S. Stanković, Fractional integrals and derivatives in $q$-calculus, Appl. Anal. Discrete Math., 1 (2007), 311-323. doi: 10.2298/AADM0701072C |
[15] | K. Sakaguchi, On a certain univalent mapping, J. Math. Soc. Japan, 11 (1959), 72-75. |
[16] | G. Ş. Sălăgean, Subclasses of univalent functions, In: C. A. Cazacu, N. Boboc, M. Jurchescu, I. Suciu, Complex Analysis-Fifth Romanian-Finnish Seminar, Lecture Notes in Mathematics, Berlin: Springer, 1983. |
[17] | K. A. Selvakumaran, S. D. Purohit, A. Secer, M. Bayram, Convexity of certain $q$-integral operators of $p$-valent functions, Abstr. Appl. Anal., 2014 (2014), 925902. |
[18] | K. A. Selvakumaran, S. D. Purohit, A. Secer, Majorization for a class of analytic functions defined by $q$-differentiation, Math. Probl. Eng., 2014 (2014), 653917. |
[19] | T. J. Suffridge, Some remarks on convex maps of the unit disk, Duke Math. J., 37 (1970), 775-777. |