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1. Introduction

The problem of oscillation of solution by imposing proper impulse controls, arises in a wide
variety of real world phenomena observed in Sciences and Engineering. Indeed, impulsive differential
equations arise in circuit theory, bifurcation analysis, population dynamics, loss less transmission in
computer network, biotechnology, mathematical economic, chemical technology, mechanical system
with impact, merging of solution, noncontinuity of solution, etc. [4, 10].

With the development of computer techniques, it is essential to formulate discrete dynamical
systems while implementing the continuous dynamical systems for computer simulation, for
experimental or computational purpose. These discrete time systems, which are described by the
difference equations, inherit the similar dynamical characteristics. Because of that, many researchers
pay their attentions to dynamical behaviours of difference equations with impulse.

In [9], M. Peng has investigated the oscillation criteria for second order impulsive delay difference
equations of the form:

(E') A(a,_1|Ax(n — D|*'Ax(n — 1)) + f(n, x(n), x(n — 7)) = 0, n # n,
an JAX(n)| " Ax(ni) = Ni(@n—1|Ax(ne — DI*' Ax(ny = 1)), k € N.

In another work [8], Peng has extended the work of [9] to the second order impulsive neutral delay
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difference equations of the form:

A(rn—llA(-xn—l + pn—l-xn—‘r—l)la_lA(xn—l + pn—lxn—'r—l) + f(l’l, Xns xn—O') = O, n# N,
(EH) rl’lklA(xnk + pnkxnk—r)la_lA(xnk + pnkxnk—‘r)
= Mk(rnk—llA(xnk—l + pnk—lxnk—‘r—l)la_]A(-xnk—l + pnk—l-xnk—‘r—l))’ keN

and obtained the sufficient conditions for oscillation of the system (E”") when p(n) = —1.
From the above works [8] and [9], we have a common question:

(Q) Can we find some oscillation criteria for (E”) and (E”") when the neutral coefficient p(n) € R viz.
—oc0o < p(n) < -1,-1 < pn)<0and 0 < p(n) < o?

The aim of this paper is to give a positive answar to this question by using the techniques developed
in [16], to obtain some oscillation and nonoscillation criteria for a class of second order nonlinear
neutral impulsive difference systems of the form:

Ala(n)A(x(n) + p(n)x(n — 1)1 + q(N)G(x(n — 0)) = 0, n # m; (1.1)
(E)] Ala(mj— DA(x(m;— 1)+ p(m; — 1)x(m; — 7 — 1))]
+r(m; — 1)G(x(m; —0 —1)) =0, j€EN, (1.2)

where 7, o > 0 are integers, p, ¢, r, a are real valued functions with discrete arguments such that
q(n) > 0, r(n) > 0, a(n) > 0, |p(n)| < oo forn € N(ny) = {ng,np+ 1,---}, G € C(R, R) with the property
xG(x) > 0 for x # 0, and A is the forward difference operator defined by Au(n) = u(n + 1) — u(n). Let
my, my, ms, - - - be the moments of impulsive effect with the properties 0 < m; <my <--- ,lim;_,m; =
+0co. And A is the difference operator defined by Au(m; — 1) = u(m;) — u(m; — 1).

We refer the reader to some of the related works [2,3,5-7,11-13,15,17,20] and the references cited
there in.

Definition 1.1. By a solution of (E) we mean a real valued function x(n) defined on N(ny — p) which
satisfy (E) for n > ng with the initial conditions x(i) = ¢(i),i = ng — p,--- ,ny, where ¢(i), i =
ng—p,- - ,Ng are given and p = max{t, o}.

Definition 1.2. A nontrivial solution x(n) of (E) is said to be nonoscillatory, if it is either eventually
positive or eventually negative. Otherwise, the solution is said to be oscillatory. The system (E) is said
to be oscillatory, if all its solutions are oscillatory.

Theorem 1.3. [ ](Krasnoselskii’s Fixed Point Theorem)

Let X be a Banach space and S be a bounded closed subset of X. Consider two maps T, and T, of
S into X such that Tix + T,y € S for every pair x,y € S. If T is a contraction and T, is completely
continuous, then the equation T1x + Trx = x has a solution in S.

2. Oscillation properties

In this section, we discuss the oscillation criteria for neutral impulsive difference equations (E). We
assume that a(n) satisfies
(Ag) A(n) =" L and lim,_. A(n) = co.

S=n0 a(s)
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Theorem 2.1. Let —1 < p(n) < 0 and v < o. In addition to (Ay), assume that
(A1) G(-u) = -G(u), u e R,

(Ay) G satisfies fo_a % <oo,a >0,

(As) T qm) + X r(m; = 1) = oo

and

(A9) 2o g+ 252, r(mj—1) =00

hold, where q'(n) = min{%, a(qn(f’r)l)} and r'(n) = min{
oscillates.

r(m;j=1) r(m;=1)
a(m;=1)" a(m;)

}. Then every solution of (E)

Proof. Suppose on the contrary that x(n) is a nonoscillatory solution of (E) for n > ny. Without loss of
generality and due to (A;), we may assume that x(n) > 0, x(n —7) > 0 and x(n — o) > 0 for n > ny > p.
Setting

{ y(n) = x(n) + p(n)x(n - 1), 2.1)

ymj—1)=x(m; = 1)+ p(m; — Dx(m; —7—1)
in (E), we have

Ala(n)Ay(n)] = —q(n)G(x(n —0)) <0, n # mj, j€EN,
Ala(m; — 1)Ay(m; — 1)] = —r(m; — D)G(x(m;j — o — 1)) <0

for n > ny > ng + o. Therefore, a(n)Ay(n) and y(n) are monotonic for n > n,. Here, we arise four
possible cases, viz.,

1. a(n)Ay(n) > 0, y(n) > 0; 2. a(n)Ay(n) >0, y(n) <O0;
3. a(n)Ay(n) <0, y(n) >0; 4.a(n)Ay(n) <0, y(n) < 0.
Case 1. We can choose n, > n; + 1 and a constant 8 > 0 such that y(n) > g for n > n,. Indeed, y(n) > 0

and —1 < p(n) < 0 implies that y(n) < x(n) and hence y(m; — 1) < x(m; — 1). Now, the impulsive
system (E) reduces to

ED) Ala(n)Ay(n)] + G(B)g(n) <0, n # m;
Y\ Alatm; = DAYGn; — 1] + GB)r(m; — 1) <0, j € N.

Summing (E;) from n, ton — 1, we get

n—1
an+ DAY+ 1) = amAym) = > Ala(m; = DAy(m; = D] < =GB) ) q(s),

np<mj—1<n-1 s=np

that is,

n—1
GB| Y ats)+ Y rlmj= 1| < amAy(m) - a(n + DAy + 1)

s=ny ny<m;j—1<n-1

< a(n)Ay(n) < oo as n — oo,
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a contradiction to (A3z) due to lim,_,. a(n)y(n) < oo.
Case 2. Since y(n) < 0 for n > n,, then we can find n3 > n, such that

y(n) > p(m)x(n — 1) = —x(n — 1),
ym;j—1)> pm;— Dx(m; —7—1) > —x(m; — 7 - 1).

Therefore, from (E,) we get

Ala(n)Ay(n)] — qn)Gy(n+7-0)) <0, n # m;
Ala(m; — 1)Ay(m; = 1)] = r(m; = N)G(y(m; + 1 -0 - 1)) <0, jeN,

that is,

—a(n)Ay(n) — gm)G(y(n+7—-0)) <0, n # m;
—a(m; — DAy(m; — 1) —r(m; - DG(y(m; +7—0—-1)) <0, jeN

implies that
—a(n)Ay(n) — q(n)G(y(n)) <0, n # m;
—a(mj— 1)Ay(m;— 1) —r(m; — 1)G(y(m; — 1)) <0, je€N

due to the nondecreasing nature of y and 7 < o-. Clearly,

QR0

GO(n) a(n)
Ay(m;—1) N r(mj—1)

<0, n# mj,

<0, jeN,
G(y(m;—1)) a(m;-1)
that is,
, Ay(n)
(n) < - , n#F m;,
! Gowy "M
Ay(m;—1)
rm,—1)< ——— jeN.
’ G(y(m; — 1))
Ify(n) <u<y(n+1)andy(m;j—1) <v < y(mj,; — 1), then /—— GQ(n)) > = G(u) and GOW—H» > — G(V) Therefore,

the preceding inequalities reduce to

y(n+1) u
q/(n)s_f G(u)’ n;tmj’

y(n)

y(mji1—1) d
r'(mj—l)s—f 2 jeN
y(mj=1) G(V)

As a result,

W(s+1) du w(n+1) du
RS ZJ‘ G-, cw

s=n3 ¥(s) y(n3)
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[e9)

7(mj+l 1) dv . y(mg1—1) dv
2. 7mi= 1) < _}E?OZI( GO _}g?of GO’

j=1 mj—1) y(mi—1)

Since for nonimpulsive points m; — 1 and n we have lim,,_,o, y(n) < oo and lim;_,., y(m; — 1) < oo, then

Zq(s)+Zr(mj—1)<oo

s=n3

a contradiction to (A4) due to (A,).

Case 3. As a(n)Ay(n) is nonincreasing for n > n;, we can find a constanty > O and n, > n; + 1 such
that a(n)Ay(n) < —y for n > n, and hence a(m;—1)Ay(m;—1) < —y for n > n,. Summing Ay(n) < _M
from n, ton — 1, we get

-1

Y =ym)— Y Ayomj- 1)< - Zl)

ny<mj—1<n-1

that is,
1
y(n) < y(ny) =y Zz = nzgm;gn_l—“(m/‘l)]’

a contradiction to the fact that y(n) > 0 for n > n,.
Case 4. Here, lim,,_,, y(n) = —oco0 and so also lim;_,., y(m;—1) = —co. By Sandwich theorem, it follows
that lim;_,., y(m;) = —oo. Clearly, y(n) < 0 for n > n; implies that

x(n)<xn—-1)<x(n-27)<x(n—-37)--- < x(ny).
Analogously,
xmj—1)<x(mj—7—-1)<x(mj—2t—-1) < x(mj =3t —-1)--- < x(ny)

due to the nonimpulsive points m; — 1,m; — 7 — 1,m; — 2t — 1, - - - . Therefore, x(n) is bounded for all
nonimpulsive points. We assert that x(m;) is bounded. If not, let it be lim;_,, x(m;) = +oo. Ultimately,

y(mj) = x(m;) + p(m;)x(m; — 1)
> x(m;) — x(m; — 1) > x(m;) — B,

implies that y(m;) > 0 as j — oo, a contradiction, where x(m; — 7) < B;. So, our assertation holds and
y(n) is bounded for every n. Again this leads to a contradiction to the fact that y(n) is unbounded. This
complete the proof of the theorem. m|

Theorem 2.2. Let —co <b < p(n)<c<-—-landt—o0 > 1. If (Ap), (A1), (A3), (A4) and
(As) G satisfies Li:o Gy <o > 0
hold, then every solution of (E) either oscillates or satisfies lim,_,, x(n) =
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Proof. Suppose on the contrary that x(n) is a nonoscillatory solution of (E) for n > ny > p. Proceeding
as in the proof of Theorem 2.1, we have that a(n)Ay(n) and y(n) are of one sign for n > n; > ny. So,
we have following four cases:

1. a(n)Ay(n) > 0, y(n) > 0; 2. a(n)Ay(n) > 0, y(n) < 0;

3. a(n)Ay(n) <0, y(n) > 0; 4. a(n)Ay(n) <0, y(n) < 0.
The proofs for Case 1 and Case 3 are similar to that of Theorem 2.1.
Case 2. Let lim,,,, y(n) = [, —oo < [ < 0. We claim that / = 0. Otherwise, there exists n, > n; + 1
such that y(n + 7 — o) < l and so also, y(m; + 7 — o — 1) < [. Indeed, y(n) < O implies that y(n) >
p(n)x(n — 1) > bx(n — 7) and analogously, y(m; — 1) > bx(m; — 7 — 1) due to nonimpulsive points
mj—1,m;—7—1,---. Hence, there exists n3 > n, such that (E) takes the form

Ala(n)Ay(n)] + G(é)q(n) <0,n#m;
Ala(m; — 1)Ay(m; — 1)] + G(é)r(mj -1)<0, jeN

for n > n3. Summing the above impulsive system from n;3 to n — 1, it follows that

i n—1
a(mAy(n) — an)Ay(ns) = Y Alam; = DAYm; = D] +G (5) > a(s) =0,

n3<m;—1<n-1 s=n3

that is,

(i)

n—1
D+ > rm- 1)] = a(n3)Ay(ns) - a(m)Ay(n)

s=n3 n3<mj—1<n-1

< a(n3)Ay(n3)

< ocoasn — oo,
a contradiction to (A3). So, our claim holds and thus lim,_,., y(n) = 0, lim,;_,, y(m; — 1) = 0. Now,
0 = lim y(n) = lim inf(x(n) + p(n)x(n - 7))
< lim inf(x(n) + cx(n — 7))

< lim sup x(n) + lim inf(cx(n — 1))

= (1 + ¢) lim sup x(n)
implies that limsup,_, ., x(n) = 0 due to (1 + ¢) < 0 and hence lim,_,, x(n) = 0. We encounter that
lim;_,. x(m; — 1) = 0 because of nonimpulsive points m; — 1, j € N. Since m; — 1 < m; < n, then an
application of the Sandwich theorem implies that lim;_,., x(m;) = 0. Therefore, lim,_,, x(n) = 0 for all
nand mj, j € N.
Case 4. For y(n) < 0,

y(n) > p(n)x(n — 7) > bx(n — 7).
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Analogously,
ym;—1)> p(m;— Dx(m; —7—1) > bx(m; — 7 — 1)

due to the nonimpulsive point m; — 1,m; — 7 —1,--- and so on. Therefore,

y(n+1t—-0)>bx(n-o),
ymj+t—0—-1)>bx(mj—o—1)

for n > n, > ny + 1. Ultimately, (E) becomes

Ala(m)Ay(n)] + gq)G(b™'y(n+ 1t - 0)) <0, n # m;,
Ala(m; — 1)Ay(m; — 1)] + r(m; — I)G(b_ly(mj +7—-0-1))<0, jeN,

that is,

an+ DAy(n+1) + q(n)G(b_ly(n +7—-0)) < Ay(n) <0,
a(mj)Ay(m;) + r(m; — I)G(bfly(mj +7—0-1)) <Ayim; - 1) <0.

Using the fact that y is nonincreasing for n > n, and 7 — o > 1, we get

an + DAy + 1) + g)Gb 'y(n + 1)) < 0,n # mj,
a(mj)Ay(m;) + r(m; — DG 'y(m;)) <0, j € N.

Consequently,
A 1
o) g o
G 'ym+1)) amn+1)
Ay(m; =1
o) 1= g e,

+
G 'y(my)  a(m))

Ifb7'y(n+1) <u<b'y(n+2)and b~'y(m;) < v < b~'y(m;.1), then the last two inequalities can be

written as
b~ y(n+2) bdu b~ ly(n+2) bdu
q'(n)g—f l—s—f =,
bly(n+1) G 'y(n+1)) bly(n+1) G(u)
b~ y(mji1) bdv b y(mji1) bdv
r’(mj—l)S—f #S—f —_—,
b=ly(m)) G )’(mj)) b=ly(m;) G(v)

that is,

n—1 nml ety g blyns2) - g,
"(s) < =b f =-b f ,
Z 1 Z bly(s+1) G(u) b ly(my+1) G(u)

S=ny S=ny
had s b y(mi1) d b~ y(myi1)

. v ) dv
> F(mj=1) < =blim »" = —b lim —
= o i Jpymy - GO) =% Jptyomy  GOV)
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Since for nonimpulsive points m; — 1 and n we have lim,,_,o, y(n) = oo and lim;_,., y(m; — 1) = oo, then
an application of Sandwich theorem shows that lim;_,., y(im;) = co. Therefore,

Z q'(s) + Z r'(mj—1) < oo,
n=ny j=1
a contradiction to (A4) due to (As). This completes the proof of the theorem. O

Theorem 2.3. Let 0 < p(n) < d < oo and v < 0. In addition to (Ay) and (A,), assume that
(Ag) G)G(v) = G(uv) for u,v e Ry,

(A7) there exists A > 0 such that G(u) + G(v) > AG(u + v) for u,v € R,

(A 2,00 + X5, Rim; — 1) = oo

and
(Ag) Yoo QM)+ X2 R(mj—1) = oo
hold, where Q(n) = min{qg(n),q(n — 1)}, R(m; — 1) = min{r(m; — 1),r(m; — v — 1)},

Q' (n) = min{ﬂ M}forn >7and R'(m; — 1) = min{m w}for m; > 7+ 1. Then

a(n+1)’ a(n+1-1) a(mj) > a(m;-7)
every solution of (E) oscillates.

Proof. Proceeding as in the proof of Theorem 2.1, we have following two possible cases:
1. a(n)Ay(n) > 0, y(n) > 0; 2. a(n)Ay(n) <0, y(n) > 0.

Case 1. In this case, y(n) is nondecreasing for n > n;. So, there exist n, > n; + 1 and a constant 8 > 0
such that y(n) > g for n > n,. From (1.1), we have

Ala(m)Ay(m)] + g(m)G(x(n — o)) = 0 (2.2)

and
G(d)[Ala(n — ) Ay(n — 1)) + gln — 1)G(x(n — 7 —0))] = 0. (2.3)

Combining (2.2) and (2.3), we have

Ala(n)Ay(n)] + G(d)Ala(n — T)Ay(n — 7)] + q(n)G(x(n — 0))
+G(d)gn—-1)Gx(n—1—-0)) =0

which on applying (Ag), we obtain
Ala(m)Ay(n) + G(d)Ala(m)Ay(n — 1)] + Qm)G(x(n — o)) + G(dx(n — T — o)) < 0,
that is,
Ala(m)Ay(m)] + G(d)Ala(n — T)AY(R — T)] + A0M)G(x(n — o) + dx(n — T — 7)) < 0
due to (7). Since y(n — ) < x(n — &) + ax(n — T — o), then the preceding inequality can be written as

Ala(n)Ay(n)] + G(d)Ala(n — 7)Ay(n — 7)] + AQ(n)G(y(n — o)) < 0. 2.4
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By using a similar argument in (1.2), we get

Ala(m; — DAy(m; — 1)] + G(d)Ala(m; — T — DAy(m; — 7 — 1)]
+ AR(m; — 1)G(y(m; —o - 1)) < 0.

Summing (2.4) from n, to n — 1 and then using (2.5), we get
a(m)Ay(n) — a(nz)Ay(ny) + G(d)a(n — 1)Ay(n — ) = G(d)a(ny — T)Ay(ny — 1)
= > [Alatm; = DAym; - D]+ G(d)Alatm; - T = DAY(m; — 7= D]

ny<mj—1<n-1

n—1
+1) 0G0 - ) <0,

that is,
n—1
D 0GHm=-aN+d > Rom;— DGGm;— o = 1)
S=ny ny<mj—1<n-1
< Aa(ny)y(no) + G(d)a(ny — 7)Ay(ny — 7).
Therefore,

n—1
AG(B) ZQ(”)"‘ Z R(mj—1)| <coasn— oo,

s=ny ny<mj—1<n-1

a contradiction to (Ag).
Case 2. From (2.2) and (2.3), we have

a(n+ 1)Ay(n + 1) + gn)G(x(n — o)) = a(n)Ay(n) < 0,
GdAYn+1-1)+Gd)g(n—1)G(x(n — 17— 0)) = G(d)a(n — 7)Ay(n — 1) < 0.

Consequently, (2.4) reduces to
Ay(n+ 1)+ G(d)Ay(n+ 1 —-1)+ 20" (n)G(y(n — 0)) < 0.
By a similar argument to (2.5), we get
Ay(m;) + G(d)Ay(m; — 1) + /lR’(mj - DG(y(m; —o -1)) <0.
Hence, the impulsive system (E) reduces to

Ayn+1)+ G d)Ay(n+1-1)+ 210" (n)G(y(n — o)) < 0,n # m;
Ay(m;) + G(d)Ay(mj— 1)+ AR'(m; — 1)G(y(m; — o — 1)) <0, j € N.

(2.5)

Using the fact that y is nonincreasing and 7 < o, we can find n3 > n, + 1 such that the above inequality

can be written as

G(y(n)) G(y(n-1))

Ay(m;) Ay(m;-T1) ’ .
G(y(mjil)) + G(Cl) ——— + AR (mj — 1) < 0,] eN

Ay(n+1) " G(a)Ay(nH—T) + /lQ’(n) <0,n# m;
(E2)

G(y(mj—-7t-1))
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forn > n;. If

yn+2)<t<yn+1), yn+2-1)<z<yn+1-1),

y(mj) <u <y(mj), ymj —1) <v <y(m; — 1),

then form (E) it is easy to verify that

V(n+2) V(n+2-7) 7
f — + G(a) —— +10'(n) <0, n # m;y,

y(n+1) G(t) y(n+1-1) G(Z)
Y(mjs1) u Y(mjs1-T) dv
+ G(a) —— + AR'(m; - 1) <0, jeN,
«Lm_,) G(l/l) y(m;—7) G(V) !

that is,

[

n V(s+2) dt V(s+2-T) dZ n
—+G(a)f —]+/1 Q'(s) <0, n#mj,
[\[v;s+l) G(t) y(s+1-1) G(Z) Z /

s=n3 s=n3
b y(m 1) du V(M1 —T) dv °°

— + G(a) —]+/l R(m;-1)<0, jeN.
jZ::‘ [\[v;mj) G(I/l) y(m;—7) G(V) ; /

As a result,

0 Y(n+2) d V(n+2-1) dZ
A Q'(s) < — lim [f — + G(a) —] ,
Z =0 | Jyoyeny G@) yos+1-1 G(2)

s=n3
o Yms) gy, Ym=1) gy,
A R’(m'—l)g—lim[f + G(a) ]
; ! 7 L ym) G(u) y(m—1) G(v)
implies that
D Q)+ ) Rm—1) <o,
§=n3 j=1
a contradiction to (Ag) due to (A;). This completes the proof of the theorem. O

Next, we establish the criteria for existence of positive solution of the impulsive system (E) .

Theorem 2.4. Let —1 < p; < p(n) < pr < 0. Assume that

(A10) X5 25| Tk 4(9) + Bamporest 7y = 1) < 00
holds. Then (E) has a bounded non-oscillatory solution.

Proof. Let X = It} be the Banach space of all real valued bounded sequence x(n) for n > n; with the
norm defined by
llxll = sup{lx(m)| : n = n,}.

Consider a closed subset S of X, where
S={xeX:B <x(n <By,n>n},
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where 8; > 0 and B, > 0 are so chosen that 81 — p18, < 5,. Due to (A;p), we can find n, > n; and
B1 <v < (1+ p)B> such that

[ee)

RS 1 -
Z@[ann > r(mj—l)}<%, (2.6)

s=n nay<mj—1<s—1

where M = max{G(x) : B; < x < f3,}. For x € § and n > n,, define two maps

_ ) Thx(nm), np —p <n < ny,
(Tx)(n) = { y—pmx(n—1), n>n,
and
(Ty)(n) = Trx(ny), np —p < n < ny,
PVT B, A2 a0GO( = 0)) + Dm0 70m; = DGy = o = D)1 > ma.

Indeed, for x{, x, € S and using (2.6) for n > n,, we have

00 1 s—1
Tiin) + Toxan) = y = pn(n =0+ ) =5[> q(0G(elt = )

) rmy = 1D)Gam; - = 1)

np<mj—1<s—1

00 s—1
Sy=pba+ ), o[ Y a6t - )

+ > rm= DGGam; - o - 1)

np<mj—1<s—1

00 s—1
1
Sy=pifat M) — ol ) a0+ Z; o= 1)
s=n t=np na<mj—1<s—

<p

and

T1x1(n) + Taxa(n) >y — p(n)x(n — 1)
>y 2 ﬁ].

Therefore, 81 < T1x; + Trx, < B, for n > n,. Also, for x;,x, € § and n > n,, we have
[Ty x1(n) = Tixa(n)| < [p()llxi(n — 1) — x2(n = 1) < —p1lxi(n = 7) — x2(n — 7)),

that is,
IT1x1 = T x|l £ =pillx; — x|

and hence T is a contraction mapping with the contraction constant —p; < 1.
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Next, we show that 7, is completely continuous. For this, we need to show that 7, x is continuous
and relatively compact. Let x; € S be such that x;(n) — x(n) as k — oo. Since S is closed, then
x=x(n)eS. Now, forn > n,

(o)

|(T2x)(n) — (T2x)(n)| < Z

s=n

> rm = DIGGwm; - o = 1) = Gx(m; — o = D).

ny<mj—1<s-1

1
a(s)

s—1
[ >} a0IGGutt - o)) - Glxte - o)

Since |G(xx(n—0)) — G(x(n— o)) — 0 as k — oo, by applying the Lebesgue’s dominated convergence
theorem [1], we have that limy_,., [(T2x;)(n) — (T,x)(n)] — 0. Therefore, T>x is continuous. To show
that T, x is relatively compact, we show that the family of functions {7, x : x € §} is uniformly bounded
and equicontinuous on [n;, 00). It is easy to see that 75 x is uniformly bounded.

Next, we show that T, x is equicontinuous. For ny > n;3 > n, and x € S such that

00 1 s—1
IT2x09) = Taxn)] =1 ), 2o [Z qOGEE—aN+ D rmy = DGm; -0 - 1))]

s=ny t=ny np<mj_1<s—1

& 1 s—1
_ Z a(s) [Z g)G(x(t — o)) + Z r(m; — 1)G(x(m; — o — 1))] |

s=n3 t=ny ny<mj_1<s—1
ny 1 s—1
<MY —|> g+ ) rm-1)|.
a(s)
s=n3 t=ny ny<mj_1<s—1

Therefore, there exists € > 0 and ¢ > 0 such that for € < %

|T>x(ng) — Thox(nz)| < € when ever 0 < ny — n3 < 0,

and this relation continue to hold for every ns,ny € [n,,0). Therefore, {T>x : x € S} is uniformly
bounded and equicontinuous on [n,, o) and hence T»x is relatively compact. By Theorem 1.3, T + T,
has a unique fixed point x € § such that 7, x + T>x = x for which

x(n), n, —p <n < ny,
x(n) ={ v — pm)x(n—1)
+ 25 5| 2 GG = 0)) + Tt Fmy = DGmy = o = )], 0> o

Indeed, x(n) is a positive solution of the impulsive system (E) . This completes the proof of the
theorem. O

3. Conclusion and example

We present some examples to illustrate our main results.

Example 3.1. Consider the impulsive difference equation

(Ey) AlnA(x(n) = 2x(n — )] + g)x'"*(n—3) =0, n #mj, n > 4
: Al(m; — DA(x(m; — 1) = 2x(m; — 2))] + r(m; — 1)x1/3(mj -4)=0, jeN,
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where Tt =1, 0 =3, a(n) = n, p(n) = -1/2, g(n) = 6n + 3, r(m; — 1) = 6m; — 3, G(u) = u'l3, mj=3j
for j € N. Clearly,

and

8

3
i

Therefore, (Ay) — (Ay) hold. It is easy to see that all conditions of Theorem 2.1 are satisfied. Hence,
(E3) is oscillatory. In particular, x(n) = (—1)" is an oscillatory solution of the first equation of (E3) and
(—1)™ is an oscillatory solution of the second equation of (E5).

Example 3.2. Consider the impulsive difference equation

(E)) A’ (x(n) = 2x(n = 3)) + gqn)x*(n—1) =0, n # mj, n>4
PVAIAGn; — 1) = 2x(m; — 4)] + r(m; — Dad(m; —2) = 0, j €N,
wheret =3, 0 =1, an) = 1, p(n) = -2, q(n):(n—1)3(—+—+ + 2+ 4 - ) rimj—1) =

n+2 n+l

3 1 2 2 1 2 2 2 —
(m/ - 2) (m +5 mj+4 + mj+2 + mj+1 + m_] + mj—1 + mj=3 + mj—4)’ mj = 5-] fOl" -] € N Cll’ld G(I/t) -
Clearly,

(o)

== g
n=4

n=4

Therefore, (A3) and (A4) hold. It is easy to see that all conditions of Theorem 2.2 are satisfied. In
particular, x(n) = & 1) is a solution of the first equation of (E4) and ( 1) is a solution of the second
equation of (Ey).

Remark 3.3. In Theorem 2.4, we have obtained the necessary condition for the existence of bounded
positive solution of the impulsive system (E) by using the Krasnoselskii’s fixed point theorem in the
range —1 < p(n) < 0. It would be interesting to prove the results in the other ranges of p(n) by means
of Krasnoselskii’s fixed point theorem.

Remark 3.4. We may note that, Theorem 2.2 guarantees that every solution of (E) either oscillates or
converges to zero. Unfortunately, we can not establish sufficient condition that ensure that all solutions
of (E) are just oscillatory.

Remark 3.5. Based on Remark 3.4, we can raise following problems for future research:

(1) Is it possible to establish sufficient condition that ensure that all solutions of (E) are oscillatory
when —oo < p(n) < —17?

(2) Is it possible to suggest a different method to study (E) and find some sufficient conditions which
ensure that all solutions of (E) are oscillatory when |p(n)| < co?

(3) Is it possible to find the necessary and sufficient conditions which ensure that all solutions of (E)
are oscillatory?
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