In this paper, we consider the fractional optimal control problem with the terminal and running state constraints. The fractional calculus of derivatives and integrals can be viewed as generalizations of their classical notions to any arbitrary real order. In our problem setup, the dynamical system (or state equation) is captured by the fractional differential equation in the sense of (left) Caputo with order $ \alpha \in (0, 1) $, and the objective functional is formulated by the Bolza form expressed as the left Riemann-Liouville fractional integral. In addition, there are terminal and running state constraints; while the former is described by initial and final states within a convex set, the latter is given by an explicit instantaneous inequality state constraint. We obtain the Pontryagin maximum principle for the problem of this paper. The proof is based on an application of the Ekeland variational principle and the spike variation, by which we develop fractional variational and duality analysis using fractional calculus and functional analysis techniques, together with the representation results on (RL and Caputo) linear fractional differential equations. In fact, due to the inherent complex nature of the fractional control problem and the presence of the terminal and running state constraints, our maximum principle is new in the optimal control problem, context and its detailed proof must be different from that of the existing literature. As an application, we consider the linear-quadratic fractional optimal control problem with terminal and running state constraints, for which the optimal solution is obtained using the maximum principle of this paper.
Citation: Jun Moon. The Pontryagin type maximum principle for Caputo fractional optimal control problems with terminal and running state constraints[J]. AIMS Mathematics, 2025, 10(1): 884-920. doi: 10.3934/math.2025042
In this paper, we consider the fractional optimal control problem with the terminal and running state constraints. The fractional calculus of derivatives and integrals can be viewed as generalizations of their classical notions to any arbitrary real order. In our problem setup, the dynamical system (or state equation) is captured by the fractional differential equation in the sense of (left) Caputo with order $ \alpha \in (0, 1) $, and the objective functional is formulated by the Bolza form expressed as the left Riemann-Liouville fractional integral. In addition, there are terminal and running state constraints; while the former is described by initial and final states within a convex set, the latter is given by an explicit instantaneous inequality state constraint. We obtain the Pontryagin maximum principle for the problem of this paper. The proof is based on an application of the Ekeland variational principle and the spike variation, by which we develop fractional variational and duality analysis using fractional calculus and functional analysis techniques, together with the representation results on (RL and Caputo) linear fractional differential equations. In fact, due to the inherent complex nature of the fractional control problem and the presence of the terminal and running state constraints, our maximum principle is new in the optimal control problem, context and its detailed proof must be different from that of the existing literature. As an application, we consider the linear-quadratic fractional optimal control problem with terminal and running state constraints, for which the optimal solution is obtained using the maximum principle of this paper.
[1] | A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Elsevier, 2006. |
[2] | K. Diethelm, The analysis of fractional differential equations, Springer, 2010. |
[3] | A. B. Malinowska, T. Odzijewicz, D. F. Torres, Advanced methods in the fractional calculus of variations, Springer, 2015. https://doi.org/10.1007/978-3-319-14756-7_3 |
[4] | Y. Zhou, Basic theory of fractional differential equations, World Scientific Publishing, 2014. |
[5] | O. P. Agrawal, Some generalized fractional calculus operators and their applications in integral equations, Fract. Calc. Appl. Anal., 15 (2012), 700–711. https://doi.org/10.2478/s13540-012-0047-7 doi: 10.2478/s13540-012-0047-7 |
[6] | O. P. Agrawal, A general formulation and solution scheme for fractional optimal control problems, Nonlinear Dyn., 38 (2004), 323–337. https://doi.org/10.1007/s11071-004-3764-6 doi: 10.1007/s11071-004-3764-6 |
[7] | R. Almeida, D. F. Torres, Calculus of variations with fractional derivatives and fractional integrals, Appl. Math. Lett., 22 (2009), 1816–1820. https://doi.org/10.1016/j.aml.2009.07.002 doi: 10.1016/j.aml.2009.07.002 |
[8] | O. Agrawal, O. Defterli, D. Baleanu, Fractional optimal control problems with several state and control variables, J. Vib. Control, 16 (2010), 1967–1976. https://doi.org/10.1177/1077546309353361 doi: 10.1177/1077546309353361 |
[9] | R. K. Biswas, S. Sen, Free final time fractional optimal control problems, J. Franklin. I., 351 (2014), 941–951. https://doi.org/10.1016/j.jfranklin.2013.09.024 doi: 10.1016/j.jfranklin.2013.09.024 |
[10] | I. Matychyn, V. Onyshchenko, Time-optimal control of fractional-order linear systems, Fract. Calc. Appl. Anal., 18 (2015), 687–696. https://doi.org/10.1515/fca-2015-0042 doi: 10.1515/fca-2015-0042 |
[11] | R. Kamocki, On the existence of optimal solutions to fractional optimal control problems, Appl. Math. Comput., 235 (2014), 94–104. https://doi.org/10.1016/j.amc.2014.02.086 doi: 10.1016/j.amc.2014.02.086 |
[12] | M. I. Gomoyunov, Dynamic programming principle and Hamilton-Jacobi-Bellman equations for fractional-order systems, SIAM J. Control Optim., 58 (2020), 3185–3211. https://doi.org/10.1137/19M1279368 doi: 10.1137/19M1279368 |
[13] | M. I. Gomoyunov, Minimax solutions of Hamilton-Jacobi equations with fractional coinvariant derivatives, ESAIM: COCV, 28 (2022), 23. https://doi.org/10.1051/cocv/2022017 doi: 10.1051/cocv/2022017 |
[14] | R. Kamocki, M. Majewski, Fractional linear control systems with Caputo derivative and their optimization, Optim. Control Appl. Met., 36 (2015), 953–967. https://doi.org/10.1002/oca.2150 doi: 10.1002/oca.2150 |
[15] | Y. Ding, Z. Wang, H. Ye, Optimal control of a fractional-order HIV-Immune system with memory, IEEE T. Contr. Syst. T., 20 (2012), 763–769. https://doi.org/10.1109/TCST.2011.2153203 doi: 10.1109/TCST.2011.2153203 |
[16] | W. Li, S. Wang, V. Rehbock, Numerical solution of fractional optimal control, J. Optim. Theory Appl., 180 (2019), 556–573. https://doi.org/10.1007/s10957-018-1418-y doi: 10.1007/s10957-018-1418-y |
[17] | C. Liu, W. Sun, X. Yi, Optimal control of a fractional smoking systems, J. Ind. Manag. Optim., 19 (2023), 2936–2954. https://doi.org/10.3934/jimo.2022071. doi: 10.3934/jimo.2022071 |
[18] | Z. Gong, C. Liu, K. L. Teo, S. Wang, Y. Wu, Numerical solution of free final time fractional optimal control problems, Appl. Comput. Math., 405 (2021), 126270. https://doi.org/10.1016/j.amc.2021.126270 doi: 10.1016/j.amc.2021.126270 |
[19] | P. Rahimkhani, Y. Ordokhani, Numerical investigation of distributed-order fractional optimal control problems via Bernstein wavelets, Optim. Contr. Appl. Met., 42 (2021), 355–373. https://doi.org/10.1002/oca.2679 doi: 10.1002/oca.2679 |
[20] | M. Bergounioux, L. Bourdin, Pontryagin maximum principle for general Caputo fractional optimal control problems with Bolza cost and terminal constraints, ESAIM: COCV, 26 (2020), 35. https://doi.org/10.1051/cocv/2019021 doi: 10.1051/cocv/2019021 |
[21] | X. L. Ding, I. Area, J. Nieto, Controlled singular evolution equations and Pontryagin type maximum principle with applications, Evol. Equ. Control The., 11 (2022), 1655–1679. https://doi.org/10.3934/eect.2021059 doi: 10.3934/eect.2021059 |
[22] | P. Lin, J. Yong, Controlled singular Volterra integral equations and Pontryagin maximum principle, SIAM J. Control Optim., 58 (2020), 136–164. https://doi.org/10.1137/19M124602X doi: 10.1137/19M124602X |
[23] | M. I. Gomoyunov, Optimal control problems with a fixed terminal time in linear fractional-order systems, Arch. Control Sci., 30 (2020), 721–744. https://doi.org/10.24425/acs.2020.135849 doi: 10.24425/acs.2020.135849 |
[24] | H. Tajadodi, A. Khan, J. F. Gomez-Aguilar, H. Khan, Optimal control problems with Atangana-Baleanu fractional derivative, Optim. Contr. Appl. Met., 42 (2021), 96–109. https://doi.org/10.1002/oca.2664 doi: 10.1002/oca.2664 |
[25] | Z. D. Jelicic, N. Petrovacki, Optimality conditions and a solution scheme for fractional optimal control problems, Struct. Multidisc. Optim., 38 (2009), 571–581. https://doi.org/10.1007/s00158-008-0307-7 doi: 10.1007/s00158-008-0307-7 |
[26] | G. S. F. Frederico, D. F. Torres, Fractional optimal control in the sense of Caputo and the fractional Noether's theorem, Int. Math. Forum, 3 (2008), 479–493. https://doi.org/10.48550/arXiv.0712.1844 doi: 10.48550/arXiv.0712.1844 |
[27] | R. Almeida, D. F. Torres, Necessary and sufficient conditions for the fractional calculus of variations with Caputo derivatives, Commun. Nonlinear Sci., 16 (2011), 1490–1500. https://doi.org/10.1016/j.cnsns.2010.07.016 doi: 10.1016/j.cnsns.2010.07.016 |
[28] | T. L. Guo, The necessary conditions of fractional optimal control in the sense of Caputo, J. Optim. Theory Appl., 156 (2013), 115–126. https://doi.org/10.1007/s10957-012-0233-0 doi: 10.1007/s10957-012-0233-0 |
[29] | R. Kamocki, Pontryagin maximum principle for fractional ordinary optimal control problems, Math. Method. Appl. Sci., 37 (2014), 1668–1686. https://doi.org/10.1002/mma.2928 doi: 10.1002/mma.2928 |
[30] | S. Pooseh, R. Almeida, D. F. Torres, Fractional order optimal control problems with free terminal time, J. Ind. Manag. Optim., 10 (2014), 363–381. https://doi.org/10.3934/jimo.2014.10.363 doi: 10.3934/jimo.2014.10.363 |
[31] | H. M. Ali, F. L. Pereira, S. M. A. Gamma, A new approach to the Pontryagin maximum principle for nonlinear fractional optimal control problems, Math. Method. Appl. Sci., 39 (2016), 3640–3649. https://doi.org/10.1002/mma.3811 doi: 10.1002/mma.3811 |
[32] | R. Almeida, R. Kamocki, A. B. Malinowska, T. Odzijewicz, On the necessary optimality conditions for the fractional Cucker-Smale optimal control problem, Commun. Nonlinear Sci., 96 (2021), 105678. https://doi.org/10.1016/j.cnsns.2020.105678 doi: 10.1016/j.cnsns.2020.105678 |
[33] | S. S. Yusubov, E. N. Mahmudov, Optimality conditions of singular controls for systems with Caputo fractional derivatives, J. Ind. Manag. Optim., 19 (2023), 246–264. https://doi.org/10.3934/jimo.2021182 doi: 10.3934/jimo.2021182 |
[34] | S. Wang, W. Li, C. Liu, On necessary optimality conditions and exact penalization for a constrained fractional optimal control problem, Optim. Contr. Appl. Met., 43 (2022), 1096–1108. https://doi.org/10.1002/oca.2877 doi: 10.1002/oca.2877 |
[35] | M. Habibli, M. H. Nouri Skandari, Fractional Chebyshev pseudospectral method for fractional optimal control problems, Optim. Contr. Appl. Met., 40 (2019), 558–572. https://doi.org/10.1002/oca.2495 doi: 10.1002/oca.2495 |
[36] | M. M. Raja, V. Vijayakumar, A. Shukla, K. S. Nisar, N. Sakthivel, K. Kaliraj, Optimal control and approximate controllability for fractional integrodifferential evolution equations with infinite delay of order $\gamma \in (1, 2)$, Optim. Contr. Appl. Met., 43 (2022), 996–1019. https://doi.org/10.1002/oca.2867 doi: 10.1002/oca.2867 |
[37] | M. de Pinho, M. Margarida, A. Ferreira, G. Smirnov, Optimal control problem with state constraints via penalty functions, Syst. Control Lett., 188 (2024), 105816. https://doi.org/10.1016/j.sysconle.2024.105816 doi: 10.1016/j.sysconle.2024.105816 |
[38] | E. S. Baranovskii, R. V. Brizitskii, Z. Y. Saritskaia, Optimal control problems for the reaction-diffusion-convection equation with variable coefficients, Nonlinear Anal. Real, 75 (2024), 103979. https://doi.org/10.1016/j.nonrwa.2023.103979 doi: 10.1016/j.nonrwa.2023.103979 |
[39] | I. Malmir, New pure multi-order fractional optimal control problems with constraints: QP and LP methods, ISA Trans., 153 (2024), 155–190. https://doi.org/10.1016/j.isatra.2024.08.003 doi: 10.1016/j.isatra.2024.08.003 |
[40] | I. Malmir, Novel closed-loop controllers for fractional linear quadratic time-varying systems, Numer. Algebr. Control, 14 (2024), 366–403. https://doi.org/10.3934/naco.2022032 doi: 10.3934/naco.2022032 |
[41] | L. Bourdin, Cauchy-Lipschitz theory for fractional multi-order dynamics: State-transition matrices, Duhamel formulas and duality theorems, Differ. Integral Equ., 31 (2018), 559–594. https://doi.org/10.57262/die/1526004031 doi: 10.57262/die/1526004031 |
[42] | M. I. Gomoyunov, On representation formulas for solutions of linear differential equations with Caputo fractional derivatives, Fract. Calc. Appl. Anal., 23 (2020), 1141–1160. https://doi.org/10.1515/fca-2020-0058 doi: 10.1515/fca-2020-0058 |
[43] | X. Li, J. Yong, Optimal control theory for infinite dimensional systems, Birkhauser, 1995. https://doi.org/10.1007/978-1-4612-4260-4 |
[44] | A. Lotfi, M. Dehghan, S. A. Yousefi, A numerical technique for solving fractional optimal control problems, Comput. Math. Appl., 62 (2011), 1055–1067. https://doi.org/10.1016/j.camwa.2011.03.044 doi: 10.1016/j.camwa.2011.03.044 |
[45] | N. Singha, Implementation of fractional optimal control problems in real-world applications, Fract. Calc. Appl. Anal., 23 (2020), 1783–1796. https://doi.org/10.1515/fca-2020-0088 doi: 10.1515/fca-2020-0088 |
[46] | Y. Oh, J. Moon, The infinite-dimensional Pontryagin maximum principle for optimal control problems of fractional evolution equations with endpoint state constraints, AIMS Math., 9 (2024), 6109–6144. https://doi.org/10.3934/math.2024299 doi: 10.3934/math.2024299 |
[47] | J. Yong, X. Y. Zhou, Stochastic controls: Hamiltonian systems and HJB equations, Springer, 1999. https://doi.org/10.1007/978-1-4612-1466-3 |
[48] | L. Bourdin, Note on Pontryagin maximum principle with running state constraints and smooth dynamics-proof based on the Ekeland variational principle, 2016. https://doi.org/10.48550/arXiv.1604.04051 |
[49] | P. Bettiol, L. Bourdin, Pontryagin maximum principle for state constrained optimal sampled-data control problems on time scales, ESAIM: COCV, 27 (2020), 51. https://doi.org/10.1051/cocv/2021046 doi: 10.1051/cocv/2021046 |
[50] | A. V. Dmitruk, N. P. Osmolovskii, Necessary conditions for a weak minimum in a general optimal control problem with integral equations on a variable time interval, Math. Control Relat. F., 7 (2017), 507–535. https://doi.org/10.3934/mcrf.2017019 doi: 10.3934/mcrf.2017019 |
[51] | L. Bourdin, G. Dhar, Optimal sampled-data controls with running inequality state constraints: Pontryagin maximum principle and bouncing trajectory phenomenon, Math. Program., 191 (2022), 907–951. https://doi.org/10.1007/s10107-020-01574-2. doi: 10.1007/s10107-020-01574-2 |
[52] | E. M. Stein, R. Shakarchi, Real analysis: Measure theory, integration, and Hilbert spaces, Princeton: Princeton University Press, 2005. https://doi.org/10.1515/9781400835560 |
[53] | R. F. Hartl, S. P. Sethi, R. G. Vickson, A survey of the maximum principle for optimal control problems with state constraints, SIAM Rev., 37 (1995), 181–218. https://doi.org/10.1137/1037043 doi: 10.1137/1037043 |
[54] | R. Vinter, Optimal control, Springer Science & Business Media, 2000. |
[55] | C. Li, A. Chen, J. Ye, Numerical approaches to fractional calculus and fractional ordinary differential equation, J. Comput. Phys., 230 (2011), 3352–3368. https://doi.org/10.1016/j.jcp.2011.01.030 doi: 10.1016/j.jcp.2011.01.030 |
[56] | M. Cai, C. Li, Numerical approaches to fractional integrals and derivatives: A review, Mathematics, 8 (2020), 43. https://doi.org/10.3390/math8010043 doi: 10.3390/math8010043 |
[57] | C. Li, M. Cai, Theory and numerical approximations of fractional integrals and derivatives, Society for Industrial and Applied Mathematics, 2019. |
[58] | F. M. Alharbi, A. M. Zidan, M. Naeem, R. Shah, K. Nonlaopon, Numerical investigation of fractional-order differential equations via $\psi$-Haar-Wavelet method, J. Funct. Space., 2021 (2021), 3084110. https://doi.org/10.1155/2021/3084110 doi: 10.1155/2021/3084110 |
[59] | M. Altaf Khan, A. Atangana, Numerical methods for fractal-fractional differential equations and engineering, CRC Press, 2023. https://doi.org/10.1201/9781003359258 |
[60] | A. Ruszczynski, Nonlinear optimization, Princeton University Press, 2006. https://doi.org/10.1515/9781400841059 |
[61] | T. M. Flett, J. S. Pym, Differential analysis: differentiation, differential equations, and differential inequalities, 1980. |
[62] | F. H. Clarke, Optimization and nonsmooth analysis, Society for industrial and Applied Mathematics, 1990. |
[63] | J. B. Conway, A course in functional analysis, New York: Springer, 1985. https://doi.org/10.1007/978-1-4757-3828-5 |
[64] | B. S. Mordukhovich, Variational analysis and generalized differentiation I, Springer, 2006. https://doi.org/10.1007/3-540-31247-1 |
[65] | I. Ekeland, On the variational principle, J. Math. Anal. Appl., 47 (1974), 324–353. https://doi.org/10.1016/0022-247X(74)90025-0 |
[66] | V. I. Bogachev, Measure theory, Springer, 2000. https://doi.org/10.1007/978-3-540-34514-5 |
[67] | Y. Sun, Maximum principle for mean-field controlled systems driven by a fractional Brownian motion, Optim. Control Appl. Method., 44 (2023), 3282–3305. https://doi.org/10.1002/oca.3039 doi: 10.1002/oca.3039 |
[68] | H. Ye, J. Gas, Y. Ding, A generalized Gronwall inequality and its application to a fractional differential equation, J. Math. Anal. Appl., 328 (2007), 1075–1081. https://doi.org/10.1016/j.jmaa.2006.05.061 doi: 10.1016/j.jmaa.2006.05.061 |